MINISTRY EDUCATION AND SCIENCES UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
"IGOR SIKORSKY KYIV
POLYTECHNIC INSTITUTE"

Gordienko Yu.G., Kochura Yu.P.

DEEP LEARNING METHODS

Lectures

Tutorial
for master's degree holders
according to the educational program "Software engineering of computer systems»
specialties 121 "Software engineering"
according to the educational program "Computer systems and networks»
specialty 123 "Computer engineering"
according to the educational program "Information management systems and technologies»
specialties 126 "Information systems and technologies»

Electronic educational publication

APPROVED
at the meeting of Computer Engineering department,
protocol No. 10 on 05/25/2022

2022

Deep Learning Methods

Lecture_01

S ok ok ok 3k sk s s sk Sk Sl o ok ok ok ok sk sk sk sk Sk Sl S Sk ok ok ok sk sk sk sk sk sk Sl Sl Sk Sk ok ok ke sl sk sk sk Sk Sk Sl Sl Sl ok ok ke ke sk sk sk sk Sk sl Sl ok ok ok ok Sk sk sk sk sk sk s sk sk ok sk sk sk ok

Lecture Slides:
https://cloud.comsys.kpi.ua/s/SMkBSsxRTazoTD6

S ok ok >k 3k sk sk s Sk Sk S ok ok ok ok ok sk sk sk sk Sk Sl ok Sk ok ok ok sk sk sk sk sk sk Sl Sk Sk Sk ok ok ke sk sk sk sk Sk Sk Sl Sl Sl ok ok ke Sk sk sk sk sk Sk Sl Sl ok ok ok ok ke sk sk sk sk sk s sk sk ok sk ok sk ok

Lecture 01 - Introduction

The course includes materials proposed by NVIDIA Deep Learning Institute (DLI) in the
framework of the common

NVIDIA Research Center
and
NVIDIA Education Center.

~. NVIDIA. ~NVIDIA.

GPU GPU

EDUCATION RESEARCH
CENTER CENTER

nvi

https://kpi.ua/nvidia-info

DEEP LEARNING
METHODS

LECTURE 1: INTRODUCTION
Yuri Gordienko, DLI Certified Instructor

@ DEEP
LEARNING

NVIDIA. INSTITUTE

P
a2

AWy -,

s
gl

[\

‘1

g
{

,.ai\v
g

)

DEEP LEARNING INSTITUTE

DLI Mission

Training you to solve the world’s most
challenging problems.

Developers, data scientists and
engineers

Self-driving cars, healthcare and
robotics

Training, optimizing, and deploying
deep neural networks

G
nviDla. INSTITUTE

Выступающий
Заметки для презентации
This is one of many offerings from the NVIDIA Deep Learning Institute, or DLI for short. We offer instructor-led and self-paced courses ranging from getting started through cutting edge workflows in specific domains like self-driving cars, healthcare, robotics, etc.

Each of our courses takes advantage of the hands-on platform you’ll be using today which will allow you to start engaging the with tools and concepts that make Deep Learning possible and powerful right from your web browser without the barrier of setting up environments.

Let’s take a look at how this course will flow.

People = Developers, Data Scientist, Engineers

Problems = Self-driving cars, healthcare issues like cancer detection, consumer services and robotics

AI / Deep Learning = training, optimizing and deploying deep neural networks

DEFINITIONS

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING

DEER
LEARNING

1960's 1970°s 1980°s 1990°'s 2000's

Выступающий
Заметки для презентации
First, let’s start with some definitions…

AI is a broad field of study focused on using computers to do things that require human-level intelligence
It’s been around since the 50’s, playing games like tic-tac-toe and checkers, and inspiring scary sci-fi movies
But it was limited in practical applications

ML is an approach to AI that uses statistics techniques to construct a model from observed data
It generally relies on human-defined classifiers or “feature extractors” that can be as simple as a linear regression
Or slightly more complicated “Bag of Words” analysis that made email SPAM filters possible
Which was really handy in the late 1980’s when lots of email started showing up in your inbox
Ref. https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

Then we invented smartphones, webcams, social media services and all kinds of sensors that generate huge mountains of “big data” and the new challenge of understanding and extracting insights from the data.

DL is a ML technique that automates the creation of feature extractors using large amounts of data to train complex “deep neural networks”
DNNs are capable of achieving human-level accuracy for many tasks, but require tremendous computational power to train
A few years ago, researchers started applying DNNs in a variety of areas and reporting amazing results…

DEEP LEARNING IS
SWEEPING ACROSS INDUSTRIES

Internet Services Medicine Media & Entertainment Security & Defense Autonomous Machines

> Image/Video classification > Cancer cell detection > Video captioning > Face recognition > Pedestrian detection
> Speech recognition > Diabetic grading > Content based search > Video surveillance > Lane tracking
> Natural language processing > Drug discovery > Real time translation > Cyber security > Recognize traffic signs

= | DEEP
.l LEARNING
NVIDIA. INSTITUTE

Выступающий
Заметки для презентации
It turns out that deep learning is stunningly effective across many domains, and it’s transforming the way computers achieve perceptual tasks such as computer vision, pattern detection, speech recognition and behavior prediction. Some people, including Bloomberg and the World Economic Forums, have even started referring to it as the 4th industrial revolution.
References:
https://www.bloomberg.com/news/articles/2016-05-20/forward-thinking-robots-and-ai-spur-the-fourth-industrial-revolution
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

A few examples:

Facebook’s “DeepFace” feature creates a 3D model of your face from your online photos, adjusts for lighting and facial expressions, and identifies you in photos with 97% accuracy – all using deep learning. You may have experienced this when Facebook alerts you that a new picture of you has been posted and gives you the option to blur out your image.
References:
http://www.inquisitr.com/1825367/facebook-deepface-ai-learning-your-face-in-every-uploaded-photo
http://news.sciencemag.org/social-sciences/2015/02/facebook-will-soon-be-able-id-you-any-photo

Microsoft’s Skype Translator performs instant translation of conversations in over 40 languages, using Deep Learning to automatically transform your spoken words into text that can then be analyzed using standard translation methods.
References:
http://www.technologyreview.com/news/534101/something-lost-in-skype-translation/
http://www.wired.com/2014/05/microsoft-skype-translate/

Other examples include medical researchers detecting genes associated with autism spectrum disorder, neuroscientists detecting and suppressing the brainwave patterns responsible for epileptic seizures, and using deep learning to identify skin cancers, classify lung sounds, and accelerate computational drugs design, saving millions in research.

Imagine a day in the not-too-distant future when a service like Facebook puts this all together and notifies you that you may have early-stage skin cancer so you can consult with your doctor and get life-saving treatment.

===========================
Story: Understanding Video
Clarifai offers a service that rapidly analyzes images and video clips to recognize 10,000 different objects or types of scenes
This capability can be used for extremely targeted advertising, for example:
Showing a Starbucks ad whenever coffee appears in a video
Rapidly scanning security footage
Searching through your personal video archive for your child’s first steps
References:
http://www.technologyreview.com/news/534631/a-startups-neural-network-can-understand-video/

DEEP LEARNING IS TRANSFORMING HPC

92%

believe Al will impact their work

93%

using deep learning seeing positive results

D

‘inside
HPC

UFlfiorRmbA &

insideHPC.com Survey

“Seeing” Gravity In Real Time Accelerating Drug Discovery November 2016

Выступающий
Заметки для презентации

“SEEING” GRAVITY IN REAL TIME
In September 2015, 100 years after Einstein predicted them, gravitational waves were observed for the first time by astronomers at the Laser Interferometer Gravitational-wave Observatory (LIGO). “Seeing” gravity —a feat that Einstein doubted would ever be achieved— opened the door to a new class of astrophysics, along with a daunting new challenge: observing these waves in parallel with electromagnetic waves, radio waves and visible light, and analyzing the combined data in real time.
�Scientists at NCSA are using GPU-powered deep learning to make this computationally intensive approach possible. Using a deep Convolutional Neural Network (CNN), NCSA trained its system to process gravitational wave data more than 100 times faster than its previous machine learning methods — making real-time analysis possible and putting us one step closer to understanding the universe’s oldest secrets.

Accelerating Drug Discovery with AI
It takes an average of 12 years and $2.6 billion to bring a new drug to market. Effective and affordable medical care in the future will depend on breakthroughs to speed the process. Molecular energetics, where millions of molecules are scanned to determine how they interact with each other, promises to do just that, but it requires an enormous amount of computing power.
�Today’s CPU-based methods can process as many as two million candidates per year, but researchers at the Universities of Florida and North Carolina have developed a way to use GPU-based deep learning to accomplish the same work in under two minutes. Its speed and accuracy could start a revolution in computational chemistry — and forever change the way we discover the medicines of the future.

Al IS CRITICAL FOR INTERNET APPLICATIONS

Users Expect Intelligence In Services

Growing Use of Deep Learning at Google

of directories containing model description files

Unique project directories

4

Time

Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
.. many others ...

= | DEEF
S, £

LEARNING
NVIDIA. INSTITUTE

Выступающий
Заметки для презентации
Source: Jeff Dean, leads the Google Brain team, making machines intelligent.
 http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

THE EXPANDING UNIVERSE

- OF i

: L
HE BIG BA 2 s o Eelglsg_fﬂﬂ
& Chainer
Big Data - : - T
GPU facebook Tt Universite thean
Algorithms i Openfll S o @ B\ Wats
. ' Bcrl{elr:)' 0 Université Fh f on
berkele deMonieasl Google Berkeley Caffe
% carnegee MMV =22 Tersorlow T
' Uiorsy @5cio
. 9 Envu Mucwen CNTK @i - Google
& 1 . : TORONTO B
2 : E@AnviDIA. cuDNN
- . . - Microsoft Azure

nervana
Sapiai drivear ..
PL. i -
Parsonal Assistants [R——
tormersationsl intetlace YSADAKO
BELUE RIVER @Metaiind Waste Management
TESHKBLETT ql:mmpr:n &J.’EE,'E.‘}. seriing robats
L S ——
P p— SocialEyes’
" W Morpho e
chnh Tech diabatic retinopatiy
Tach CRETpRET VERDN i

iswal recogritian platform

@deep : Orbital Insight Education
genomics

Boospatial teackieg mbots
Ganemics Bt tans FOIR Fhigs
genetic mtsrpretstion

1,000+ Al START-UPS
$5B IN FUNDING

2
Alibaba :c; @
AslraZeneca @

Qoo

A

BaitNE® @

Bloomberg

&

MASSACHUSETTY
GENERAL HCHPTAL

Mercedes-Benz
charles sSCHWAB

i €3 MERCK
CISCO

ebay
FANUC M

momovTics

P,

UE

Wal

YA
Yai

ye

Выступающий
Заметки для презентации
Many people want to know why and how Deep Learning is being adopted so rapidly.

There were 3 key ingredients or Initial Conditions that made the “Big Bang” of Modern AI possible.
First was Big Data, the huge collections of examples from which computers can learn
Second, researchers needed to develop Parallel Algorithms that allow data scientists to design and train deep neural networks to process the mountains of big data
Third was the introduction of GPU Accelerators that make it possible to complete massive amounts of computation required in a practical amount of time.

Early researchers published their algorithms and neural network models in journals, but they also released their software, packaged up in high-level, open source Frameworks that others could use – so you don’t have to start from scratch. And all of the major DL frameworks support GPU acceleration because it just wasn’t practical to do this computationally intense work without GPUs.

Cloud Platform Providers recognized the potential of deep learning to improve their own services and the business opportunity of offering GPU-accelerated deep learning platforms in the cloud. Now all of the major Cloud Service Providers make GPUs available to their customers.

This significantly reduced the capital costs and time investment for startups, which motivated a huge influx of venture funding for deep learning start-ups. More than $5B in funding is already fueling AI start-ups, and research firm Tractica is projecting a $500B in opportunity over the next 10yrs.*

Now large companies, governments and other organizations – influenced by the impressive achievements of start-ups and researchers – are rapidly adopting this new technology, seeing it as a competitive advantage… or threat if they fail to effectively master it.

==================
* Ref. Tractica “Deep Learning for Enterprise Applications” 4Q 2015

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Traditional Approach

Expert Written car vehicle | > Requires domain experts
RS = Ertor prone.
Program coupe > Not scalable to new

problems

Выступающий
Заметки для презентации
Now that we’ve seen a few examples of applications that benefit from Deep Learning…

Let’s explore how deep learning works by comparing it with earlier approaches to machine learning.

Consider the traditional approach to performing computer vision tasks such as image classification or object detection.

A domain expert trained in computer vision, comes up with a set or rules to extract features from the image – such as edges, corners, color information, etc. The expert has to implement these rules by hand writing software routines and figure out how all the rules should be connected in relation to each other to perform the task. As you can imagine, this can be tedious and error prone. And if the data changes, then it’s back to the drawing board. All of this results in tons of source code to write, debug and maintain.

[next]

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Expert Written

car

vehicle
Computer
Program coupe
;\O o
o\ :) car vehicle
O coupe

Deep Neural Network

Traditional Approach

> Requires domain experts

> Time consuming

> Error prone

> Not scalable to new
problems

Deep Learning Approach

v/ Learn from data
v/ Easily to extend
v’ Speedup with GPUs

Выступающий
Заметки для презентации
In contrast, the deep learning approach is to teach the computer the rules for performing the task directly from data. A data scientist can simply provide a deep neural network with thousands of examples and train it how to perform the task. The advantages of this approach include reduced reliance on domain-specific experts, the ability to extend and adapt to new data simply by retraining the network, and immense performance improvements using NVIDIA GPUs accelerators.

As a result, the deep learning approach can be more accurate, with significantly less human effort.

And it works not only for computer vision tasks such as image classification, object detection, and image segmentation…
But also for non-visual tasks such as pattern recognition, speech recognition and behavior prediction.

=======================
Alternative Old vs. New diagram:
http://blogs.zeiss.com/optics-beyond/wp-content/uploads/2016/06/Grafik.png

DEEP LEARNING

Выступающий
Заметки для презентации
Let’s take a look at how deep learning actually works in practice…

Here you can see a very simple model of an untrained neural network. At the top of the model, there is a row or “layer” that has 4 input nodes, and at the bottom there is a layer that has 2 output nodes. Between the input layer and the output layer are a few “hidden” layers with several nodes each. The white lines show which nodes in the input layer share their results with nodes in the first hidden layer, and so on all the way down to the output layer. You may hear the nodes referred to as “perceptrons” or “artificial neurons” since their behavior is inspired by the neurons in the human brain.

A real deep neural network model would have many additional layers between the input layer and the output layer - which is why it’s called “deep” - but a simplified model will work fine for this example.

Just keep in mind that the design of the neural network model is what makes it suitable for a particular task. For example, the best models for image classification are very different from the best models for speech recognition. And the variations can include the number layers, the number of nodes in each layer, the algorithms performed in each node, and the connections between nodes.

So, if the goal is to train a deep neural network to distinguish cats vs. dogs, you would select a neural network model that is designed to be good at image classification.

[next]

TRAINING

Learning a new capability
from existing data

A
| !
Untrained Deep Learning TRAINING
Neural Network Framework DATASET
Model

Выступающий
Заметки для презентации
The next step is to assemble a collection of representative examples to be used as a training dataset. In this case, several thousand images of both cats and dogs, each with a label indicating whether it belongs to the cat class or the dog class. To ensure the dataset is representative of all the pictures of dogs and cats that exist in the world, the dataset must include a wide range of species, poses, and environments in which dogs and cats may be observed.

Then a deep learning framework is used to feed the training dataset through the network. For each image that is processed through the network, each node in the output layer reports a number that indicates how confident it is that the image is a dog or a cat. In this case there are only two options, so the model only needs two nodes in the output layer – one for dogs and one for cats. When these final outputs are sorted most-confident to least-confident, the result is called a confidence vector. The deep learning framework then looks at the label for the image to determine whether the network chose the correct answer. If it chose correctly, the framework strengthens the weights of the connections that contributed to getting the correct answer. And vice-versa, if it chose incorrectly, the framework reduces the weights of the connections that contributed to getting the wrong answer.

After processing the entire training dataset once, the neural network will generally have enough experience to choose the correct answer a little more than half of the time (so better than a random coin toss) but it will require several additional rounds or “epochs” of processing the entire training dataset to achieve higher levels of accuracy.

It’s worth noting that there are readily available models for image classification, object recognition, image segmentation and several other tasks – but it is often necessary to modify these models to achieve high levels of accuracy for a particular dataset. So the computation required to train one version of the model is multiplied by the number of model variations that need to be evaluated. All of this processing requires a tremendous amount of computation, much of which can be performed in parallel, which makes deep learning an ideal workload for GPUs to accelerate.

There are also many deep learning frameworks to choose from, each with its own set of strengths, programming language interfaces, etc. but they’re all GPU-accelerated using cuDNN and other libraries in the NVIDIA Deep Learning SDK. You can learn more about all the deep learning frameworks and the NVIDIA Deep Learning SDK on our developer web site at developer.nvidia.com.

[next]

TRAINING

Learning a new capability
from existing data

A
] !
Untrained Deep Learning TRAINING Trained Model
Neural Network Framework DATASET New Capability
Model

Выступающий
Заметки для презентации
So, now that the model has been trained on a large representative dataset, it’s very good at distinguishing between cats vs. dogs. But if you showed it a picture of a racoon it would be very confused since it has no experience with racoons, and would probably report a low confidence number for both dog and cat.

If you need the ability to classify racoons as well as dogs and cats, you would simply add a third node to the output layer of the model, expand the training dataset to include thousands of representative images of racoons, and use the deep learning framework to re-train the network.

There’s no need to manually write a racoon classifier algorithm and figure out how to integrate it into your application, just re-train the deep neural network with your new data set.

TRAINING INFERENCE

Learning a new capability Applying this capability
from existing data to new data
A A
| !] 1
Untrained Deep Learning TRAINING Trained Model App or Service
Neural Network Framework DATASET New Capability Featuring Capability
Model

- - . . . [] . o
- . - . . .
Trained Model
Optimized for
: & d . o ® Performance
AN 0

Выступающий
Заметки для презентации
Once the model has been trained, much of the generalized flexibility that was necessary during the training process is no longer needed, so it’s possible to optimize the model for significantly faster runtime performance.

[Story: How Cooper learned to classify cars, “tucks”, busses, motorcycles, etc.]

Common optimizations include fusing layers to reduce memory and communication overhead, pruning nodes that do not contribute significantly to the results, and other techniques supported in the NVIDIA TensorRT runtime.

The fully trained and optimized model is then ready to be integrated into an application that will feed it new data, in this case images of dogs and cats that it hasn’t seen before, and it will be able to quickly and accurately infer the correct answer based on its training. And your application can be deployed on a GPU-accelerated platform in your datacenter, in the cloud, on a local workstation, in a robot, a smart camera, or even a self-driving car.

CHALLENGES

Deep Learning Needs Why

Data Scientists New computing model

Latest Algorithms Rapidly evolving

Fast Training Impossible -> Practical
Deployment Platforms Must be available everywhere

IIIIIIIIIIIIIII

Выступающий
Заметки для презентации
There are a few challenges that researchers and organizations face when adopting deep learning.

The first is that this is a brand-new computing model. Most data scientists, developers and researchers don’t have a lot of experience working with it yet, and to apply deep learning effectively you need to learn how to approach problems a little differently… from a more data-centric perspective.

Another challenge is that the algorithms used for deep learning continue to evolve and improve very rapidly, and keeping up with all the latest advances so you can apply them in your work requires significant time & effort.

And, as you saw earlier, training deep neural networks is tremendously computationally intensive. Until just a few years ago, this made deep learning an impossible, or at the very least, impractical approach for most applications.

A final challenge is that, once you have a trained neural network, it’s really flexible… you could deploy it in a cloud-based web service for low-latency facial recognition or e-commerce recommendations, a powerful workstation for medical imaging diagnoses, a safe and reliable self-driving car, smart cameras for intelligent video analytics, and more… but you need a wide range of GPU-accelerated deployment platforms to benefit from this flexibility.

Let’s take a look at some of the things NVIDIA is doing to help you overcome these challenges…

NVIDIA DEEP LEARNING
INSTITUTE

www.nvidia.com/dlilabs

www.nvidia.com/dli

www.nvidia.com/dli

&
Q @cm}pﬂ @Xnet

Caffe2 Bacr® ool

* TensorFlow PYTORCH

Fundamentals

Intelligent Video
Analytics

Finance

Autonomous Vehicles

Accelerated Computing

Virtual Reality

G2
v

DEEP
LEARNING
INSTITUTE

Выступающий
Заметки для презентации
The NVIDIA Deep Learning Institute (DLI) offers hands-on training for developers, data scientists, and researchers looking to solve challenging problems with deep learning and accelerated computing. The program is designed to help you get started with training, optimizing, and deploying neural networks to solve real-world problems across diverse industries such as autonomous vehicles, healthcare, media & entertainment, intelligent video analytics, finance, robotics, and more. Plus, NVIDIA DLI gives participants exposure to the latest AI frameworks, SDKs, and GPU-accelerated technologies.

We offer training two different ways:
Self-paced labs online that can be access at any time from anywhere with access to GPUs via AWS, Microsoft Azure, and IBM Cloud. These labs range from beginner to intermediate and today cover topics across Fundamentals and Healthcare. Just visit www.nvidia.com/dlilabs
In-person workshops led by a DLI certified instructor are available around the world and can be requested onsite at a customer location. Just visit the DLI page at www.nvidia.com/dli

DLI also has two unique offerings for qualified educators to teach deep learning in the classroom. The first is the DLI Teaching Kit, which offers complete course solutions including lecture slides, hands-on labs, and exams. Other teaching kits are also available for Robotics and Accelerated Computing. The second is the DLI University Ambassador Program, which allows university “ambassadors” to teach DLI content to students and faculty at their university.

GP TECHNOLOGY
CONFERENCE

_ | 4
WE - J
= : J.f » I = .\

[

ADVANCE YOUR DEEP LEARNING TRAINING AT GTC

Don’t miss the world’s most important event for GPU developers

...

CALL FOR SUBMISSIONS
Showecase your brilliant work online at GTC 2021 - date TBD
https://www.nvidia.com/en-us/gtc/call-for-submissions/

Выступающий
Заметки для презентации

One of the best ways to quickly master deep learning is to attend the GPU Technology Conference, or “GTC”.

Nearly 40 hands-on training labs during GTC:
Go to Registration Assistance in the main lobby registration area
Tell them you want to upgrade and pay $100 for the day or $300 for the full week.

Over 300 of the 500+ sessions this year are focused on AI and Deep Learning. At the conference, you will hear from experts across a wide range of industries as well as academic and government organizations sharing their work on applications in Healthcare, Automotive, Finance, Aerospace, Defense, Retail, Manufacturing, and more.

You can also be among the first to experience more than 20 brand new hands-on training labs presented by the Deep Learning Institute and leading framework developers.

Key speakers are coming from NVIDIA, Google, Amazon, Microsoft, Walmart, Facebook, IBM Watson, Salesforce, Boeing, Ford, Baidu, Alibaba, Tencent, OpenAI, Stanford, MIT, Oxford, University of Toronto, several national labs and, well, I’ll stop there but the list goes on. GTC is really the only place where you can connect 1:1 with so many experts across so many industries.

You can also join us at the regional GPU Technology Conference events later this year.

https://www.nvidia.com/en-us/gtc/call-for-submissions/

DEEP LEARNING SOFTWARE

NVIDIA DIGITS™

Interactively manage data and train deep learning

models for image classification without the need to

write code.

Learn more

Job Stulus =
etk (deploy)
R"mw Tasa

GPU Usage

: tm
]"\ | GeForce GTX TITAN Z
\ e (#0)

134 \]
LQ = Msmmory
\l1 il 29068 1599 08 (4L
Nt [T ERen
| b
. z Tomsarise
184 ¥ s

| %\« TineNei K

i s T b Y
s 1”, gi GeForce GTX TITAN 2
IR &

|J re 122 GB P8 G (04%)
P Uelization

o
[
g

Deep Learning Frameworks

Design and train deep learning models using a

high-level interface. Choose a deep learning

framework that best suits your needs based on
your choice of programming language, platform,

and target application.

Learn more
++ é

Q Ch?:;er
Caffe?
MINERVA

KERAS

L

TensorFlow

DL4J

Deeplearning4)

mxnet

NVIDIA Deep Learning SDK

This SDK delivers high- performance multi-GPU
acceleration and industry-vetted deep learning
algorithms, and is designed for easy drop-in
acceleration for deep learning frameworks.

cuDNN TensorRT

Q-

DeepStream SDK

.ﬁ Inference

cuSPARSE

developer.nvidia.com/deep-learning

@ DEEP
LEARNING

nviDla. INSTITUTE

Выступающий
Заметки для презентации
NVIDIA also invests heavily in delivering software that you can use to quickly take advantage deep learning.

An example of this is the NVIDIA DIGITS application, which puts the power of deep learning into the hands of data scientists. DIGITS simplifies common deep learning workflows for image classification, object detection and image segmentation such as managing datasets, designing and training neural networks on multi-GPU systems, monitoring performance in real time with advanced visualizations, and selecting the best performing model for deployment. DIGITS is completely interactive so you can focus on designing and training networks rather than programming and debugging.

NVIDIA also works closely with all of the major deep learning frameworks to ensure they support the latest GPU-accelerated algorithms available in the NVIDIA Deep Learning SDK. So if you are comfortable with C++, or Python, or Java, or LUA… all of those programming languages are supported by one or more of these open source deep learning frameworks. And the good new is that all of these deep learning frameworks already have built-in support for GPU acceleration.

And for developers who want to build their own deep learning capabilities from the ground up, NVIDIA also provides a comprehensive Deep Learning SDK that includes:
* All the latest GPU-accelerated deep learning algorithms in the CUDA Deep Neural Network library, or “cuDNN”
* A complete suite of dense and sparse linear algebra routines, which comprise the low-level building blocks for many deep learning algorithms
* The NVIDIA Collective Communications Library, or “NCCL”, for high performance multi-GPU performance scaling
* And, last but not least, the TensorRT deep learning runtime for advanced neural network optimization and low-latency runtime performance.

https://developer.nvidia.com/deep-learning

END-TO-END PRODUCT FAMILY

TRAINING | INFERENCE

FULLY INTERGRATED DL SUPERCOMPUTER
: DATA CENTER AUTOMOTIVE EMBEDDED

DGX-1 & DGX Station

DESKTOP

Tesla P100/V100

Drive PX2 Jetson TX1

Tesla P100

Titan X Pascal Tesla V100 Tesla P4

@ DEEP
LEARNING

nviDla. INSTITUTE

Выступающий
Заметки для презентации
NVIDIA also provides a wide range of GPU-accelerated platforms you can use to accelerate deep learning training and inference application workloads.

If you want a fully-integrated solution, we recommend the DGX-1 supercomputer in a box which delivers the performance equivalent of 250 CPU-only servers, or it’s little brother the DGX Station, which runs whisper-quiet next to your desk.

If you just want to get started on a prototype using your existing workstation, the Titan X Pascal supports fast 32-bit floating point (FP32) and 8-bit integer (INT8) performance for deep learning applications.

In the datacenter, the Tesla P100 and recently-announced V100 with NVLink Technology delivers strong scaling support for mixed workloads across both HPC applications and Deep Learning training & inference workloads using FP64, FP32, and FP16.

And for scale-out inference workloads the Tesla P4 (GP104) supports high efficiency (perf/watt) low-latency performance with fast FP32 and INT8.

And, of course, if you need to deploy deep learning applications in automotive or embedded robotics type applications, NVIDIA offers the DrivePX and Jetson platforms.

======================

CHALLENGES

Deep Learning Needs Why

Data Scientists New computing model

Latest Algorithms Rapidly evolving

Fast Training Impossible -> Practical
Deployment Platforms Must be available everywhere

IIIIIIIIIIIIIII

Выступающий
Заметки для презентации
So, in summary, to address these challenges NVIDIA delivers:
[next]

CHALLENGES

Deep Learning Needs NVIDIA Delivers

Data Scientists Deep Learning Institute, GTC, DIGITS
Latest Algorithms DL SDK, GPU-Accelerated Frameworks
Fast Training DGX, V100, P100, TITAN X, A100(!)
Deployment Platforms TensorRT, P100, P4, Drive PX, Jetson

IIIIIIIIIIIIIII

Выступающий
Заметки для презентации
[So, in summary, to address these challenges NVIDIA delivers:]

Training & Tools for a new generation of Data Scientists and Developers, via practical hands-on training from the Deep Learning Institute and easy-to-use deep learning workflow tools like DIGITS.

The Deep Learning SDK, which is frequently updated with new/optimized algorithms, and supported by all major open source deep learning frameworks.

High-performance deep neural network training solutions you can use in the cloud, datacenter and workstation environments.

And a wide range of deployment platforms with software and hardware optimized for deep learning inference in the cloud and datacenter as well as automotive and other embedded applications.

READY TO GET STARTED?

What problem are you solving, what are the DL tasks?
What data do you have/need, and how is it labeled?
Which deep learning framework & tools will you use?

On what platform(s) will you train and deploy?

Выступающий
Заметки для презентации
Problem:
What is the “business problem”?
What are the AI/DL tasks?
What level of accuracy is required for success? Fault tolerance: every statistical method fails at time
 George Box: “All models are wrong, but some are useful” Guardrails, heuristics
Is it worth the effort? Market opportunity, benefit to humanity, etc. (self-driving cars vs. café menu predictor)

Data:
How much?
Have it, get it, generate it!
How is it labeled? Big hassle/expense, can limit scale.

WHAT PROBLEM ARE YOU SOLVING?

Defining the Al/DL Tasks

INPUTS QUESTION Al/DL TASK

Is “it” present

or not? Detection

U L, O g Classification
is “it”?

Text Data Images

To what extent .

et e Segmentation

Is “it”” present?

What is the likely Prediction
outcome?

What will likely

satisfy the objective? Recommendation

EXAMPLE
OUTPUTS

Cancer Detection

Tumor
Identification

Tumor Size/Shape
Analysis

Survivability
Prediction

Therapy
Recommendation

DEEP
2 LEARNING
nviDia INSTITUTE

Выступающий
Заметки для презентации
DL good at mapping input domain to output domain (X->Y)

This is a sampling of common AI/DL tasks based on the question they are seeking to answer.

Typical inputs include text data, audio, video or images.
Using AI/DL these can be classified, translated or used for prediction – among other valuable outputs.

Can be a combination or chain of AI tasks to achieve more sophisticated outputs
 e.g. Family photo: face detection followed by facial recognition (classification).
 e.g. Translation: speech to text (classification) followed by translation (prediction) and then speech synthesis (prediction)
 e.g. Google Maps: business type detection, open hours sign detection & hours recognition, published via Google Maps

SELECTING A DEEP LEARNING FRAMEWORK

Type of problem

Training & deployment platforms

DNN models available, layer types supported

Latest algos & GPU acceleration: cuDNN, NCCL, etc.

Usage model/interfaces: GUI, command line, programming language, etc.
Easy to install and get started: containers, docs, code samples, tutorials, ...
Enterprise integration, vendors, ecosystem

START SIMPLE, LEARN FAST
‘ \“ O (TINICRECE

';""."'?Hew One NVIDIAN Uses Deep Learning to
Keep Cats from Pooping-on His Lawn

>
= LEARNING
DI, INSTITUTE

Выступающий
Заметки для презентации
Bias towards experimentation!
Robert Bond spent about 15 hours on a side project for his wife
Caffe open source deep learning framework from UC Berkeley
Pre-trained network from Berkeley’s Model Zoo: Fully Convolutional Network for Semantic Segmentation (FCN)
Running on Jetson TX1, analyzing images from an IP camera mounted under the eaves
Starts up in about 10 seconds and requires about 1GB of memory
Segments a 640x360 image in about a third of a second

NVIDIA Blog: https://blogs.nvidia.com/blog/2016/07/07/deep-learning-cats-lawn/

===================
Image credit: Jesse Milan, via Flickr, some rights reserved.

WHAT’S NEXT?

Learn More Take a Self-Paced Lab

Listen to the
Review

Attend an Instructor-Led Workshop Join the Developer Program

Or request a workshop onsite

Contact us at nvdli@nvidia.com

Выступающий
Заметки для презентации
SLIDE TO BE USED ONLY FOR INTERN PRESENTATION on 6/20/17

https://blogs.nvidia.com/blog/2016/12/07/ai-podcast-deep-learning-going-next/
https://news.developer.nvidia.com/tag/machine-learning-and-artificial-intelligence/
http://www.nvidia.com/dlilabs
http://www.nvidia.com/dli
http://www.nvidia.com/dli
http://www.nvidia.com/dlilabs
https://developer.nvidia.com/join
http://www.nvidia.com/dlilabs

DEEP
«g LEARNING
NVIDIA. INSTITUTE

www.nvidia.com/Zdli

Deep Learning Methods -
Lecture 2 — Data, Datasets,
Exploratory Data Analysis (EDA)

Yuri Gordienko, DLI Certified Instructor

DEEP
LEARNING
INSTITUTE

<3

NVIDIA

DEEP LEARNING INSTITUTE

DLI Mission

Training you to solve the world’s most
challenging problems.

Developers, data scientists and
engineers

Self-driving cars, healthcare and
robotics

Training, optimizing, and deploying
deep neural networks

This Lecture Overview

® Understand different types and formats of data
® Be able to soundly select appropriate data
®* Have awareness of biases that exist
® Be able to refine questions to suite your true inquiry
®* Understand how to parse text with regular expressions

EEEEE
NNNNNNNN
TTTTTTTTTTTTTT

Definitions

Definitions - Data

® Factual information (such as measurements or statistics) used
as a basis for reasoning, discussion, or calculation

® Information in digital form that can be transmitted or
processed

® Information output by a sensing device or organ that includes
both useful and irrelevant or redundant information and must
be processed to be meaningful

EEEEE
NNNNNNNN
TTTTTTTTTTTTTT

Definitions — Datum, Data, Dataset

®* Datum - A single piece of information, which can be treated as
an observation;

® Data - The plural of datum; multiple observations;

®* Dataset - A homogenous collection of data (each datum must
have the same focus)

,,,,,,,,,,,
\\\\\\\\\\\\
IIIIIIIIIIIIIIII

Definitions — Data Sources

® Factual information (such as measurements or statistics) used
as a basis for reasoning, discussion, or calculation

® Information in digital form that can be transmitted or
processed

® Information from sensors or organs that includes both useful
and irrelevant or redundant information and must be
processed to be meaningful 3

TTTTTTTTTTTTTTTT

Definitions — Data Sources -
Use Cases

® Measurements from a thermometer every hour for a year

® Counts from a person who tracks the days that a particular
hummingbird visits his birdfeeder across an entire year

®* Tweets from Elon Musk

® Readouts from a mysterious sensor, for example, from
wundergorund.com

EEEEEEE
'''''''''''
IIIIIIIIIIIIIIII

Definitions — Data Sources -
Use Cases

® Measurements from a thermometer every hour for a year
®* Probably inaccurate data

® Counts from a person who tracks the days that a particular
hummingbird visits his birdfeeder across an entire year

®* Tweets from Elon Musk

® Readouts from a mysterious sensor, for example, from
wundergorund.com

&X | oeer
2 | LEARNING
nnnnnnnnnnnnnn

Definitions — Data Sources -
Use Cases

® Measurements from a thermometer every hour for a year
®* Probably inaccurate data

® Counts from a person who tracks the days that a particular
hummingbird visits his birdfeeder across an entire year

®* Probably missing data
®* Tweets from Elon Musk

® Readouts from a mysterious sensor, for example, from
wundergorund.com

NVIDIA. | INSTITUTE

Definitions — Data Sources -
Use Cases

® Measurements from a thermometer every hour for a year
®* Probably inaccurate data

® Counts from a person who tracks the days that a particular
hummingbird visits his birdfeeder across an entire year

®* Probably missing data
® Tweets from Trump
®* Probably not 100% factually true

® Readouts from a mysterious sensor, for example, from
wundergorund.com o

IIIIIIIIIIIIIIII

Definitions — Data Sources -
Use Cases

® Measurements from a thermometer every hour for a year
®* Probably inaccurate data

® Counts from a person who tracks the days that a particular
hummingbird visits his birdfeeder across an entire year

®* Probably missing data
® Tweets from Trump
®* Probably not 100% factually true

® Readouts from a mysterious sensor, for example, from
wundergorund.com o

IIIIIIIIIIIIIIII

Data Processing

Workflow

Datasets

DEEP
NNNNNNNN
TTTTTTTTT

Recall -> Data Processing from Scientific
Point of View

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Visualize the Results

14

Dataset — Important Questions!

® What data is necessary to answer our question?
® How difficult is it to analyze a dataset?
® Is the source authoritative? (.com, .net, .org, .gov, .name)
® Comprehensive data vs sampled data?
® Biases
® What is the allowed usage of data under its license?
®* Who collected the data?
®* When was the data collected?
®* How was the data collected?
®* How is the data formatted?

® Ethical issues?

Dataset — Examples

T 29 billion words in
- Open access data SEES 55 million articles in 309
oV languages
WIKIPEDIA

The Free Encyclopedia

* Collected and digitized as
part of generalized
procedures of an
Institution

https://www.internetlivestats.com/twitter-statistics/ 2 |

~610 million tweets
—— per day

Dataset — Important Questions!

® What data is necessary to answer our question?
® How difficult is it to analyze a dataset?
® Is the source authoritative? (.com, .net, .org, .gov, .name)
® Comprehensive data vs sampled data?
® Biases
® What is the allowed usage of data under its license?
®* Who collected the data?
®* When was the data collected?
®* How was the data collected?
®* How is the data formatted?

® Ethical issues?

Dataset — Common Problems!

Omission: Using only arguments from one side

Source selection: Include more sources or more authoritative
sources for one side over the other

Story selection: Regularly including stories that agree or reinforce
the arguments of one side

Labelling:
Using only arguments from one side

Labeling people on one side of the argument with labels and not
the other

Spin: Story provides only one interpretation of the events

EEEEE
NNNNNNNNNN
IIIIIIIIIIIIIIII

Dataset —
Common Problems — IMDb Example

® Registered users rate films 1-10 stars; they are an
overrepresented subpopulation relative to the
general population.

Imnb = Search E
- -

® Registered users who rate movies in their free time
over represents a specific segment of the general
population.

Example: “Men Are Sabotaging The Online Reviews Of
TV Shows Aimed At Women”

60% who rated “Sex in the City” were women.

Women gave it a 8.1, men gave it 5.8.

Dataset —
Common Problems — IMDb Example

Men tank the ratings of shows aimed at women Men are more likely to give the crappiest rating

Average difference between ”V'Db ratings of TV shows from Share of IMDb ratings of 1 (out of 10) for shows with at least
men and women by share of ratings from women 10,000 ratings by share of ratings from women*

. 4 MORE RATINGS FROM MEN | MORE RATINGS FROM WOMEN p
Avg. difference

between ratings
from men and women

=
= Men

=]
-
a)
HIGHER RATINGS FROM MEN &
| —
HIGHER RATINGS FROM WOMEN -
v g
=
=
(=]
e

@ Women
. —
w

—_ ———

4 MORE RATINGS FROM MEN | MORE RATINGS FROM WOMEN p»

Share of ratings from women Share of ratings by women

= DEEP
@ LEARNING
NVIDIA. | INSTITUTE

Dataset —
Common Problems — Resume

Nearly all datasets involve a human in some way or another.
This means that nearly all datasets probably has bias.
Our goal: to minimize the bias as much as possible.

For models (later), the same advice should be applied.

EEEEEE
NNNNNNNNN
TTTTTTTTTTTTTTTT

<=p hard for computers

easy for

computers

Datasets — Easy vs. Hard

Confusion at Palm Beach County polls

Some Al Gore supporters may have mistakenly voted for Pat Buchanan
because of the ballot’s design.
Although the Democrats are listed

second in the column on the left,
they are the third hole on the ballot.

Punching the second hole casts

a vote for the Reform party.

x TREPUBLICAN)
GEORGE W, BUSH sessisent T)
X DX CHENEY e | weom
T (DEMOCRATIC) ¢ - FZ01A FOSTER v essest
AL GDRE - ressmen
JOE LIEBERMAN . e essmcer i n%ﬂipmm
A B c ascrons LIBERTARIAN) i AT AL B
FOR PRESIDENT
1 name age height vt | AT OLYEN v N)
2 Michael 46 5'97 e i e -2l 4. CURTIS FRAZIER - nes e
i 1y ot lne reasd WINONA LaDUKE . nc: rresacr (WORKERS WORLD)
3 Jim K} 6'0 || - MONICA MODRENEAD mesoest
(SOCIALIST WORKERS) i
4 Pam 29 sT™ JAMES RARRIS rerssoens o
= — MARGARET TROWE . wees rerwoner WRITEIN CANDIDATE
2 Meredith 53 5'6" NATURAL LAW) To v o i g, o 80
3 ey JOMN WAGELIN - mesient 1| L bl L
6 Dwight 35 910 NAT GOLDHABER i masecns |

Sun-Senfinel graphic

easy for people — Nard for people |

Dataset — Easy vs. Hard

Computers are better at ‘understanding’ photos and videos, and text
and numbers are much easier.

Why?

Structured data (e.g., spreadsheet formatted data)
is much easier than

unstructured data (e.g., free-flowing essays)

nVIDIA | INSTITUTE

Dataset — Text Formats - Plain

® File extension ends in .txt FEEGEn. s
(generaIIY) ;:.:3:':.:.:1'“'2. o Edit | [Cosmicad| B

size, color, etc.

* Text is delimited (position
provided) by whitespace
characters (space, tab, return) =it e

Dataset — Text Formats - Plain

Delimiter: The character that
separates each value

® Comma-separated (.csv)

® Tab-separated (.tsv)

J data-set - Matepad - 1

File Edit Formmat Views Help

Last Mame ,Sales,Countery , Quarter
Smith, %16, 753.8a " UK, Qtr 3
Johinson, "%14, 8058 .88 ~ U548, 0tr 4
BWilliams, "3i2, 644 . 98 © LUK Gtr X
Jones, 31,398,898 " USA,Qtr 3
Brown, "%4 36528 T UsSA_ Otr 4
Williams , 312, 438.80 ", UK, Qtr 1
Johnson, “%9 339 88 " UK Otre 2
Smith,"31E,919.86a ",USA,Qtr 3
Jonmes , %9 213 _ a8 " Us4s Qgtr 4
Jones, "5%7 433,88 " UK, Ot 1
Brown, "33, 255 88 " _UWsA Qtr 2
Williams,"$14,867.98 ~,USA,Qtr
Williams,"$19,382.90 ",UK,Qtr 4
Smith, %9 698. 28 ~ UsSA Otr 1

L

3

DEEP
LEARNING
NVIDIA. | INSTITUTE

Dataset — Text Formats - XML

Extensible Markup Language (XML)

Is a markup language that defines a

set of rules for encoding documents
in a format that is both human-
readable and machine-readable.

XML (.xml)

The colors aren’t actually stored in the
file, the editor just adds them on your
screen to help make it look prettier.

-aE Programst music.xml R - Il:llil
File Edit Wisw Faworites Tool=s Help | .';'
| Eack - x_.fl I_LI I:LI &l | P) Search
Addres @ E:\Programsimusic.ml LI zd Go
=7=ml version="1.0" encoding="utf-8" 7= -
— «wboaoks=
— <book=
=shelfnumber=FI1-7264<//shelfnumbar=
ztitle=S8ymphony-Bantu</title=
<artist=%incent Mguini</ artist=
<copyrightyear=1994=/copyrightyear=
<publisher=Mesa Records</publisher=
=/hook=
— =book=
zshelfnumber=MR-2947 < /shelfrnumbear=
=title=Mone<title=
<artist=Debbie Gibson<=/sartist=
<copyrightyear=1990<//copyrightwvears
zpublisher=aAtlantic</publisher=
=/s/book=
=/Sbhooks= _|
|® Done | | | | | | J My Compuker L

IIIIIIIIIIIIIIII

Dataset — Text Formats - JSON

JSON (JavaScript Object Notation) is © hey: "auy”,

anumber: 243,

an open standard file format, and R
data interchange format, that uses Y [
human-readable text to store and | TEhrcnaseer
transmit data objects consisting of ,, merer Emen
attribute-value pairs and array data i‘gggm;%
types. e i) oo <om,
, notLink: "http://jsonview.com is great"”

* Like XML, data is annotated
* A nesting of key-value pairs
* Can be more space efficient than XML

Dataset — Text Formats - Resume

® They can all express the same content
® Plain Text doesn’t have structure, but is universally robust
® XML is the most verbose, harder to parse
® JSON doesn’t have </stuff _here> end tags

® JSON is more succinct than XML (easier to parse)

A9 | DEEP
=4 | LEARNING
IIIIIIIIIIIIIIII

Data Processing

Workflow

Starting Question

DEEP
NNNNNNNN
TTTTTTTTT

Recall -> Data Processing from Scientific
Point of View

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Visualize the Results

30

Starting Question — Concrete

® It's crucial for your starting question (assumption) of data
research to have concrete defined terms that can be proven true
or false.

® Assumption: “Voting turnout is high”

® Where? Ukraine? World-wide?
®* What type of voting? Presidential races, local elections?

® What is our metric? Number of total votes. Percentage of the
population?

EEEEEE
NNNNNNNNN
TTTTTTTTTTTTTTTT

® \A’hAat’e A1ir a2l Hrmae crala?

Starting Question — Resume

®* The more specific your questions,
the more meaningful your results can be.

® Aware of biases (both in your data and in your modelling) as much
as you can. Doing so will ensure you are providing results that
accurately represent reality, leading to more equitable
interpretations and uses of your work.

® This is immensely important, ... for Data Science will only continue
to play an increasingly powerful and influential role in our souety
andworld atlarge. =

Data Processing

Workflow

Parsing Data

DEEP
NNNNNNNN
TTTTTTTTT

Where do data come from?

* Internal sources: already collected by or is part of the overall
data collection of you organization.
For example: business-centric data that is available in the
organization data base to record day to day operations; scientific or
experimental data.

* Existing External Sources: available in ready to read format from
an outside source for free or for a fee.
For example: public government databases, stock market data, Yelp
reviews, [your favorite sport]-reference.

* External Sources Requiring Collection Efforts: available from
external source but acquisition requires special processing.
For example: data appearing only in print form, or data on websites.

Ways to gather online data

How to get data generated, published or hosted online:

API (Application Programming Interface): using a prebuilt set
of functions developed by a company to access their services. Often
pay to use. For example: Google Map API, Facebook API, Twitter API

RSS (Rich Site Summary): summarizes frequently updated online
content in standard format. Free to read if the site has one. For
example: news-related sites, blogs

Web scraping: using software, scripts or by-hand extracting data
from what is displayed on a page or what is contained in the HTML
file (often in tables).

DEEP
NNNNNNNN
TTTTTTTTT

Web scraping

* Why do it? Older government or smaller news sites might
not have APIs for accessing data, or publish RSS feeds or have
databases for download. Or, you don’'t want to pay to use the
API or the database.

®* You just want to explore: Are you violating their terms of
service? Privacy concerns for website and their clients?

®* You want to publish your analysis or product: Do they have an
API or fee that you are bypassing? Are they willing to share
this data? Are you violating their terms of service? Are there
privacy concerns?

Types of data

What kind of values are in your data (data types)?

Simple or atomic:

Numeric: integers, floats

Boolean: binary or true false values
Strings: sequence of symbols

Types of data - 2

What kind of values are in your data (data types)? Compound,
composed of a bunch of atomic types:

Date and time: compound value with a specific structure
Lists: a list is a sequence of values

Dictionaries: A dictionary is a collection of key-value pairs, a
pair of values x : y where x is usually a string called the key
representing the “name” of the entry, and y is a value of any

type.

Example: Student record: what are x and y?
First: Kevin

Last: Rader

Classes: [CS-109A, STAT139]

Data storage

How is your data represented and stored (data format)?

Tabular Data: a dataset that is a two-dimensional table,
where each row typically represents a single data record, and

each column represents one type of measurement (csv, dat,
xlsx, etc.).

Structured Data: each data record is presented in a form of

a [possibly complex and multi-tiered] dictionary (json, xml,
etc.)

Semistructured Data: not all records are represented by
the same set of keys or some data records are not
represented using the key-value pair structure.

DEEP
NNNNNNNN
TTTTTTTTT

represent a set of measurements of a single object or

Tabular Data

In tabular data, we expect each record or observation to

First Look At The Data

event.

In [27]: hubway data = pd.read csv('hubway trips.csv’'; low _memory=False)
hubway data.head()
Outl271: | |geq id|hubway_id |status | duration |start date |strt statn |end_date |end_statn | bike_nr | subsc_type | zip_code | birth_d:
7282011 T2a201 ,
0|1 B Closed |8 10:12:00 23.0 10:12:00 23.0 BOO468 | Registered | 97217 1976.0
72872011 7282011 . ’
112 L Closed | 220 10:21:00 23.0 10:25:00 23.0 BO0D0554 | Registered | '02215 1966.0
7282011 7r2anz201 .
2|3 10 Closed | 56 10:33:00 23.0 10:34:00 23.0 B0O0456 | Registered | '02108 1943.0
72872011 T2z . ;
3|4 11 Closed | 64 10:35:00 23.0 10:36:00 23.0 B00554 | Registered | '02118 1981.0
7282011 Ti2ar2011 : ;
4|5 12 Closed (12 10:37-00 23.0 10:37:00 23.0 B0O0554 | Registered | ‘97214 1983.0

DEEP
LEARNING
NVIDIA. | INSTITUTE

called the dimension. These are often called features.

Tabular Data

* Each type of measurement is called a variable or an
attribute of the data (e.g. seq id, status and duration
are variables or attributes). The number of attributes is

* We expect each table to contain a set of records or

observations of the same kind of object or event (e.q.
our table above contains observations of

rides/checkouts).

In [27]: hubway data =
hubway data.head()

pd.read csv('hubway trips.csv', low memory=False)

Out[27]:

seq_id | hubway_id | status | duration | start_date | strt_statn | end_date | end_statn | bike_nr | subsc_type | zip_code | birth_d:
/282011 T28/2011 ,
01 8 Closed |8 10:12:00 23.0 10:12:00 23.0 BOD468 | Registered | '97217 | 1876.0
Tr2an2o11 rr2arn01 . :
1|2 ! Closed | 220 10:21:00 23.0 10:25:00 23.0 BOD554 | Hegistered | 'D2215 1966.0
~ I a1 N e o d | TFEE'I'ED11 PN ?EEJE{J1T Tl = TaTal b= B = P) .9 F.T

DEEP
NNNNNNNN
TTTTTTTTT

Data Types

* We’'ll see later that it’s important to distinguish between
classes of variables or attributes based on the type of values
they can take on.

Quantitative variable: is numerical and can be either:

discrete - a finite number of values are possible in any
bounded interval. For example: “Number of siblings” is a
discrete variable

continuous - an infinite number of values are possible in any
bounded interval. For example: “Height” is a continuous
variable

Categorical variable: no inherent order among the values
For example: “What kind of pet you have” is a categorical

NNNNNNNN

variable 2, B

Data Processing

Workflow

Exploration Data Analysis:
Common Issues

Common Issues

* Common issues with data:
Missing values: how do we fill in?
Wrong values: how can we detect and correct?
Messy format

Not usable: the data cannot answer the question
posed

Messy Data

The following is a table accounting for the number of
produce deliveries over a weekend.

What are the variables in this dataset?
What object or event are we measuring?

Friday Saturday Sunday

Morning 15 158 10
Afternoon 2 90 20
Evening 55 12 45

What's the issue?
How do we fix it?

Messy Data

We’'re measuring individual deliveries; the variables are

Time, Day, Number of Produce.
Friday Saturday Sunday

Morning 15 158 10
Afternoon 2 90 20
Evening 55 12 45

Problem: each column header represents a single value
rather than a variable.

Row headers are “hiding” the Day variable. The values
of the variable, “Number of Produce”, is not recorded
In a single column. 2

Fixing Messy Data

_ 1D Time Day Number
the information to make 2 Morning Saturday 158
explicit the event we're 3 Morning Sunday 10
ObserVing and the 4 Afternoon Friday 2
]] 5 Afternoon Saturday 9
vanables associated to 6 Aftetnoon Sundey 20
this event. 7 Evening Friday 55
8 Evening Saturday 12
9 Evening Sunday 45

Common Causes of Messiness

Column headers are values, not variable names
Variables are stored in both rows and columns

Multiple variables are stored in one column/entry
Multiple types of experimental units stored in same table

In general, we want each file to correspond to a dataset,
each column to represent a single variable and each row
to represent a single observation.

We want to tabularize the data. This makes Python
happy.

DEEP
NNNNNNNN
TTTTTTTTT

Data Processing

Workflow

Data Exploration:
Descriptive Statistics

Basics of Sampling

A population is the entire set of objects or events under
study. Population can be hypothetical “all students” or all
students in this class.

A sample is a “representative” subset of the objects or
events under study. Needed because it's impossible or
Intractable to obtain or compute with population data.

®* Biases in samples:

Selection bias: some subjects or records are more likely
to be selected

Volunteer/nonresponse bias: subjects or records who
are not easily available are not represented

Sample - Mean

The mean of a set of n observations of a variable is
denoted and is defined as:

X HXF X
= A A k
n n ;

1=1 A A

The mean describes what a “typical” sample value looks
like, or where is the “center” of the distribution of the data.

Note: there is always uncertainty involved when calculating
a sample mean to estimate a population mean.

Sample - Median

The median of a set of n number of observations in a
sample, ordered by value, of a variable is is defined by

) X412 if nis odd
Median = { Xn/2+);(n+1)/2 £ e aven M(
A K
Example (already in order):
Ages: 17, 19, 21, 22, 23, 23, 23, 38
Median = (22+23)/2 = 22.5

The median also describes what a typical observation looks
like, or where is the center of the distribution of the sample

of observations. 2, | e

NNNNNNNN

Sample - Mean vs. Median

The mean iIs sensitive to extreme values (outliers)

Mean, median, and skewness
The mean is sensitive to outliers:

rm=clian)
MEam = miesdisn
= A

S

shost left tail leng right tail

The above distribution is caIIed rlght-skewed since the

NNNNNNNN

Computational time

How hard (in terms of algorithmic complexity) is it to
calculate

the mean?
at most O(n)

the median?
at most O(n) or O(n log n)

Note: Practicality of implementation should be
considered!

Categorical Variables

For categorical variables, neither mean or median
make sense. Why?

Popular Pets

Dog

Types of Pets

The mode might be a better way to find the most
“representative” value.

Measures of Spread: Range

The spread of a sample of observations measures how
well the mean or median describes the sample.

One way to measure spread of a sample of
observations is via the range.

Range = Maximum Value - Minimum Value

DEEP
NNNNNNNN
TTTTTTTTT

Measures of Spread: Variance

The (sample) variance, denoted , measures how
much on average the sample values deviate from the
mean:

o =D(X) = E[(X — u)?] =D (= — pu)’p(z)

Note: the difference measures the amount by which each x
deviates from the mean.

00 01 02 03 04

Measures of Spread.:
Standard Deviation

The (sample) standard deviation is the square root
of the variance

- ()

DEEP
NNNNNNNN
TTTTTTTTT

Data Processing

Workflow

Data Vizualization (for EDA)

IIIIIIIIIIIIIIII

Anscombe's quartet comprises four data sets that have
nearly identical simple descriptive statistics, yet have
very different distributions and appear very different

Anscombe's Quartet

when graphed.

Dataset | Dataset Il Dataset IlI Dataset IV
X y X y X y X y
10 8.04 10 9.14 10 7.46 8 6.58
8 5.95 8 8.14 8 6.7 7 8 5.76
13 7.58 13 8.74 13 12.74 8 7.
2 8.81 9 8.77 9 7.1 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 996 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 2ol 4 a9 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56
7 482 7 7.26 7 6.42 8 191
5 5.68 5 474 5 5.73 8 6.89
Sum: 99.00 8251 99.00 8251 99.00 8251 99.00 8251
Avg: 9.00 7.50 9.00 £.00 9.00 /.50 9.00 7.50
Std: 3.32 2.03 2 2.03 3.32 2.03 3.32 2.03

DEEP
NNNNNNNN
TTTTTTTTT

Anscombe's Quartet

* They were constructed in 1973 by the statistician Francis
Anscombe to demonstrate both the importance of graphing
data before analyzing it and the effect of outliers and other

Influential observations on statistical properties.

12 4{Dataset 11 /
10
e®®oy

Yi

Y3

12 4 Dataset 1

12 {Dataset 111 .

T T T T T T T
4 6 8 10 12 14 16 18
X4

Y2

Ya

T T L] T T T T T
4 6 8 10 12 14 16 18
X2

iz4Dataset IV

T T L] L] L T T L]
4 6 8 10 12 14 16 18
X4

Frequency

More Visualization Motivation
The average score for school class: 7.64

What does that mean?
And what does the araph mean?

- mean=7.64

o
o O 2 - L= : 8 10 12 14

Quiz Score

@ DEEP
NVIDIA. | | I

NNNNNNNN
TTTTTTT

More Visualization Motivation

Visualizations help us to analyze and explore the data:

* ldentify hidden patterns and trends
* Formulate/test hypotheses
* Communicate any modeling results
®* Present information and ideas succinctly
®* Provide evidence and support
* Influence and persuade
* Determine the next step in analysis/modeling

Other Types of Visualizations

What do you want your visualization to show about
your data?

Distribution: how a variable or variables in the
dataset distribute over a range of possible values.

Relationship: how the values of multiple variables in
the dataset relate

Composition: how the dataset breaks down into
subgroups

Comparison: how trends in multiple variable or
datasets compare

DEEP
NNNNNNNN
TTTTTTTTT

Frequency
0 200 400 600 800

Histogram

A histogram is a way to visualize how 1-dimensional data
Is distributed across certain values.

3 8
[aV]
o
38 So
Q2 ES
& 0]
S 8 = 9
B - 4§
® Lo
L 8 b
LD_
O n O_
-10 -5 0 5 10 -5 0 5 -5 0 5

Note: Trends in histograms are sensitive to number of bins.

DEEP
NNNNNNNN
TTTTTTTTT

Multiple Histogram

Plotting multiple histograms (and kernel density estimates of

the distribution, here) on the same axes is a way to visualize how

different variables compare (or how a variable differs over specific
aroups).

Comparative Histograms

15.0 H =

[x
Oy
12.6 - — - _R-
10.0 -
=
o : Nl =
o L) _\\
5.0 -
2.5 - -
0.0 - el

DEEP
50 7.5 >

Pie Chart

A pie chart is a way to visualize the static composition
(aka, distribution) of a variable (or single group).

Age

1A and Beldws M 14 and below, 12, 12%
W 15-20, 25, 25%
W 21-30, 16, 16%

31-40, 15, 15%
W 41-50, 20, 20%
51 and older, 12, 12%

Pie charts are often frowned upon (and bar charts are used
Instead). Why? k> NJCET

Scatter Plot

A scatter plot is a way to visualize the relationship
between two different attributes of multi-dimensional
data.

800
700 | -
600 |-
500 |-
400 | . T -
300 | -

200 | J%a

100 | *

1 1 1 L Il 1 1 1 L J
(] 10 20 30 40 50 &0 0 80 90 100

Stacked Area Plot

A stacked area graph is a way to visualize the
composition of a group as it changes over time (or some
other quantitative variable). This shows the relationship of
a categorical variable (AgeGroup) to a quantitative variable

(year).

3e+05 -

2e+05 -

Thousands

1e+05 -

Oe+00 -

I I 1 1 I
1900 1925 1950 1975 2000 & [,
Ye‘ar NVIDIA. | INSTITUTE

A boxplot is a simplified visualization to compare a
quantitative variable across groups. It highlights the
range, quartiles, median and any outliers present in a

140 |
120
100
80 -
60 |-
40

20

Boxplot

data set.

@

—_—

L]
L]

L]

Samplel

Samplez

Sample3

Sample4

DEEP
NNNNNNNN
TTTTTTTTT

Some Complex Cases

Often your dataset seem too complex to visualize:

Data is too high dimensional (how do you plot 100
variables on the same set of axes?)

Some variables are categorical (how do you plot
values like Cat or No?)

Many Dimensions

When the data is high dimensional, a scatter plot of all
data attributes can be impossible or unhelpful

Birth Data

Reducing complexity

Relationships may be easier to spot by producing
multiple plots of lower dimensionality.

length
]
ol
%
: d""i! .
2
by
2
}
[

3 . |
3 10
weight
S0 = - é.:- .-- - '-"“ - -]
- - - - - -
- - - _.r.'.: I:. P i
35 - - o e 8 - o B % -
S! -- - - o L
30 e o 1-",.. - - ‘ - H
o5 o= - .o -]
20 - .."-‘f.. -J. bt & e - -
2 ..=o! - Py - = =
15 &= e B o e e .
3 & 10
weight

R Rt L o -
S eSS
- e B -“5 - = - -"“- t. -
e - '-'- ’-?g’..' o ooges T -
- o o - WO A

)
ohEREBHEBEER b

nnnnnn

DEEP
NNNNNNNN
TTTTTTTTT

Reducing complexity

For 3D data, color coding a categorical attribute can be
“effective”

3
= e o setosa
- ® @ versicolor
2 ° = e e virginica |
o . This visualizes a set of Iris
1l e "N " D d measurements.
.ﬂ.' ." -% = % e,e® 1
o= * e A °° The variables are:
O e ® e ® > o® Te N
Sy % e e o3 " petal length,
-.‘. - ® ...=. - -
—1f s °%e. W e sepal length,
e °, # Iris type (setosa, versicolor,
-2 4
- . virginica).
—320 —-1.5 —1.0 —-0.5 D.IO 0.5 1.0 1.5 2.0

Except when it's not effective.

Reducing complexity — 3D Bubble Plot

For 3D data, a quantitative attribute can be encoded by

size in a bubble chart.
REVENUE VS. RATING

Revenue

The above visualizes a set of consumer products. The
variables are: revenue, consumer rating, product type and
product cost.

DEEP
NNNNNNNN
TTTTTTTTT

Data Processing

Workflow

EDA Example

DEEP
NNNNNNNN
TTTTTTTTT

Recall -> Data Processing -> EDA

Ask an interesting question

Get the Data — EDA!

Explore the Data

Model the Data

Visualize the Results

78

EDA for Hubway Data

Introduction: Hubway is metro-Boston’s public bike share
program, with more than 1600 bikes at 160+ stations across the
Greater Boston area. Hubway is owned by four municipalities in
the area.

By 2016, Hubway operated 185 stations and 1750 bicycles, with
5 million ride since launching in 2011.

The Data: In April 2017, Hubway held a Data Visualization
Challenge at the Microsoft NERD Center in Cambridge, releasing
5 years of trip data.

The Ouestion: What doe< the data tell us about the ride shar&

DEEP
NNNNNNNN
TTTTTTTT

‘What does the data tell us about the ride share program?’
IS not good for scientific investigation. Before we can improve the

Customer Question ->
Data Science Question
Original customer question:

question, we should look at the data - EDA!

seq_id hubway_id status duration start_date strt_statn end_date end_statn bike_nr subsc_type zip_code birth_date gender
0 1 8 Closed 9 7/28/2011 10:12:00 23.0 7/28/2011 10:12:00 23.0 B00468 Registered '97217 1976.0 Male
1 2 9 Closed 220 7/28/2011 10:21:00 23.0 7/28/2011 10:25:00 23.0 BO00554 Registered '02215 1966.0 Male
2 3 10 Closed 56 7/28/2011 10:33:00 23.0 7/28/2011 10:34:00 23.0 BO00456 Registered ‘02108 1943.0 Male
3 4 11 Closed 64 7/28/2011 10:35:00 23.0 7/28/2011 10:36:00 23.0 BO00554 Registered '02116 1981.0 Female
4 5 12 Closed 12 7/28/2011 10:37:00 23.0 7/28/2011 10:37:00 23.0 BO00554 Registered '97214 1983.0 Female

Based on the data, what kind of concrete questions can we ask?

DEEP
NNNNNNNN
TTTTTTTTT

The Data Exploration/Question
Refinement Cycle - 1

Who? Who's using the bikes?

Refine into specific hypotheses:

®* More men or more women?
®* Older or younger people?
®* Subscribers or one time users?

The Data Exploration/Question
Refinement Cycle - 2

Where? Where are bikes being checked out?

Refine into specific hypotheses:

®* More in Boston than Cambridge?
* More in commercial or residential?
® More around tourist attractions?

Sometimes the data is given to you in pieces and must
be merged!

The Data Exploration/Question
Refinement Cycle - 3

When? When are the bikes being checked out?

Refine into specific hypotheses:

®* More during the weekend than on the weekdays?
®* More during rush hour?
®* More during the summer than the fall?

Sometimes the feature you want to explore doesn’t exist
in the data, and must be engineered!

The Data Exploration/Question
Refinement Cycle - 4

Why? For what reasons/activities are people
checking out bikes?

Refine into specific hypotheses:

®* More bikes are used for recreation than commute?
®* More bikes are used for touristic purposes?
®* Bikes are use to bypass traffic?

Do we have the data to answer these questions with
reasonable certainty?

What data do we need to collect in order to answer the<e

DEEP
NNNNNNNN
TTTTTTTTT

The Data Exploration/Question
Refinement Cycle - 5

How? Questions that combine variables.

How does user demographics impact the duration the bikes
are being used? Or where they are being checked out?

How does weather or traffic conditions impact bike usage?

How do the characteristics of the station location affect the
number of bikes being checked out?

How questions are about modeling relationships
between different variables.

DEEP
NNNNNNNN
TTTTTTTTT

Reducing complexity

So how well did we do in formulating creative hypotheses and
manintilatina the data for answers?

Trip Duration vs. Distance Biked

count
9000

6000

3000

Trip Duration (minutes)

Distance Biked (miles)

https://www.bluebikes.com/blog/and-the-2017-hubway-data-challenge-winners-are

e

N
AL
[l

XX
g g -

: -hﬁi\“‘~
AN
S

/!
.
AT

—— \';:a .
i

7

ﬁ]
= ‘ﬂ" - .
SRR

.r";/
1

@ DEEP
LEARNING
NVIDIA. INSTITUTE

www.nvidia.com/dli

T B I <> o M IE = = « p O B

Lecture 1: Demo - Lab Work ;
' Lecture 1: Demo - Lab Work

4

Download the data from

https://cloud.comsys.kpi.ua/s/70W5GRWHpkKmAmMC

unzip and put it in COLAB_DS directory (before create this directory!) at your Google Drive.

Mount your Google drive for data input-output
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

I pwd
I 1s /content/drive
' ls /content/drive/MyDrive

Check the paths
|
|
|

Check directory for avaialbility of your HUBWAY-dataset
I mkdir /content/drive/MyDrive/COLAB DS

I s /content/drive/MyDrive/COLAB DS

hubway data hubway network analysis.ipynb Lab01 EDA hubway datasets.ipynb

import sys

import datetime

import numpy as np

import scipy as sp

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from math import radians, cos, sin, asin, sqrt
from sklearn.linear model import LinearRegression

sns.set(style="ticks")
%smatplotlib inline

import os

DATA HOME = '/content/drive/MyDrive/COLAB DS/hubway data’

https://cloud.comsys.kpi.ua/s/7oW5GRWHpkKmAmC

HUBWAY STATIONS FILE = os.path.join(DATA HOME, 'hubway stations.csv')
HUBWAY TRIPS FILE = os.path.join(DATA HOME, 'hubway trips.csv')

hubway data = pd.read csv(HUBWAY TRIPS FILE, index col=0, low memory=False)
hubway data.head()

/usr/local/lib/python3.6/dist-packages/numpy/lib/arraysetops.py:580
mask |= (arl == a)

hubway_id status duration start_date strt_statn end_dat

seq_id
X 8 Closed o 7/28/2011 b3 71281201
ose 10:12:00 : 10:12:0
7/28/2011 7/28/201
2 9 Closed 220 10.21.00 230 'Joong
3 10 Closed 56 7/28/2011 030 1281201

4

~ Who? Who's using the bikes?

Refine into specific hypotheses:

¢ More men or more women?
e Older or younger people?
e Subscribers or one time users?

Let's do some cleaning first by removing empty cells or replacing them with NaN.
Pandas can do this.

we will learn a lot about pandas

hubway data['gender'] = hubway datal['gender'].replace(np.nan, 'NaN', regex=True).v

we drop
hubway data['birth date'].dropna()
age col = 2020.0 - hubway data['birth date'].values

matplotlib can create a plot with two sub-plots.
we will learn a lot about matplotlib
fig, ax = plt.subplots(l, 2, figsize=(15, 6))

find all the unique value of the column gender

numpy can do this

we will learn a lot about numpy

gender counts = np.unique(hubway datal'gender'].values, return counts=True)

ax[0]
ax[0]
ax|[0]
ax[0]

.bar(range(3), gender counts[1l], align='center', color=['black', 'green', 'te
.set xticks([0, 1, 2])

.set xticklabels(['none', 'male', 'female'])

.set title('Users by Gender')

age col = 2020.0 - hubway data['birth date'].dropna().values
age counts = np.unique(age col, return counts=True)

ax[1]
ax[1]
ax[1]
ax[1]
ax[1]
ax[1]
ax[1]
ax[1]
ax[1]

.bar(age counts[0], age counts[1l], align='center', width=0.4, alpha=0.6)
.axvline(x=np.mean(age col), color='red', label='average age')
.axvline(x=np.percentile(age col, 25), color='red', linestyle='--', label='lo
.axvline(x=np.percentile(age col, 75), color='red', linestyle='--', label='up

.set xlim([1, 90])

.set xlabel('Age')
.set_ylabel('Number of Checkouts"')
.legend()

.set title('Users by Age')

plt.tight layout()
plt.savefig('who.png', dpi=300)

Users by Gender Users by Age
20000 4 i i — avera
i i
800000 -

17500
700000 -

15000
600000

12500
500000

10000
400000 4

7500 4

5000 o
2500
\‘
T T T T

T
10 20 30 40 50 B0

Number of Checkouts

300000 -

200000

100000 -

ol

o

Hmﬂh .
70

80 90

v Challenge

There is actually a mistake in the code above. Can you find it?

Soon

you will be skillful enough to answers many "who" questions

~ Where? Where are bikes being checked out?

Refine into specific hypotheses:

1. More in Boston than Cambridge?
2. More in commercial or residential?
3. More around tourist attractions?

using pandas again to read the station locations
station data = pd.read csv(HUBWAY STATIONS FILE, low memory=False)[['id',6 'lat', '
station data.head()
id lat lng

0 3 42.340021 -71.100812

1 4 42345392 -71.069616

2 5 42341814 -71.090179

3 6 42361285 -71.065140

4 7 42353412 -71.044624

Sometimes the data is given to you in pieces and must be merged!
we want to combine the trips data with the station locations. pandas to the resc

hubway data with gps = hubway data.join(station data.set index('id'), on='strt sta
hubway data with gps.head()

hubway_id status duration start_date strt_statn end_dat

seq_id
1 8 Closed 9 7/1208/122033 23.0 7/1208/12203
2 9 Closed 220 7/1%8221033 23.0 7/12085505
3 10 Closed 56 7/2,,82.0}% 23.0 7/2,.81202

4

len(hubway data with gps)

1579025

hubway data with gps.head(-3)

hubway_id status duration start_date strt_statn end_da

seq_id

1 o coses o DL g, TR
2 9 Closed 220 7;_208;21033 23.0 7;_208;250
3 10 Closed 56 7;_208:/,)23033 23.0 7;_208:/3240
4 11 Closed 64 7/12084,25033 23.0 7/1%82260
5 12 Closed 12 7/1208227033 23.0 7/1208570
1579018 1748015 Closed 900 11/2330:/1270:33 76.0 11/233?{322?

4

import pandas as pd
import folium
from folium.plugins import HeatMap

#for map = pd.read csv('campaign contributions for map.tsv', sep='\t')
#for map = hubway data with gps.head(1000)
for map = hubway data with gps.head(200000)

#max amount = float(for map['Amount'].max())
max_amount = float(for map['duration'].max())

hmap = folium.Map(location=[42.35, -71.05], zoom start=13,)

hm wide = HeatMap(list(zip(for map.lat.values, for map.lng.values, for map.durati
min opacity=0.2,
max_val=max_amount,
radius=27, blur=15,
max_zoom=1,

)

hmap.add child(hm wide)

s 1“,,-
e &”ﬁ'ﬁh‘ﬂé i

http://leafletjs.com/

You should obtain something similar to the next image ...

! S NN, ma ..:W j
i *hm-am:f
% E %
N t7
.
Arsena tFGeﬁEILLogmm
5 > &
b o,
‘r}&o‘\ J 7&-1"“'”

~ When? When are the bikes being checked out?

Refine into specific hypotheses:

1. More during the weekend than on the weekdays?
2. More during rush hour?
3. More during the summer than the fall?

Sometimes the feature you want to explore doesn’t exist in the data, and must be

to find the time of the day we will use the start date column and extrat the hou
we use list comprehension

we will be doing a lot of those
rhark nut hniire = hithwav datal'ctart data'l annlul(lamhda ¢+ int(cl_Q:-_RAT\)

fig, ax = plt.subplots(l, 1, figsize=(10, 5))

check out counts = np.unique(check out hours, return counts=True)
ax.bar(check out counts[0], check out counts[1l], align='center', width=0.4, alpha=
ax.set xlim([-1, 24])

ax.set xticks(range(24))

ax.set xlabel('Hour of Day')

ax.set ylabel('Number of Checkouts"')

ax.set title('Time of Day vs Checkouts"')

plt.show()

Time of Day vs Checkouts

175000 +

150000 +

125000 +

100000 +

75000 +

Number of Checkouts

50000 +

25000 o

0 I I I I I I I I | I I I I I I I I I I I I I I I
01 2 3 4 5 6 7 B 9 10 11 1z 13 14 15 16 17 18 19 20 21 22 23
Hour of Day

Why? For what reasons/activities are people checking out
bikes?

Refine into specific hypotheses:

1. More bikes are used for recreation than commute?
2. More bikes are used for touristic purposes?
3. Bikes are use to bypass traffic?

Do we have the data to answer these questions with reasonable certainty? What data do we
need to collect in order to answer these questions?

~ How? Questions that combine variables.

1. How does user demographics impact the duration the bikes are being used? Or where they
are being checked out?

2. How does weather or traffic conditions impact bike usage?

3. How do the characteristics of the station location affect the number of bikes being
checked out?

How questions are about modeling relationships between different variables.

Here we define the distance from a point as a python function.
We set Boston city center long and lat to be the default value.
you will become experts in building functions and using functions just like this

def haversine(pt, lat2=42.355589, lon2=-71.060175):
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
lonl
latl

pt[0O]
pt[1]

convert decimal degrees to radians
lonl, latl, lon2, lat2 = map(radians, [lonl, latl, lon2, lat2])

haversine formula

dlon = lon2 - lonl

dlat = lat2 - latl

a sin(dlat/2)**2 + cos(latl) * cos(lat2) * sin(dlon/2)**2
c =2 * asin(sqrt(a))

r 3956 # Radius of earth in miles

return c * r

use only the checkouts that we have gps location

station counts = np.unique(hubway data with gps['strt statn'].dropna(), return cou
counts df = pd.DataFrame({'id':station counts[0], 'checkouts':station counts[1]})
counts df = counts df.join(station data.set index('id'), on='id"')

counts df.head()

id checkouts lat lng
0 3.0 9734 42.340021 -71.100812
1 4.0 18058 42.345392 -71.069616
2 50 10630 42.341814 -71.090179
3 6.0 23322 42.361285 -71.065140
4 7.0 9163 42.353412 -71.044624

add to the pandas dataframe the distance using the function we defined above and
counts df.loc[:, 'dist to center'] = list(map(haversine, counts df[['lng', 'lat']]
counts df.head()

id

2 50

checkouts
9734

18058
10630
23322

9163

we will use sklearn

reg line.fit(counts df['dist to center'].values.reshape((len(counts df['dist to ce

lat
42.340021
42.345392
42.341814
42.361285

42.353412

lng dist_to_center

-71.100812

-71.069616

-71.090179

-71.065140

-71.044624

2.335706

0.853095

1.802423

0.467803

0.807582

to fit a linear regression model
we will learn a lot about modeling and using sklearn
reg line = LinearRegression()

use the fitted model to predict
distances =

fig, ax = plt.subplots(l, 1, figsize=(10, 5))

ax

ax.

ax.
ax.
ax.
ax.

.scatter(counts df['dist to center'].values, counts df['checkouts'].values, labe

legend()

<matplotlib. legend.Legend at Ox7f0lbe5a0e48>

set xlabel('Distance to City Center (Miles)')
set ylabel('Number of Checkouts')
set title('Distance to City Center vs Checkouts')

Distance to City Center vs Checkouts

np.linspace(counts df['dist to center'].min(), counts df['dist to cent

plot(distances, reg line.predict(distances.reshape((len(distances), 1))), color

50000

40000

30000 +

20000

Number of Checkouts

10000 H

—— Regression Line
L

data

Distance to City Center (Miles)

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Deep Learning -
Lecture 3 — Deep Learning
Main Principles

Yuri Gordienko, DLI Certified Instructor

DEEP
LEARNING
INSTITUTE

<3

NVIDIA.

DEEP LEARNING INSTITUTE
DLI Mission

Training you to solve the world’s
most challenging problems.

Developers, data scientists and
engineers

Self-driving cars, healthcare
and robotics

Training, optimizing, and
deploying deep neural networks

(N0l

The GPU Teaching Kit is licensed by NVIDIA and New York University under the
Creative Commons Attribution-NonCommercial 4.0 International License.

Deck credit: Y. LeCun
MA Ranzato

Who is Y. LeCun?

SAnvibia

http://creativecommons.org/licenses/by-nc/4.0/legalcode

Who is Yann LeCun?

He is a founding father of convolutional neural nets
(CNNSs).

He is also one of the main creators of the DjVu
image compression technology (together with Léon
Bottou and Patrick Haffner).

Chief Al Scientist at Facebook.
LeCun received the 2018 Turing Award, together

with Yoshua Bengio and Geoffrey Hinton, for their
work on deep learning.

LeCun - together with Geoffrey Hinton and Yoshua
Bengio - are referred to by some as the
"Godfathers of Al" and "Godfathers of Deep
l earning" .. BUT I

2016 IEEE CIS Neural Networks Pioneer Award
goes to Jurgen Schmidhuber

Jurgen Schmidhuber is recipient of the 2016 IEEE CIS Neural Networks
Pioneer Award, for "pioneering contributions to deep learning and neural
networks."
http://cis.ieee.org/award-recipients.html

Who is Schmidhuber?
Juergen Schmidhuber: Godel Machines, Meta-Learning, and LSTMs
https://www.youtube.com/watch?v=3Flo6evmweo

http://cis.ieee.org/award-recipients.html
https://www.youtube.com/watch?v=3FIo6evmweo

Who is Schmidhuber?

With his students Sepp Hochreiter, Felix
Gers, Fred Cummins, Alex Graves, and
others, Schmidhuber published
increasingly sophisticated versions of a
type of recurrent neural network called
the long short-term memory (LSTM).

First results were already reported in
Hochreiter's diploma thesis (1991)
which analyzed and overcame the
famous vanishing gradient problem.

The name LSTM was introduced in a
tech report (1995) leading to
the most cited LSTM publication

(1997beep Learning since ...
https://people.idsia.ch/~juergen/deeplearning.htmi

2016 IEEE CIS Neural Networks Pioneer Award
goes to Jurgen Schmidhuber

The award ceremony took place on the 27th of July 2016 in Vancouver at the Award Banquet of

Transcript of the 3 min acceptance speech:
Dear IEEE,

it is a great honor to be listed among previous awardees such as K. Fukushima, who is present at this conference,
the father of the deep convolutional neural architecture everybody is using now for computer vision.

The only thing that makes me a bit sad at this otherwise happy moment is that the Ukrainian mathematician A. G.
Ivakhnenko, the father of deep learning himself, never got this award. His team had deep multilayer perceptrons with
8 layers or so back in the 1960s when | was a baby, at a time when others still focused on the limitations of shallow
nets with a single layer. Apparently he was so far ahead of his time that even the not so young members of the award
committees failed to appreciate the depth of his work.

Who is A. G. Ivakhnenko?

the father of deep learning himself
and
nepLun BUKOHYOUYMN 060B’A3KN aekaHa PIOT
- nepwun “HeodiLiNHNI" OeKaH Halworo gakynsreTy

Who is A. G. lvakhnenko?

Ukrainian mathematician
most famous for developing the Group
Method of Data Handling (GMDH), a
method of inductive statistical learning,
for which he is sometimes referred to as the
"Father of Deep Learning".

Main results in the context of DL:
- Principle of construction of self-organizing
deep learning networks,

- Design of multilayered neural networks
with active neurons, where each neuron is
an algorithm,

- Principle of self-learning pattern
recognition. It was demonstrated at first in Alexey lvakhnenko

the cognitive system "Alpha", created under (Onekcii Mpuroposuy IBaxHeHko)
his leadership. (30 March 1913 — 16 October 2007)

https://en.wikipedia.org/wiki/Alexey lvakhnenko

AKAREMHS HAYK YKPAMHCKOW ccCP

A. I. HBAXHEHKO
B. . NIANA

#

KHBEPHETHYECKHME
NPEACKABbIBAIOULUE
YCTPOACTBA

#

Kues —1965

[Mepwa kHmxKa A.l.1BaxHeHKa Npo NOro cuctemy "AanJa" - nepuy 8-
LLapoOBY FMUOUHHY Mepexy.

Cuctema "Anbpa” -
nepwa 8-wapoBa rmMOMHHa Mepexa

Pitc. 49. Crpykryp-

HasiCxema pacrnosHa-

tolefl CHCTEMBI € Mo-

JOKHTeNbHOM 00paT-
0 CBSI3bIO.

(T Isaxnenro (cnpasa) ma Hopbepm
Binep (anisa) nid uac xoxpepenyil
IDAR y Kuesi (1960 p.)

HacnpaBai BoHa 6yna po3pobreHa e paHiwe, He y 1965-1971, ak
nuwe Wmigxybep, a'y 1962 pou,.

21. IBaxHeHko O.I., Cuctemu, WO caMopraHisyoTbcs, 3 AogaTHUMU
3BOPOTHUMMU 3B'Aa3kamu. "ABTomaTtumka", Ne3, 1962.

Deep learning =
Learning representations/features

— The traditional model of pattern recognition (since the late 50's)
— Fixed/engineered features (or fixed kernel) + trainable classifier

Hand-crafted “Simple” Trainable
Feature Extractor Classifier

Trainable] Trainable
Feature Extractor Classifier

SAnvibia

This basic model has not evolved much
since the 50's

— The first learning machine: the

Perceptron
— Built at Cornell in 1960
— The Perceptron was a linear classifier

on top of a simple feature extractor

— The vast majority of practical
applications of ML today use glorified
linear classifiers or glorified template
matching.

— Designing a feature extractor requires
considerable efforts by experts.

lojoel)xg ainjes

fign

=
I
Lo

? il
L @nvoin [mwve [

Linear machines: regression with mean square
Linear regression, mean square loss:

— Decision rule:

— Loss function:

— Gradient of loss:
— Update rule:

— Direct solution: solve linear system

SAnvibia

Linear machines
Perception

—Decision rule: (F is the threshold function)
— Loss function:

— Gradient of loss:

— Update rule:

— Direct solution: fine W such that

SAnvibia

Linear machines: logistic regression
Logistic regression, negative log-likelihood loss

function:

— Decision rule:
— Loss function:

— Gradient of loss:

— Update rule:

General gradient-based supervised
learning machine

Neural nets, and many other models:

—Decision rule: y = F(W,X), where F is some function, and 7 some
parameter vector.

— Loss function: where D¢y, /) measures the
“discrepancy” between 4 and B.

— Gradient loss:

— Update rule:

Three questions:

—What architecture F(W,X).

—What loss function L(W, y', X)).
—What optimization method.

SAnvibia

Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).

Y. LeCun: Machine Learning and Patem Keoognition — p. 23036

SAnvibia

Number of Linearly Separable Dichotomies

The probability that P samples of dimension [NV are linearly separable goes to zero
very quickly as P grows larger than N (Cover’s theorem, 1966).

fsh (Hnearly Separable)

W Problem: there are 27 possible
dichotomies of P points.

@ Only about N are linearly separable.

@ If P is larger than N, the probability that
a random dichotomy is linearly separable is
very, very small.

‘Rﬂhﬂ'm

Y. LeCun: Machine Learning and Patlem Kecognilion — p. 240306

SAnvibia

Example of Non-Linearly Separable Dichotomies

® Some seemingly simple dichotomies are
not linearly separable

fil

(Question: How do we make a given prob-
lem linearly separable?

Y. LeCun: Machine Learning and Patem Recognilion — p. 2536

SAnvibia

Making /N Larger: Preprocessing

® Answer 1: we make N larger by
augmenting the input variables with new
“features”.

“ we map/project X from its original
N-dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a
vector function @(X).

m E(Y,X,W) = D(Y,R)
® R=fW'V)
®V =3(X)

Y. LeCun: Machine Learning and Patem Recognilion — p. 2636

SAnvibia

Adding Cross-Product Terms

2 3) . .
x xl x x ’ & Polynomial Expansion.
@ By 3 . L |
% If our original input variables are
(1,zy,z2), we construct a new feature
vector with the following components:

¢(%‘) (I)(]-:l L, IQ} - (11 Iy, Ta, I?: j:g! Ilﬂ:g)

i.e. we add all the cross-products of the
original variables.

® we map/project X from its original N-
dimensional space into a higher dimen-
sional space with N(N + 1)/2 dimensions.

X. X1

Y. LeCun: Machine Learning and Patem Kecognilion — p. 2736

SAnvibia

Polynomial Mapping

“ Many new functions are now separable with the
new architecture.

“ With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

W to each possible boundary in the original space

corresponds a linear boundary in the transformed
space.

" Because this 1s essentially a linear classifier with
a preprocessing, we can use standard linear learn-
ing algorithms (perceptron, linear regression, logis-
tic regression...).

Y. LeCun: Machine Learning and Pattemn Heoognilion — p. 28306

SAnvibia

Problems with polynomial mapping

—We can generalize this idea to higher degree polynomials, adding
cross-product terms with 3, 4 or more variables

— Unfortunately, the number of terms is the number of combinations d
choose N, which grows like N4, where d is the degree, and N the
number of original variables

— In particular, the number of free parameters that must be learned is
also of order M.

— This is impractical for large N and for d > 2

— Example: handwritten digit recognition (16x16 pixel images). Number
of variables: 256. degree 2: 32,896 variables. Degree 3: 2,796,160.
degree 4: 247,460,160...

SAnvibia

Next Idea: Tile the Space

place a number of equally-spaced “bumps” that cover the entire input space.
® For classification, the bumps can be
Gaussians

¢| (Pi ¢3 ‘I)" @ For regression, the basis functions can be

wavelets, sine/cosine, splines (pieces of
polynomials)....

@ problem: this does not work with more
than a few dimensions.

@ The number of bumps necessary to cover an
’: N dimensional space grows exponentially

with V.

Y. LeCun: Machine Learning and Pattem Reoognilion — n. 30036

SAnvibia

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.
“ Discriminant function:

k=P

X, W) =) WiK(X, X¥)
k=1

W K(X, X') often takes the form of a radial
basis function:
K(X,X') = exp(b||X — X'||?) ora
polynomial K(X, X') = (X. X' +1)™

“ This is a very common architecture, which can
be used with a number of energy functions.

" In particular, this is the architecture of the so-
called Support Vector Machine (SVM), but the
energy function of the SVM is a bit special. We
will study it later in the course.

Y. LeCun: Machine Learning and Patem Reoognition — p. 3136

The Kernel Trick

W If the kernel function K (X, X’) verifies
the Mercer conditions, then there exist a
mapping P, such that
O(X).P(X)= K(X,X".

“ The Mercer conditions are that ' must be
symmetric, and must be positive definite
(i.e K (X, X) must be positive for all X).

% In other words, if we want to map our X'
into a high-dimensional space (so as to
make them linearly separable), and all we
have to do in that space is compute dot
products, we can take a shortcut and

simply compute K (X', X?) without going

x' ' through the high-dimensional space.
k(‘/ W This is called the “kernel trick™. It is used in
‘ o many so-called Kernel-based methods, in-

cluding Support Vector Machines.

Y. LeCun: Machine Learning and Pattem Reoogniliom — . 3236

Examples of Kernels

W Quadratic kernel: ®(X) = (1, v2z,, V2x5, 22,22, 22, 22) then
KX, X")=9®(X).®(X') = (X.X'+1)?

“ Polynomial kernel: this generalizes to any degree d. The kernel that corresponds
to ®(X) bieng a polynomial of degree d is
KX, X)=?(X).PX") = (X.X"+ 1)'—'3‘

W Gaussian Kernel:

K (X,X') = exp(-0|[X — X'||*)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.

Y. LeCun: Machine Learning and Patem Reoognilion — p. 3336

SAnvibia

Sparse Basis Functions

@ Place the center of a basis function around
areas containing training samples.

© Idea 1: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

W Idea 2: adjust the basis function centers
through gradient descent in the loss func-

tion.
The discriminant function F’ is:
k=K
EX WU, U%)= Z Wi K(X,U")
k=1

Y. LeCun: Machine Learning and Patlem Recognilion — p. 340536

Other Idea: Random Directions

" Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

™ Use many variables of the type g(TW*X), where ¢
is the threshold function (or some other squashing
function) and TV}, is a randomly picked vector.

“ This is the original Perceptron.

“ Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear

% classifier.

@ problem: a bit of a wishful thinking, but it works

M ‘:{ occasionally.
3 1
-]

Y, LeCun: Machine Learning and Pattem Eecopnilion — p, 3636
[Snvbia f Moo

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: V}, = tanh(U"* X)
® a network using these basis functions,

whose output is B = Zk —K WV

called a single hidden- !’.::}Ef HE’HHH"
netmwork.

@ Similarly to the RBF network, we can
compute the gradient of the loss function

with respect to the U*:

OL(W) _ OL(W) ., Otanh(U;X)
ouUi ~ OR 79U

_OL(T)
" OR

——=—Wjtanh'(U; X)X’

Any well-behaved function can be approximated as close as we wish by such networks
(but A" might be very large).

Y. LeCun: Machine Learning and Patlem Reoognilion - n. 37736

Architecture of “mainstream” pattern
recognition systems

—Modern architecture for pattern recognition
— Speech recognition: early 90's — 2011

Mix of Gaussians > m
0

unsupervised supervised

K-means Sparse

Coding Classifier
fixed unsupervised supervised
Low-level Mid-level
Features Features

Deep learning = learning hierarchical
representations

It's deep if it has more than one stage of non-linear feature transformation

Low-level Mid-level High-level Trainable
feature feature feature classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]

Trainable feature hierarchy

— Hierarchy of representations with increasing level of abstraction Each
stage is a kind of trainable feature transform
—Image recognition
— Pixel - edge — texton — motif — part — object
— Text
— Character - word — word group — clause — sentence — story
— Speech

— Sample — spectral band — sound — ... — phone — phoneme — word

wJiojsuel)
alnjes) s|qeulel |

wJojsue
aJnjes) s|gqeulel |

wJojsue.
aJnjes) s|qeulel |

_|
-5
o
—
-
0 O
> O
@ o
O —
=)
S 9
C
=
®

Learning representations: a challenge for
ML, CV, Al, neuroscience, cognitive
science...

— How do we learn representations of the perceptual Trainable feature
world? transform
— How can a perceptual system build itself by looking at the world?
— How much prior structure is necessary

— ML/AIl: how do we learn features or feature Trainable feature
hierarchies? transform

— What is the fundamental principle? What is the learning
algorithm? What is the architecture?

— Neuroscience: how does the cortex learn perception?

— Does the cortex “run” a single, general learning algorithm? (or a
small number of them)

— CogSci: how does the mind learn abstract concepts
on top of less abstract ones?

— Deep Learning addresses the problem of learning Trainable feature
hierarchical representations with a single algorithm transform
— Or perhaps with a few algorithms

Trainable feature
transform

—
—
—
—

The mammalian visual cortex is hierarchical

— The ventral (recognition) pathway in the visual cortex has multiple
stages Retina- LGN -V1-V2-V4-PIT-AIT ...

— Lots of intermediate representations

WHERE? {Motion,

Spatial Relationships) WHAT? {Farm, Color}
[Parietal stream] [inferotemporal stream] Motor.command
Sew— Categorical judgments, 140-190 ;
el & | I AIT, decision making — Simple visual forms
| B | i cIT edges, corners
MSTd @ s - o
— ® 1PIT ;
i 100-130 ms PFG
—i A [\l fgeam) ; 0 ms
MT] wig _(a R ‘magac-dom nale b . N4
e W | @ _ :
V4 BD ci-am - A v .) 4
tblo b-fdeon- nated; :"::' " 50-70 ms
V2 - o - ; x
o e 'Dstream 0480 ms ermediate visual
Intar- {irterb os-dominat d
Thick i ari
sliripe q .s_f”_’e iy
: s . _ '
s i I {‘ biob High level object
V1 P12} oa Pz Tl B — | I T 4A descriptions,
4Cal —> l__‘_—l_l__|4Cb faces, objects
Eatlilna, it I nAx '}f‘f; o ~— > To spinal cord
Mx K i e < Tofinger muscle «___ __—160-220ms
180-260 ms
=1 Origntation — Dirgction I\,ﬁg{.; Pattern [claid) /:: Pirsuit e
i Ez:iz:_cy o Disparity :"-E‘;mctw’ @ movemen
L e ey : P, s MNan-Cartesian . .
e e R 1 [picture from Simon Thorpe]
it ;I'.Emperal ", Subjective NeF CEasian 7
nt ['ﬁ;;‘i;i}} centaur e ttern 2=y Faces

[Gallant & Van Essen]

Let's be inspired by nature,
but not too much

— It's nice imitate Nature,

— But we also need to
understand

— How do we know which details
are important?

— Which details are merely the
result of evolution, and the
constraints of biochemistry?

—For airplanes, we developed
aerodynamics and
compressible fluid dynamics. § ‘ |

— We figured that feathers and — = —
wing flapping weren't crucial : «, | .

— QUESTION: What is the L'Avion Il de Clément Ader, 1897

equivalent of aerodynamics (Musée du CNAM, Paris)

for understanding His Eole took off from the ground in 1890, 13 years

intelligence’? before the Wright Brothers, but you probably never
heard of it.

Trainable feature hierarchies: end-to-end
learning

— A hierarchy of trainable feature transforms
— Each module transforms its input representation into a higher-level one.
— High-level features are more global and more invariant
— Low-level features are shared among categories

Trainable Trainable Trainable

feature
transform

feature feature
transform transform

Learned internal representations

—How can we make all the modules trainable and get them to learn
appropriate representations?

Three types of deep architectures

— Feed-forward: multilayer neural nets, convolutional nets

— Feed-back: stacked sparse coding, deconvolutional nets

— Bi-directional: Deep Boltzmann Machines, stacked auto-encoders

Three types of training protocols

— Purely Supervised
— Initialize parameters randomly Train in supervised mode
—Typically with SGD, using backprop to compute gradients
— Used in most practical systems for speech and image recognition
—Unsupervised, layerwise + supervised classifier on top
— Train each layer unsupervised, one after the other
— Train a supervised classifier on top, keeping the other layers fixed
— Good when very few labeled samples are available

—Unsupervised, layerwise + global supervised fine-tuning
— Train each layer unsupervised, one after the other

— Add a classifier layer, and retrain the whole thing supervised
— Good when label set is poor (e.g. pedestrian detection)

—Unsupervised pre-training often uses regularized auto-encoders

SAnvibia

Do we really need deep architectures?

— Theoretician's dilemma: “We can approximate any function as close
as we want with shallow architecture. Why would we need deep
ones?”

y=> oKX, X) y=FW.FW’X))

— kernel machines (and 2-layer neural nets) are “universal’.
—Deep learning machines

y=FWH FWE L F(.FW".X)..)))

—Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition
— They can represent more complex functions with less “hardware”
—We need an efficient parameterization of the class of functions that
are useful for “Al” tasks (vision, audition, NLP...)

Why would deep architectures be more

efficient?
[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards Al”]

— A deep architecture trades space for time (or breadth for depth)
— More layers (more sequential computation),
— But less hardware (less parallel computation).
—Example1: N-bit parity
—requires N-1 XOR gates in a tree of depth log(N).
— Even easier if we use threshold gates

— requires an exponential number of gates of we restrict ourselves to 2 layers (DNF
formula with exponential number of minterms).

— Example2: circuit for addition of 2 N-bit binary numbers

— Requires O(N) gates, and O(N) layers using N one-bit adders with ripple carry
propagation.

— Requires lots of gates (some polynomial in N) if we restrict ourselves to two layers
(e.g. Disjunctive Normal Form).

— Bad news: almost all boolean functions have a DNF formula with an exponential
number of minterms O(2”N).....

SAnvibia

Which models are deep?

—2-layer models are not deep (even
if you train the first layer)
— Because there is no feature hierarchy

—Neural nets with 1 hidden layer are
not deep

—SVMs and Kernel methods are not
deep
— Layer1: kernels; layer2: linear

— The first layer is “trained” in with the
simplest unsupervised method ever
devised: using the samples as
templates for the kernel functions.

— Classification trees are not deep

— No hierarchy of features. All decisions
are made in the input space

Are graphical models deep?

— There is no opposition between graphical models and deep learning.
— Many deep learning models are formulated as factor graphs
— Some graphical models use deep architectures inside their factors
— Graphical models can be deep (but most are not). Factor graph: sum
of energy functions
— Over inputs X, outputs Y and latent variables Z. Trainable parameters: W

~logP(X,Y,ZIW)xE(X,Y,Z, W)= E/(X.,Y,Z,W,

E1(X1,Y1) E3(Z2 Y1) E4(Y3,Y4)

E2(X2,21,72) é

- EaCh A\ | |U|v‘y TUTLIWVLIVIT VUITTT UVviIiIwiuduaIilil u uuurJ T1INVULVV /I IN

— The whole factor graph can be seen as a deep network

Deep learning: A theoretician's nightmare?

—Deep Learning involves non-convex loss functions
— With non-convex losses, all bets are off

— Then again, every speech recognition system ever deployed has used non-convex
optimization (GMMs are non convex).

—But to some of us all “interesting” learning is non convex

— Convex learning is invariant to the order in which sample are presented (only
depends on asymptotic sample frequencies).

— Human learning isn't like that: we learn simple concepts before complex ones. The
order in which we learn things matter.

SAnvibia

Deep learning: A theoretician's nightmare?

—No generalization bounds?

— Actually, the usual VC bounds apply: most deep learning systems have a finite VC
dimension

— We don't have tighter bounds than that.

— But then again, how many bounds are tight enough to be useful for model
selection?

—It's hard to prove anything about deep learning systems

— Then again, if we only study models for which we can prove things, we wouldn't
have speech, handwriting, and visual object recognition systems today.

SAnvibia

Deep learning: A theoretician's paradise?

—Deep learning is about representing high-dimensional data

— There has to be interesting theoretical questions there what is the geometry of
natural signals?

— Is there an equivalent of statistical learning theory for unsupervised learning?
— What are good criteria on which to base unsupervised learning?

—Deep learning systems are a form of latent variable factor graph

— Internal representations can be viewed as latent variables to be inferred, and deep
belief networks are a particular type of latent variable models.

— The most interesting deep belief nets have intractable loss functions: how do we get
around that problem?

— Lots of theory at the 2012 IPAM summer school on deep learning

— Wright's parallel SGD methods, Mallat's “scattering transform”, Osher's “split
Bregman” methods for sparse modeling, Morton's “algebraic geometry of DBN”,....

SAnvibia

Deep learning and feature learning today

—Deep learning has been the hottest topic in speech recognition in the
last 2 years
— A few long-standing performance records were broken with deep learning methods

— Microsoft and google have both deployed dl-based speech recognition system in
their products

— Microsoft, google, IBM, nuance, AT&T, and all the major academic and industrial
players in speech recognition have projects on deep learning

—Deep learning is the hottest topic in computer vision

— Feature engineering is the bread-and-butter of a large portion of the CV community,
which creates some resistance to feature learning

— But the record holders on ImageNet and semantic segmentation are convolutional
nets

—Deep learning is becoming hot in natural language processing

— Deep learning/feature learning in applied mathematics

— The connection with applied math is through sparse coding, non-convex
optimization, stochastic gradient algorithms, etc...

SAnvibia

In many fields, feature learning has caused
a revolution (methods used in commercially deployed systems)

— Speech Recognition | (late 1980s)
— Trained mid-level features with Gaussian mixtures (2-layer classifier)
—Handwriting Recognition and OCR (late 1980s to mid 1990s)
— Supervised convolutional nets operating on pixels
—Face & People Detection (early 1990s to mid 2000s)
— Supervised convolutional nets operating on pixels (YLC 1994, 2004, Garcia 2004)
— Haar features generation/selection (Viola-Jones 2001)

— Object Recognition | (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)

— Trainable mid-level features (K-means or sparse coding)

—Low-Res Object Recognition: road signs, house numbers (early
2010's)

— Supervised convolutional net operating on pixels

—Speech Recognition Il (circa 2011)

— Deep neural nets for acoustic modeling

— Object Recognition 1ll, Semantic Labeling (2012, Hinton, YLC,...)

— Supervised convolutional nets operating on pixels

SAnvibia

Shallow Deep

@
Boosting Neural net
— A D-AE © RAN
P t = - ®
ereeptron ® ® Conv. Net
o
o
SVM RBM DBN pBMm
o o ®
o
Sparse
GMM coding BayesNP
@ ® ETT
@
o

DecisionTree

Shallow

Boosting Neural networks Neural net
| ®
& N
, Ae D-AE @)
Perceptron ® ® e [y
| O
o
SVM
/ Sparse \\
‘ GMM coding BayesNP \
O @ S
° Probabilistic models

\

DecisionTree

Deep

Shallow Deep

Boosting Neural networks

®
//Perceptron Ae D-AE

o
SVM
/ Sparse
/ GMM coding BayesNP
o o ETT
<
Probabilistic models
@ -
DecisionTree S .
Supervised Supervised

Shallow Deep

®
Boosting
® ®
Ae D-AE
Perceptron @
> O O
@
o
SVM RBM DBN pBM
@ @ @
@
GMM BayesNP
@ ® CTT
o
@

DecisionTree

Discovering the hidden structure in high-
dimensional data the manifold hypothesis

—Learning representations of data:
— Discovering & disentangling the independent explanatory factors

— The manifold hypothesis:
— Natural data lives in a low-dimensional (non-linear) manifold
— Because variables in natural data are mutually dependent

6408
aaaa
8,850,

i_.;

Discovering the hidden structure in high-
dimensional data

—Example: all face images of a person
— 1000x1000 pixels = 1,000,000 dimensions

— But the face has 3 Cartesian coordinates and 3 Euler angles and humans have less
than about 50 muscles in the face

— Hence the manifold of face images for a person has <56 dimensions
— The perfect representations of a face image:
— Its coordinates on the face manifold
— Its coordinates away from the manifold
—We do not have good and general methods to learn functions that
turns an image into this kind of representation

1.2 Face/not face

Ideal 9 Pose
feature 0.2 Lighting
extractor -2... Expression

Disentangling factors of variation
The ideal disentangling feature extractor

Pixel n

A

— feature
extractor

!
< o 3
Expression

Pixel 1

Data manifold & invariance:

Some variations must be eliminated
— Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR

2006]

<

) '}

- -

3 e
WARTAEE ETRETEE
“.\(<~ 'ﬁ{ ¢ | = | =

P o pe s
LT f‘;“ st
R i . ,'o‘ i
o PRI
el LT T
’..' '3} . T
Yeats 2, Me
Spee.. % /)
Comltel vt St o
WA
% . -
aqe, ¢ :“ e
r ::-." : o {
P e e - .
'.:lﬂ'{" o s
.‘“‘ ?'. ‘ .' .‘
3::'# 3. - o
. -
- H ‘.’ .'
Pl
]

2
- o
‘%‘ -' Lo
o 33 0
b

e EabeEapare

Basic idea for invariant feature learning

—Embed the input non-linearly into a high(er) dimensional space
— In the new space, things that were non separable may become separable

— Pool regions of the new space together
— Bringing together things that are semantically similar. Like pooling.

Pooling
or
Aggregati
on

Non-linear

function

Input _ _ Stable/invariant
high-dim features
Unstable/non-smooth
features

Non-linear expansion — pooling
Entangled data manifolds

Non-linear dim Pooling
expansion,

aggregati

disentangling

Hg e

58 2esie 6
>

A3

EE
) ®

Sparse non-linear expansion — pooling
Use clustering to break things apart, pool together
similar things

Clustering, Pooling

quantization,
sparse coding

aggregati

Overall architecture:
Normalization — filter bank — non-linearity — pooling

Filter Non- featur Filter Non- featur -
Norm /=~ I = » Norm = = =1 » Classifier
Linear| |e Linear| le
Bank Pooling Bank Pooling

— Stacking multiple stages of
— [Normalization — filter bank — non-linearity — pooling].

—Normalization: variations on whitening
— Subtractive: average removal, high pass filtering
— Divisive: local contrast normalization, variance normalization

— Filter bank: dimension expansion, projection on overcomplete basis

—Non-linearity: sparsification, saturation, lateral inhibition....
— Rectification (relu), component-wise shrinkage, tanh, winner-takes-all

— Pooling: aggregation over space or feature type

_ 1 bX,
g LK PROB:+-log Zije

SAnvibia

Software

—Torch7: learning library that supports neural net training
— http://www.torch.ch
— http://code.cogbits.com/wiki/doku.php (tutorial with demos by C. Farabet)
— http://eblearn.sf.net (C++ Library with convent support by P. Sermanet)

— Python-based learning library (U. Montreal)
— http://deeplearning.net/software/theano/ (does automatic differentiation)

—RNN

— www.fit.vutbr.cz/~imikolov/rnnim (language modeling)
— http://sourceforge.net/apps/mediawiki/index.php (LSTM)

— CUDAMat & GNumpy

— code.google.com/p/cudamat

— www.cs.toronto.edu/~tijmen/gnumpy.htm
—Misc

— www.deeplearning.net//software_links

SAnvibia

http://www.torch.ch/
http://code.cogbits.com/wiki/doku.php
http://deeplearning.net/software/theano/
http://sourceforge.net/apps/mediawiki/index.php
http://www.cs.toronto.edu/~tijmen/gnumpy.htm
http://www.deeplearning.net/software_links

References
Convolutional nets

—LeCun, Bottou, Bengio and Haffner: Gradient-Based Learning Applied
to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324,
November 1998

— Krizhevsky, Sutskever, Hinton “ImageNet Classification with deep
convolutional neural networks” NIPS 2012

—Jarrett, Kavukcuoglu, Ranzato, LeCun: What is the Best Multi-Stage
Architecture for

— Object Recognition?, Proc. International Conference on Computer
Vision (ICCV'09), IEEE, 2009

— Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, LeCun: Learning
Convolutional Feature Hierarchies for Visual Recognition, Advances in
Neural Information Processing Systems (NIPS 2010), 23, 2010

—see yann.lecun.com/exdb/publis for references on many different kinds
of convnets.

—see http://www.cmap.polytechnique.fr/scattering/ for scattering networks
(similar to convnets but with less learning and stronger mathematical
foundations)

e B f Bse [

References
Applications of RNNs

— Mikolov “Statistical language models based on neural networks” PhD
thesis 2012

—Boden “A guide to RNNs and backpropagation” Tech Report 2002

—Hochreiter, Schmidhuber “Long short term memory” Neural
Computation 1997

— Graves “Offline arabic handwrting recognition with multidimensional
neural networks” Springer 2012

— Graves “Speech recognition with deep recurrent neural networks”
ICASSP 2013

SAnvibia

References
Applications of convolutional nets

— Farabet, Couprie, Najman, LeCun, “Scene Parsing with Multiscale
Feature Learning, Purity Trees, and Optimal Covers”, ICML 2012

—Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala and Yann
LeCun: Pedestrian Detection with Unsupervised Multi-Stage Feature
Learning, CVPR 2013

—D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber. Deep Neural
Networks Segment Neuronal Membranes in Electron Microscopy
Images. NIPS 2012

— Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray
Kavackuoglu, Urs Muller and Yann LeCun: Learning Long-Range Vision
for Autonomous Off-Road Driving, Journal of Field Robotics, 26(2):120-
144, February 2009

—Burger, Schuler, Harmeling: Image Denoising: Can Plain Neural
Networks Compete with BM3D?, Computer Vision and Pattern
Recognition, CVPR 2012,

SAnvibia

References
Deep learning & energy-based models

—Deep learning & energy-based models

—Y. Bengio, Learning Deep Architectures for Al, Foundations and Trends in Machine
Learning, 2(1), pp.1-127, 2009.

— LeCun, Chopra, Hadsell, Ranzato, Huang: A Tutorial on Energy-Based Learning, in
Bakir, G. and Hofman, T. and Scholkopf, B. and Smola, A. and Taskar, B. (Eds),
Predicting Structured Data, MIT Press, 2006

— M. Ranzato Ph.D. Thesis “Unsupervised Learning of Feature Hierarchies” NYU 2009

— Practical guide
—Y. LeCun et al. Efficient BackProp, Neural Networks: Tricks of the Trade, 1998

— L. Bottou, Stochastic gradient descent tricks, Neural Networks, Tricks of the Trade
Reloaded, LNCS 2012.

—Y. Bengio, Practical recommendations for gradient-based training of deep
architectures, ArXiv 2012

SAnvibia

(? NEW YORK UNIVERSITY

Deep Learning Teaching Kit

Thank you

DEEP LEARNING METHODS

LECTURE 4: CATEGORIES, TYPES, ORIGIN, DEVEL ol:
Yuri Gordienko, DLI Certified Instructor

DEEP
NNNNNNNN
IIIIIIIIIIIIIIIII

TYPES OF LEARNING ALGORITHMS

Types of Learning Algorithms

Machine
Learning

Supervised Unsupervised Reinforcement

Teach algorithm Discover insights Algorithm improves by
by examples Directly from data learning from its mistakes

Target Variable NO Target Objective
is present Variable based

Types of Learning Algorithms

Supervised Learning — Neural Networks (NN):

AUpervieed + Feed-Forward NN (FNN)
by examples

Target Variable * Convolutional NN (CNN)
is present

* Recurrent NN (RNN)
* Encoder-Decoder Architectures (EDA)

Unsupervised

Discover insights
Directly from data °

NO Target
Variable °

Reinforcement
Algorithm improves by Py
learning from its mistakes

Objective
b;sed (C) Lex Fridman

Types of Learning Algorithms

Supervised

Teach algorithm
by examples

Target Variable
is present

VSl Unsupervised Learning — Neural Networks (NN):
Discover insights
A * Autoencoder
NO Target
Variable * Generative Adversarial Networks

Reinforcement
Algorithm improves by PY
learning from its mistakes

Objective

based (C) Lex Fridman

Types of Learning Algorithms

Supervised

Teach algorithm

by examples
Target Variable
is present

Unsupervised

Discover insights
Directly from data °

NO Target
Variable °

Reinforcement Learning

Reinforcement

Algorithm improves by

matiusekdi © Networks for Learning Actions, Values, and Policies

Objecti
bfse;e (C) Lex Fridman

Types of Learning Algorithms

Supervised Learning — Neural Networks (NN):

Supervised * Feed-Forward NN (FNN)

by examples

Target Variable * Convolutional NN (CNN)

is present

* Recurrent NN (RNN)
* Encoder-Decoder Architectures (EDA)

Unsupervised Learning — Neural Networks (NN):
——— * Autoencoder

NO Target
Variable * Generative Adversarial Networks

Reinforcement Learning

Reinforcement
el © Networks for Learning Actions, Values, and Policies
Objective
based

(C) Lex Fridman

TYPES OF LEARNING ALGORITHMS
NEURAL NETWORK ARCHITECTURES

Types of Learning Algorithms

_ Supervised Learning — Neural Networks (NN):
sLpertised + Feed-Forward NN (FNN)

by examples

Target Variable
is present

4 N\
1. Feed Forward Neural Networks

Input: Network:
P Output: Ground Truth:
A few Dense . . ! . :
——» —» Representation ——» Prediction [«-|---- Prediction !
numbers Encoder ! '

Types of Learning Algorithms

Supervised Learning — Neural Networks (NN):

Supervised .
Teach algorithm
by examples .
Target Variable * Convolutional NN (CNN)
is present
[J
[J
s A
2. Convolutional Neural Networks
Input: :
P Network: Output: Ground Truth:
. Convolutional | N
Animage ————» oré\:]?:;d:na — Representation —— Prediction [«-|---- Prediction |

Types of Learning Algorithms

Supervised Learning — Neural Networks (NN):

Supervised
Teach algorithm
by examples

Target Variable
is present

* Recurrent NN (RNN)

4 N
3. Recurrent Neural Networks

Inbut: Network:
> Output: Ground Truth:
Sequence ——» R:::;;:'t Representation ——» Prediction «-|--- — Prediction !

Supervised
Teach algorithm
by examples

Target Variable
is present

Supervised Learning — Neural Networks (NN):

* Encoder-Decoder Architectures (EDA)

-

4. Encoder-Decoder Architectures

Input: Network:
Image,
Text, Any
Encoder
etc.

Representation

Network: Output:
I
Any Text,
Decoder ’

etc.

Types of Learning Algorithms

Ground Truth:

Supervised
Teach algorithm
by examples

Target Variable
is present

e N
1. Feed Forward Neural Networks
| t: Net k:
npu etwor Output:
iz LEIEE » Representation » Prediction [«-
numbers Encoder
. J
e ™\
2. Convolutional Neural Networks
Input: 0
p Network: Output:
An image N (Colppll] » Representation » Prediction -
Encoder
\ y,
e ™
3. Recurrent Neural Networks
Input: Network:
Output:
Recurrent . .
Sequence » Representation » Prediction [«-
Encoder
. J
- N
4. Encoder-Decoder Architectures
Input: Network: Network: Output:
Image, Image,
Text, Any » Representation Any > Text, |«t
Encoder Decoder
etc. etc.
_ J

Ground Truth:

Ground Truth:

Ground Truth:

Ground Truth:

(C) Lex Fridman

TYPES OF LEARNING ALGORITHMS
NEURAL NETWORK ARCHITECTURES

Types of Learning Algorithms

Unsupervised Learning — Neural Networks (NN):

Unsupervised

Discover nsights * Autoencoder
Directly from data
NO Target *
Variable
C I
5. Autoencoder . Throw away after training
Input: Network: Network: Ground Truth:
Image, |
Text, —» Any —» Representation —» Any - - P Exac.t copy §
Encoder ! Decoder . of input
etc. !
- J

(C) Lex Fridman

Types of Learning Algorithms

Unsupervised .

Discover insights
Directly from data

Unsupervised Learning — Neural Networks (NN):

NO Target * Generative Adversarial Networks
Variable
4 N
6. Generative Adversarial Networks
' Throw away after training
Input: Network: Output: Network:
Noise —» Generator —» FElE > Discriminator —» HERiEDen:
Image Real or Fake |
| A |
I | |
T Amooees ! |
1 Real |
1 Image
. l__'j

(C) Lex Fridman

Unsupervised

Discover insights
Directly from data

NO Target
Variable

4)
5. Autoencoder Throw away after training
Input: Network: Network: Ground Truth:
Image,
Text, Any Representation - » Any - - P Exat?t el |
Encoder ! Decoder . ofinput ' |
etc. ! : I
- y,
4 N\
6. Generative Adversarial Networks
. Throw away after training i
Input: Network: Output: i Network:
Noise Generator —» FE > Discriminator —» FELIE
Image Real or Fake |
| A |
I | |
L pTTT fooooes ! |
1 Real |
1 Image i
L | o e e e e e e e)

TYPES OF LEARNING ALGORITHMS
NEURAL NETWORK ARCHITECTURES

Types of Learning Algorithms

Reinforcement
Algorithm improves by

learning from its mistakes

Objective
based

Reinforcement Learning
* Networks for Learning Actions, Values, and Policies

-

7. Networks for Learning Actions, Values, and Policies

Ground Truth:

Action —» Reward

Network: Output:
Input:
P s |
Environment Any .
—>
State Ereelar Representation
: |

(C) Lex Fridman

HOW THEY APPEARED

MOTIVATION

NEURAL NETWORKS ARE NOT NEW

And are surprisingly simple as an algorithm

NEURAL NETWORKS ARE NOT NEW

They just historically never worked well

Accuracy

IIIIIIIIIIIIIII

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9lI

NEURAL NETWORKS ARE NOT NEW

They just historically never worked well

Accuracy

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9lI

NEURAL NETWORKS ARE NOT NEW

They just historically never worked well

Accuracy

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9lI

NEURAL NETWORKS ARE NOT NEW

Historically we never had large datasets or computers

The MNIST (1999) database
contains 60,000 training images
and 10,000 testing images.

OO0 0000C0000000

200 WL T N N A B A B B

Adzgrlazzplzz22Jd

2333233331233 33353

HHMY pHQF YIS L4

S Sy s C)Ssss85S5s585Y

& 6G6bbbbobebhb6Gé b

77F%7127792177727

F£L88 595885108558 F _ - .
dff????ﬁ??&?ﬂ‘??? Dataset Size

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

COMPUTE

Historically we never had large datasets or compute-

107 <~
GPU-Computing perf ”
1.5X per year

1000X
By 2025

106

Transistors
(thousands) 1.1X per year

10°

104

103

102 -

o0
Single-threaded perf

1980 1990 2000 2010 2020

DEEP
4 CearniG
nnnnnn INSTITUTE

Al BIG BANG PILLARS:

- HIGH-PERFORMANCE COMPUTING
- BIG DATA
- DEEP MODELS

Al BIG BANG PILLARS:

- BIG DATA
- DEEP MODELS

CONTEXT

DEEP
LEARNING
TTTTTTTTTTTTTTT

CONTEXT
2 petaFLOPs - today

eTwo GPU Boards

8 V100 32GB GPUs per board
6 NVSwitches per board
512GB Total HBM2 Memory
interconnected by

Plane Card

NVIDIA Tesla V100 3268)

Twelve NVSwitches
2.4 TB/sec bi-section
bandwidth

(@) Eight EDR Infiniband/100 GigE
1600 Gb/sec Total
Bi-directional Bandwidth

o PCle Switch Complex

eTwo Intel Xeon Platinum CPUs
30 TB NVME SSDs £:)

Internal Storage €2 1.5 TB System Memory

Dual 10/25 Gb/sec
Ethernet

DEEP
«2 LEARNING
NVIDIA. INSTITUTE

100 EXAFLOPS
2 YEARS ON A DUAL CPU SERVER

Al BIG BANG PILLARS:
- HIGH-PERFORMANCE COMPUTING

- DEEP MODELS

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

55 . I — After Training on 10B words
r’,/ 50 @@ After Training on 1008 words
n o //.,’A 50+
ﬁ Initialization | mIOU
ImageNet 73.6
g %0 300M 753
ImageNet+300M | 76.5 20

il

40

mean AP -
(3
=
mean AP —

mean [OU —

Test Perplexity

@@ Fine-tumng @@ Fine-tuning
@—@ No Fine-tuning . e—@ No Fmetuning 35
’ 1]
%10 30 100 300 10 30 100 300 1o 30 100 300
Number of examples (in millions) — Number of examples (in millions) — Number of examples (in millions) —
30 T

Figure 6. Semantic segmentation performance on Pascal VOC
2012 val set. (left) Quantitative performance of different initial-

izations; (right) Impact of data size on performance. 10" 10° 10° 10" 10"
Model Parameters Excluding Embedding and Softmax

Figure 4. Object detection performance when initial checkpoints —e®
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis is the detection per-
formance in mAP@[.5,.95] on COCO minival* (left), and in

mAP@.5 on PASCAL VOC 2007 test (right).

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017). e
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (20153, i
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

5.00

4,54

4.12

3.793

Minimum Validation Loss (Log-scale)

3.39

0.78

0.61

0.48

0.37

0.25

0.23

Minimum Validation Loss (Log-scale)

Logarithmic

T
m—— 2-layer LSTMs
s A-Layer LSTMs
=== Depth-5 RHNs
My == 2-layer LSTMs Trend |

== 4-Layer LSTMs Trend

\ == Depth-5 RHNs Trend
\h g(m) = 12.0 m®°¢¢

N

N
g(m) = 11.9 m%95¢ \\k

e(m) = 11.7 0065 \\-

220 221 222 223 224 245 226 227 228

Training Data Set Size, Millions of Words (Log-scale)

— D52 |
\ —— Attention
o —== DS2 Trend 1
Y ——~ Attention Trend

- .

\ N,
“'\

= 1.36 m™*

RN
g(m) = 0.95 m“"N

m) =
.‘M
-
=
\“' \\\
=~ >

8

16 32 64 128 256 512 1024
Training Data Set Size. Hours of Audio (Log-scale)

2048

EXPLODING DATASETS

relationship between the dataset size and accuracy

Minimum Test Loss (Log-scale)

0.62

2

w

]
.

(=
wn
=

a
w
=

a2
=
[

=

=

-
N

&

=

-
L

Translation

Language Models
Character Language Models
Image Classification
Attention Speech Models

= 208 Hidden
=== 512 Hidden
=== 208 Hidden Trend
=== 512 Hidden Trend

£208(m) = 41.2 m®3 + 0.39

Eg;z(m) = 21.5 m?3 4 0.32

2}3 2}I 2}) 2}3 25‘! 2:‘} 25‘- 25'
Training Data Set Size, Number of Tokens (Log-scale)

T
= Depth-10 RHNs, SGD

~
1.s¢ Q = Depth-10 RHNs, Adam
— k ——- Depth-10 RHNs, SGD Trend
2147 1
] === Depth-10 RHNs, Adam Trend
9 .
;S" 1.36 \ §
0 \Q Y
2 1.26
3 \
c
2117 \ N 037 |
= “W =537 m?
= >
~
£ 108 =
E \"\ \\\
E b
£ 100 S
= T
0.93 e —
g(m) = 5.25 mP0%37~
0.86
2]_‘] 221 223 25 227
Training Data Set Size, Number of Chars (Log-scale)
o m— ¥entropy
11.71 =
e Exentpy(M) = 14.0 my®3% === Top-1
I I = m— Top-3
a 632 ——— Xentropy Trend |
b === Top-1 Trend
g 3a2 < H“__- Top-5 Trend
= -~
" ~—— e
g 185 e \h“m._,
z ..;-*hh ——
2 100 e
s - e | £ (m) = 2.24 MO
g bse __‘
g Evops(m) = 3.29 MO ~——
E pa9 -~
£
= \
0.16
\\
0.09
2 22 25 27 22

Training Data Set Size, Images per Class (Log-scale)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

small Data
Reqgion

Best Guess Error

Power-law Region

Irreducible
Error
Region

LS

Generalization Error (Log-scale)

Irreducible Error

Training Data Set Size (Log-scale)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

DEEP
«2 LEARNING
NVIDIA. INSTITUTE

Al BIG BANG PILLARS:

- HIGH-PERFORMANCE COMPUTING
- BIG DATA

To Tackle Increasingly Complex Challenges

NEURAL NETWORKS ARE NOT NEW

But that changed and transformed the way we do machine learning

Accuracy

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I

NEURAL NETWORKS ARE NOT NEW

Data and model size the key to accuracy

NEURAL NETWORKS ARE NOT NEW

Exceeding human level performance

Accuracy

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9lI

To Tackle Increasingly Complex Challenges

EXPLODING MODEL COMPLEXITY

Larger models are made possible

/r:mE layer

Gx)y| [Glx),y

MoE MoE
layer layer Expert 1
A

Expert n

\ 4

Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (2017).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). Ifj,%A :EN%E%WE
Nuts and Bolts of Applying Deep Learning, Andrew Ng, 2016 - https://youtu.be/F1ka6al3S9l

EXPLODING MODEL COMPLEXITY

,outrageously large neural networks* - size does matter

VGG 19 vs Google LSTM using Sparsely-
Gated Mixture-of-Experts layer

N\

Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (2017).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). rfy‘%‘\ ?fgﬁyg;g
Nuts and Bolts of Applying Deep Learning, Andrew Ng, 2016 - https://youtu.be/F1ka6al3S9I

EXPLODING MODEL COMPLEXITY

Good news - model size scales sublinearly

S e
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409. A

EVIDENCE FROM IMAGE PROCESSING

Good news - model size scales sublinearly

85 -
NASNat-A (5 @ 4032)
il e
Nﬂﬂﬁﬂﬂ o e . R
= 80 | masnetA (s @ 1538)- - fmepﬂm Feahetyz TOPNEL S Reanexr 101
2 .f';#mpﬁm-vs
] gl
3] £
§ 751 [gfiooptensc
E :_?:'MA.Q.M.;-M {4 @ 1056)
f VGG-16
q | »
% 701 e Incaption-w
65 . . : : : . , .
0 10000 20000 30000 40000

Mult-Add operations (millions)

accuracy (precision @1)

85 -

80

75 1

70 A

65

NASNet-A (6 @ 4032)
-l
NASNet-A (7 @ 1920) s mi-.__ ---------------- -
- :I'EW—HWJ__I_J:*E ® W Poiniat
| NASNet-A (5 @ 1538} A & ReaeXt- 101
" @ Kcaption
..' N e

_.-"; Incephion-v3 RagNat-152

. i
NASNet-A (4 @ 1056)

C ShutfiaNet
Mabdehiar

® jnceciinn v

VEG-186

T T T T T

0 20 40 60 80 100

parameters (millions)

Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." arXiv preprint arXiv:1707.07012 (2017).

T T

120 140

DEEP
«z LEARNING

NVIDIA. INSTITUTE

IMPLICATIONS

Making complex problems easy

Making unsolvable problems
expensive

“For any size of the data it’s a
good idea to always make the
data look small by using a huge
model.”

Geoffrey Hinton

FUNDAMENTAL CHANGE TO THE ECONOMY

Impact BaE v -

NEWS | PIDGIN
Intelligence Plan _ . . . T
Microsoft just officially listed Al e s

as one of its top priorities, UAE: First minister of artificial
) replacing mobile intelligence don land

« Satya Nadella's "mobile-first and cloud-first world"” line is out. © 19 October 2017 f v ©

+ The change comes after Microsoft formed the Artificial Intelligence and
Research group.

|China’s GotaHuge Art|fm|a|

REUTERS World Business Markets Politics v

Jordan Novet | @jordannovet o
Published 5:48 PM ET Wed, 2 Aug 2017 | Updated 7:00 PM ET Fri, 4 Aug 2017 ol EUROPEAN COMMISSION
Press Release Database

JcnBC

SCIENCE NEWS MARCH 29, 2018

European Commission » Press releases database > Press Release details

European Commission - Press rel

Fra nce to Spend $1-8 biuion on AI to Commission proposes to invest EUR 1 billion in world-class European supercomputers
compete With U-S-’ China \%m Q = Brussels, 11 January 2018

m Andrus Ansip, European Commission Vice-President for the Digital Single Market, said: "Supercomputers are the engine to power the digital
economy. It is a tough race and today the EU is lagging behind: we do not have any supercomputers in the world’s tap-ten. With the EuroHPC
% 2 Z 2 H H H initiative we want to give European researchers and companies worid-leading supercomputer capacity by 2020 - to develop technologies such
Mathieu Rosemain, Michel Rose The 10 tech companies that have invested the most money in Al as artificial intelligence and build the future's everyday applications in areas like health, security or engineering.”

Of the tech giants, Google is the biggest investor in Al by billions

By Olivia Krauth W | January 12, 2018, 1112 PM PST

1. Goodale - $3.9 billion 6. Uber - $680 million

2. Amazon - $871 million 7. Twitter - $629 million

3. Apple - $786 million 8. AOL - $1917 million 1 T
4. Intel - $776 million 9. Facebook - $60 million MVIDIA. | INSTITUTE

5. Microsoft - $690 million 10. Salesforce - $32.8 million

IMPLICATIONS

Good and bad news

»The good news: Requirements The bad news: The values can
are predictable. be significant.

We can predict how much data we
will need

We can predict how much
computing power we will need

IMPLICATIONS

Experimental Nature of Deep Learning - Unacceptable training time

e

Experiment

IMPLICATIONS

Automotive example

Majority of useful problems are too complex for a single GPU training
VERY CONSERVATIVE

Fleet size (data capture per hour)

100 cars /

CONSERVATIVE

125 cars /

Duration of data collection

260 days * 8 hours

325 days * 10 hours

(with 1 Pascal GPU)

Data Compression factor 0.0005 0.0008
Total training set 104 TB iR so0e 437.5TB
OR T
1 MAEC L rmnn
InceptionV3 training time 9.1 years 'S_HMES MmirTEEEes 47 .6 years
06

AlexNet training time
(with 1 Pascal GPU)

2018

ama 1.1 years amm

2019

At 5.4 years

DEEP
S e

NVIDIA. INSTITUTE

Xkcd.com

CONCLUSIONS

What does your team do in the mean time

THE #7 PROGRA ER
FOR LEGITI NATEL%LAm%V)((ECBEE

™Y CODE’S ComMPILING™

HEY! GET BACK -
TO WORK!

DEEP
NNNNNNNN
TTTTTTTTT

Xkcd.com

CONCLUSIONS

What does your team do in the mean time

THE #7 PROGRA
FOR LEGITI NATEL%LACK%_V)‘(,}CB}%

4

MY BNN IS TRAINING”

HEY! GET BACK -
TO UORK'

DEEP
NNNNNNNN
TTTTTTTTT

CONCLUSIONS

Need to scale the training process for a single job

VERY CONSERVATIVE o
CONSERVATIVE Training
From

Total training set 104 TB 487.5 TB Months or Years
InceptionV3 (one 166 days 778 days

[] DGX-1V) (5+ months) (2+ years)

1 NVIDIA DGX-1
AlexNet 21 days 98 days
(one DGX-1V) (3 weeks) (3 months)
InceptionV3 (10 16 days 77 days
DGX-1V'’s) (2+ weeks) (11 weeks) To
Weeks or Days

AlexNet 2.1 days 9.8 days
(10 DGX-1V’s)

10 NVIDIA DGX-1s

PRACTICAL EXAMPLES OF LARGE SCALE
TRAINING

ImageNet top-1 validation error

FACEBOOK

Training ImageNet with ResNet 50 in 1 hour

128 * DGX-1

10.5 PFLOPS total FP32
21 PFLOPS total FP16
Non-blocking IB fabric

4
=
T

fad
o
T

(A
=
L.

(

(

(

(
(
{
(
f

M
_
¥

| I Y

i i i i i i i i J
B4 128 256 912 1k 2k 4k Bk 1Bk 32k B4k Goval P, Dollar, P, Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate,

mini-batch size Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677. C2 e

ha
(=]

Speedup

IBM

Training ImageNet with ResNet 101 in 7 hours

64 IBM Power Systems

IBM Distributed Deep Learning Scaling Efficiency

256

=#-|deal Scaling
128

=8-—DDL Actual Scaling

95%

64 Efficiency w/
32 256 GPUs
16
8
4
2
1
4 16 64 256

Number of GPUs

DEEP
NNNNNNNN
TTTTTTTTT

PREFERRED NETWORKS

Training ImageNet in 15 minutes

It consists of 128 nodes with 8 NVIDIA
P100 GPUs each, for 1024 GPUs in

total.

The nodes are connected with two FDR
Infiniband links (56Gbps x 2).

1000
—+— ChainerMN
Ideal speed-up
a 100
N
g o]
@
48]
o
O 10
|'. 1 1
! 1 2 4 8 16 32 64 128 256 512 1024 Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training resnet-50 on > B
imagenet in 15 minutes. arXiv preprint arXiv:1711.04325. ~ nviDiA INSTITUTE

Number of GPUs

BAIDU SVAIL

Investigating the log linear nature of the relationship between dataset

Generalization Error (Log-scale)

size and generalization accuracy

11 PFLOPS across 1500 GPUs

Small Data
Region

Best Guess Error

Power-law Region

Irreducible
Error
Region

Irreducible Error

Training Data Set Size (Log-scale)

DEEP
NNNNNNNN
TTTTTTTTTTTTTTT

UBER

Investing heavily in Deep Learning scalability

Training with synthetic data on NVIDIA® Pascal™ GPUs

o
b B rem| 08
8 16 32 64 12 8 16 32

Inception V3 ResNet-101 VGG-16
Number of GPUs and model name

18,000.0
16,000.0
14,000.0
12,000.0
10,000.0

8,000.0
6,000.0 r
4,000.0 Ol
2,000.0 i.
0.0 .
8 16 32 64 128

1

Images/sec

8 1 64 128

1

M Distributed TensorFlow ™ Horovod (TCP) M Horovod (RDMA) Oldeal & |

https://github.com/uber/horovod

262144
131072
65536
32768

16384
8192

Aggregate img/sec

CRAY
Piz Daint at CSCS

Inception v3 Performance on XC50 (Piz Daint at CSCS) ResNet50 Scaling on XC50 (Piz Daint at CSCS) MBS = 64 per GPU
262144
-~ ‘. g
131072
65536
32768
;ﬁ__ 16384
E s
5
~-MBS=16 3 2048
MBS=32 1024
~*MBS=64 512
=®=MBS=64 (gRPC)
256
~ =200xN f
128
2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Nodes (GPUs) GPUs (Nodes)

DEEP
«2 LEARNING
NVIDIA. INSTITUTE

SATURN V

660 DGX-1 Volta Nodes

660 Nodes with a total of 5280
Volta GPUs

660 PFLOPs for Al training

IIIIIIIIIIIIIII

ITERATION TIME

Short iteration time is fundamental for success

1740

264
60 48 40
24
HE B = :
] _—

DESPITE
‘BLACK BOX’
INTERNALS

COMPLEX THEORY
BEHIND
N
UNDER
RESEARCH NOW

Stochastic Gradient Descent
More Data and Model Parallelism
Adaptation for Edge Computing

Multi-GPU Scaling

GRADIENT BASED OPTIMIZATION

STOCHASTIC GRADIENT DESCENT
(AND ITS VARIANTS)

OPTIMIZATION

DEEP
S e
TTTTTTTTTTTTTTT

OPTIMIZATION

y=ax+b 100‘.

Our goal is to find best

model parameters ‘ . t..‘,:;oi'
(combination of a and b) "\ Ny
to fit the data | o

There exists a wide range of optimization algorithms

sgd
momentum
nag
adagrad
adadelta
rmsprop

SGD FOR MORE COMPLEX NEURAL NETWORKS

MODERN NEURAL NETWORKS

Not significantly!

DEEP
S e
IIIIIIIIIIIIIII

MODERN NEURAL NETWORKS

Nonlinearity

= sigmoid
4| —thanh |
a b ——RelU a b
——softplus § :
Al ...

DEEP
NNNNNNNN
TTTTTTTTT

MODERN NEURAL NETWORKS

More complex interconnection and many more
parameters

. (MoE layer N
G(x),| |G(x)py
=0 @
. 4

\

Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J. (2017). One model to learn them all. arXiv preprint arXiv:1706.05137. S o
landola, F., Moskewicz, M., Karayeyv, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869. ol NeTTUTE
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538.

Those differences make the optimization problem much more difficult

~ Gradient
weight "\ radien

%

V4] 4 5
i/ Global cost minimum

Those differences make the optimization problem much more difficult

Those differences make the optimization problem much more difficult

Recent advances such as Residual Connections simplify the
optimization problem

{a) without skip connections (b) with skip connections

OPTIMISATION

* Define a model (multilayer neural network)
* Define a cost function (problem specific)

* |teratively:

* Calculate the gradient of the cost function (the algorithm used to obtain the gradient
is called backpropagation)

* Update the model parameters (again using one of many optimisation algorithms)

BACKPROPAGATION

y=f(u), u=g(x)
Therefore, y = (f o g)(x)
dy _dy du

I - du dx

BACKPROPAGATION

In practice this is rarely if ever done manually as all of the deep learning
frameworks come with:

* Asuite of prebuild optimisation algorithms
* An automatic differentiation functionality

A very useful side effect is a fact that you can embed ANY DIFFERENTIABLE code
into your neural network!

OPTIMIZATION

* We will build a simple (2 OHZAFEANITNH 3

hidden layers) neural <1 31 6] [1] 7] 21 7] [6] (71 M

yers) I cinluEeEll fefale

network - multilayer P ORI FHE T

perceptron (no 5502982070

nonlinearity) A6 8E e N0

We will work with th 7865557076
. e will work wi e | 71 8] &S

2] 4] [&] (7] [0] [7] [2] [B] [/] [5]

MNIST dataset

* Qur goal is to find best
model parameters to fit the
data

<3

www. nvidia.com/dli

DEEP
LEARNING
INSTITUTE

Deep Learning Methods

Lecture 04

3 ok o >k Sk s sk sk Sk ol 2k ok ok ok sk sk sk sk sk Sk Sl 2l i ok sk sk sk sk sk Sk Sl Sl ok ok ok ke sk sk sk sk Sk Sl Sl ok ok ke sk sk sk sk sk Sk Sl Sl ok ok ke sk sk sk s Sk Sk Sl ol ok ok ok sk sk sk sk sk sk sk sk sk ok

Lecture Slides + interactive Jupyter-notebooks for Google Colaboratory CPU/GPU/TPU cloud:
https://cloud.comsys.kpi.ua/s/SMkBSsxRTazoTD6

S 3k o >k 3k s sk sk 2k Sl 2 ok ok ok sk sk sk sk sk Sk Sl ol i ok ke sk sk sk sk Sk Sl Sl ok ok ok ke sk sk sk sk Sk Sl Sl ok ok ke sk sk sk sk sk Sk Sl Sl o ok ke sk sk sk sk Sk Sk Sl sl i ok ok sk sk sk sk sk sk sk sk ok ok

Lecture 04 - CATEGORIES, TYPES, ORIGIN, DEVELOPMENT

The course includes materials proposed by NVIDIA Deep Learning Institute (DLI) in the
framework of the common

NVIDIA Research Center
and
NVIDIA Education Center.

“ NVIDIA. <2 NVIDIA.

GPU GPU

EDUCATION RESEARCH
CENTER CENTER

https://kpi.ua/nvidia-info

DEMO 1

CPU version - MNIST digit classification in TensorFlow 2.0
https://drive.google.com/file/d/1XeEckTs4qIFYFa56bYCoSeH 8YAOQ7No/view?
usp=sharing

DEMO 2
GPU version - MNIST digit classification in TensorFlow 2.0
https://drive.google.com/file/d/1 whW7Q-gi7TN-NLWIH2AL6CxnkBfvwua/view?

usp=sharing

DEMO 3
TPU version - MNIST digit classification in TensorFlow 2.0
https://drive.google.com/file/d/1vESaabyes2V0dwW99v]0O_ saM r2opzmpz/view?

usp=sharing

DEMO 4
Main Types of Deep Neural Networks
https://drive.google.com/file/d/1PvGNAQGbC LB3ytw vgB8xLsIe-t74Dh/view?

usp=sharing

https://kpi.ua/nvidia-info
https://drive.google.com/file/d/1PvGNAgGbC_LB3ytw_vgB8xLsIe-t74Dh/view?usp=sharing
https://drive.google.com/file/d/1PvGNAgGbC_LB3ytw_vgB8xLsIe-t74Dh/view?usp=sharing
https://drive.google.com/file/d/1vESaa6yes2VOdW99vJ0_saM_r2opzmpz/view?usp=sharing
https://drive.google.com/file/d/1vESaa6yes2VOdW99vJ0_saM_r2opzmpz/view?usp=sharing
https://drive.google.com/file/d/1_whW7Q-gi7TN-NLWIH2AL6CxnkBfvwua/view?usp=sharing
https://drive.google.com/file/d/1_whW7Q-gi7TN-NLWIH2AL6CxnkBfvwua/view?usp=sharing
https://drive.google.com/file/d/1XeEckTs4qIFYFa56bYCoSeH_8YA0Q7No/view?usp=sharing
https://drive.google.com/file/d/1XeEckTs4qIFYFa56bYCoSeH_8YA0Q7No/view?usp=sharing

~ CPU version - MNIST digit classification in TensorFlow 2.0

IMPORTANT: Runtime -> Change runtime -> None

Now, we will see how can we perform the MNIST handwritten digits classification using
tensorflow 2.0. It hardly a few lines of code compared to the tensorflow 1.x. As we learned,
tensorflow 2.0 uses as keras as its high-level API, we just need to add tf.keras to the keras code.

~ Enabling and testing the environment

I cat /sys/class/dmi/id/product name

Google Compute Engine

I cat /sys/class/dmi/id/sys vendor

Flags:

Google
I lscpu
Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
On-1line CPU(s) list: 0,1
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7B12
Stepping: 0
CPU MHz: 2249.998
BogoMIPS: 4499.99
Hypervisor vendor: KVM
Virtualization type: full
L1ld cache: 32K
L1li cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node® CPU(s): 0,1

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mc:

! grep MemTotal /proc/meminfo

>

MemTotal: 13333596 kB

I df -h
Filesystem Size Used Avail Use% Mounted on
overlay 108G 31G 78G 28% /
tmpfs 64M 0 64M 0% /dev
tmpfs 6.4G 0 6.4G 0% /sys/fs/cgroup
shm 5.9G 0 5.96 0% /dev/shm
tmpfs 6.4G 28K 6.4G % /var/colab
/dev/sdal 114G 32G 83G 28% /etc/hosts
tmpfs 6.4G 0 6.4G 0% /proc/acpi
tmpfs 6.4G 0 6.4G 0% /proc/scsi
tmpfs 6.4G 0 6.4G6 0% /sys/firmware

I nvidia-smi

NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver.

import tensorflow as tf
device name = tf.test.gpu device name()
if device name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device name))

SystemError Traceback (most recent
call last)
<ipython-input-7-d1680108c58e> in <module>()
2 device name = tf.test.gpu device name()
3 if device name !'= '/device:GPU:0':
----> 4 raise SystemError('GPU device not found')
5 print('Found GPU at: {}'.format(device name))

SystemError: GPU device not found

Import the libraries:

import warnings
warnings.filterwarnings('ignore")

import tensorflow as tf
Check Tensorflow version

print(tf. version)

2.4.1

~ Load the dataset:

mnist = tf.keras.datasets.mnist

v Create a train and test set:

(x_train,y train), (x test, y test) = mnist.load data()

+ Normalize data ...

... the x values by diving with maximum value of x which is 255 and convert them to float:

x _train, x test = tf.cast(x train/255.0, tf.float32), tf.cast(x test/255.0, tf.flc

convert y values to int:

y train, y test = tf.cast(y train,tf.int64),tf.cast(y test,tf.int64)

~ Create the model

Define the sequential model:

Define the sequential model:
model = tf.keras.models.Sequential()

Add the layers - We use a three-layered network. We apply ReLU activation at the first two layers
and in the final output layer we apply softmax function:

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(256, activation="relu"))

model.add(tf.keras.layers.Dense(128, activation="relu"))
(

model.add(tf.keras.layers.Dense(10, activation="softmax"))

Compile the model with Stochastic Gradient Descent, that is 'sgd' (we will learn about this in the
next chapter) as optimizer and sparse_categorical_crossentropy as loss function and with

accuracy as a metric:

model.compile(optimizer='sgd', loss='sparse categorical crossentropy', metrics=['e

e Listitem
e Listitem

v Train

Train the model for 10 epochs with batch_size as 32:

history = model.fit(x train, y train, batch size=32, epochs=10)

Epoch 1/10
1875/1875 [] - 5s 2ms/step - loss: 1.0382 - acc
Epoch 2/10
1875/1875 [] - 55 2ms/step - loss: 0.3054 - acc
Epoch 3/10
1875/1875 [] - 5s 3ms/step - loss: 0.2385 - acc
Epoch 4/10
1875/1875 [] - 5s 3ms/step - loss: 0.2010 - acc
Epoch 5/10
1875/1875 [] - 5s 3ms/step - loss: 0.1730 - acc
Epoch 6/10
1875/1875 [] - 5s 3ms/step - loss: 0.1538 - acc
Epoch 7/10
1875/1875 [] - 55 3ms/step - loss: 0.1348 - acc
Epoch 8/10
1875/1875 [] - 5s 2ms/step - loss: 0.1239 - acc
Epoch 9/10
1875/1875 [] - 5s 2ms/step - loss: 0.1116 - acc
Epoch 10/10
1875/1875 [] - 5s 2ms/step - loss: 0.1017 - acc

v Show the structure of the model

model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (32, 784) 0

dense (Dense) (32, 256) 200960
dense 1 (Dense) (32, 128) 32896
dense 2 (Dense) (32, 10) 1290

Total params: 235,146

Trainable params: 235,146
Non-trainable params: 0

~ Evaluate

Evaluate the model on test sets:

model.evaluate(x test, y test)

313/313 [] - 1s 1lms/step - loss: 0.1082 - accul
[0.10815522819757462, 0.9682999849319458]

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

~ GPU version - MNIST digit classification in TensorFlow 2.0

IMPORTANT: Runtime -> Change runtime -> GPU

Now, we will see how can we perform the MNIST handwritten digits classification using
tensorflow 2.0. It hardly a few lines of code compared to the tensorflow 1.x. As we learned,
tensorflow 2.0 uses as keras as its high-level API, we just need to add tf.keras to the keras code.

~ Enabling and testing the GPU

! nvidia-smi

Tue Feb 23 13:03:10 2021

o e mm e m ==
| NVIDIA-SMI 460.39 Driver Version: 460.32.03 CUDA Version: 11.2

R e R T T S oo
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. EC(
| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M.
| | | MIG M.
| + +

| 0 Tesla T4 Off | 00000000:00:04.0 Off | ¢
| NJA - 37C P8 0w / 70w | OMiB / 15109MiB | 0% Defauli
| | | N/
e T R L
e mmmmmmmmmm—— - - -
| Processes:

| GPU GI CI PID Type Process name GPU Memory
| ID ID Usage

|

|

No running processes found

import tensorflow as tf
device name = tf.test.gpu device name()
if device name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device name))

Found GPU at: /device:GPU:0
v Import the libraries:

import warnings
warnings.filterwarnings('ignore')

import tensorflow as tf

v Check Tensorflow version

print(tf. version)

2.4.1

~ Load the dataset:

mnist = +tf.keras.datasets.mnist

v Create a train and test set:

(x_train,y train), (x test, y test) = mnist.load data()

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-date
11493376/11490434 [] - 0s Qus/step

+ Normalize data ...

... the x values by diving with maximum value of x which is 255 and convert them to float:

x_train, x test = tf.cast(x train/255.0, tf.float32), tf.cast(x test/255.0, tf.flc

convert y values to int:

y train, y test = tf.cast(y train,tf.int64),tf.cast(y test,tf.int64)

~ Create the model

Define the sequential model:
Define the sequential model:

model = tf.keras.models.Sequential()

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

Add the layers - We use a three-layered network. We apply ReLU activation at the first two layers

model.add
model.add
model.add
model.add

tf.keras.layers.Flatten())
tf.keras.layers.Dense (256, activation="relu"))
tf.keras.layers.Dense(128, activation="relu"))
tf.keras.layers.Dense(10, activation="softmax"))

P

Compile the model with Stochastic Gradient Descent, that is 'sgd' (we will learn about this in the
next chapter) as optimizer and sparse_categorical_crossentropy as loss function and with
accuracy as a metric:

model.compile(optimizer='sgd', loss='sparse categorical crossentropy', metrics=['e

Show the structure of the model

Train

Train the model for 10 epochs with batch_size as 32:

history = model.fit(x train, y train, batch size=32, epochs=10)

Epoch 1/10
1875/1875 [] - 5s 2ms/step - loss: 1.0041 - acc
Epoch 2/10
1875/1875 [] - 3s 2ms/step - loss: 0.2966 - acc
Epoch 3/10
1875/1875 [] - 3s 2ms/step - loss: 0.2382 - acc
Epoch 4/10
1875/1875 [] - 3s 2ms/step - loss: 0.2003 - acc
Epoch 5/10
1875/1875 [] - 3s 2ms/step - loss: 0.1774 - acc
Epoch 6/10
1875/1875 [] - 3s 2ms/step - loss: 0.1537 - acc
Epoch 7/10
1875/1875 [] - 3s 2ms/step - loss: 0.1370 - acc
Epoch 8/10
1875/1875 [] - 3s 2ms/step - loss: 0.1232 - acc
Epoch 9/10
1875/1875 [] - 3s 2ms/step - loss: 0.1089 - acc
Epoch 10/10
1875/1875 [] - 3s 2ms/step - loss: 0.1030 - acc

model.summary ()

Model: "sequential"

Layer (type) Output Shape Param #

flatten (Flatten) (32, 784) 0

dense (Dense) (32, 256) 200960

dense 1 (Dense) (32, 128) 32896

dense 2 (Dense) (32, 10) 1290

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0

+~ Evaluate

Evaluate the model on test sets:

model.evaluate(x test, y test)

313/313 |] - 1s 2ms/step - loss: 0.1084 - accul
[0.10837740451097488, 0.96670001745224]

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

~ TPU version - MNIST digit classification in TensorFlow 2.0

IMPORTANT: Runtime -> Change runtime -> TPU

Now, we will see how can we perform the MNIST handwritten digits classification using
tensorflow 2.0. It hardly a few lines of code compared to the tensorflow 1.x. As we learned,
tensorflow 2.0 uses as keras as its high-level API, we just need to add tf.keras to the keras code.

~ Enabling and testing the TPU

First, you'll need to enable TPUs for the notebook:

* Navigate to Edit - Notebook Settings
e select TPU from the Hardware Accelerator drop-down

Next, we'll check that we can connect to the TPU:

%tensorflow version 2.Xx
import tensorflow as tf
print("Tensorflow version " + tf. version)

try:
tpu = tf.distribute.cluster resolver.TPUClusterResolver() # TPU detection
print('Running on TPU ', tpu.cluster spec().as dict()['worker'])

except ValueError:
raise BaseException('ERROR: Not connected to a TPU runtime; please see the previ

tf.config.experimental connect to cluster(tpu)
tf.tpu.experimental.initialize tpu system(tpu)
tpu strategy = tf.distribute.experimental.TPUStrategy(tpu)

Tensorflow version 2.4.1

Running on TPU ['10.15.163.122:8470"']

INFO:tensorflow:Initializing the TPU system: grpc://10.15.163.122:8470
INFO:tensorflow:Initializing the TPU system: grpc://10.15.163.122:8470
INFO:tensorflow:Clearing out eager caches

INFO:tensorflow:Clearing out eager caches

INFO:tensorflow:Finished initializing TPU system.

INFO:tensorflow:Finished initializing TPU system.

WARNING:absl: tf.distribute.experimental.TPUStrategy™ is deprecated, please
INFO:tensorflow:Found TPU system:

INFO:tensorflow:Found TPU system:

INFO:tensorflow: *** Num TPU Cores: 8

INFO:tensorflow:*** Num TPU Cores: 8

INFO:tensorflow:*** Num TPU Workers: 1

INFO:tensorflow: *** Num TPU Workers: 1

INFO:tensorflow: *** Num TPU Cores Per Worker: 8

INFO:tensorflow: *** Num TPU Cores Per Worker: 8

INFO:tensorflow: *** Available Device: DeviceAttributes(/job:localhost/replic
INFO:tensorflow: *** Available Device: DeviceAttributes(/job:localhost/replic

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

v Import the libraries:

import warnings
warnings.filterwarnings('ignore')

tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:

>k k >k
>k k >k
* k%
*k >k
* >k >k
>k k >k
>k k >k
* k%
*k >k
* k%
>k k %k
>k k >k
kk >k
*k >k
* k%
>k k %k
>k k >k
kk >k
* k%
* k%
>k k >k
>k k >k

import tensorflow as tf

Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available
Available

~ Check Tensorflow version

print(tf. version)

2.4,

1

+~ Load the dataset:

mnist =

tf.keras.datasets.mnist

v Create a train and test set:

(x_train,

y train),

(x_test, y test)

Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:
Device:

_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes
_DeviceAttributes

= mnist.load data()

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:
/job:

worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:
worker/replica:

AN MM MMM MMM MMM MMM MM MMM MM

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-date
11493376/11490434 [

] - O0s OQus/step

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

+ Normalize data ...

... the x values by diving with maximum value of x which is 255 and convert them to float:
x_train, x test = tf.cast(x train/255.0, tf.float32), tf.cast(x test/255.0, tf.flc
convert y values to int:
y train, y test = tf.cast(y train,tf.int64),tf.cast(y test,tf.int64)

~ Create the model
Define the sequential model:
model = tf.keras.models.Sequential()

Add the layers - We use a three-layered network. We apply ReLU activation at the first two layers
and in the final output layer we apply softmax function:

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dense(128, activation="relu"))
model.add(tf.keras.layers.Dense(10, activation="softmax"))

Compile the model with Stochastic Gradient Descent, that is 'sgd' (we will learn about this in the
next chapter) as optimizer and sparse_categorical_crossentropy as loss function and with
accuracy as a metric:

model.compile(optimizer='sgd', loss='sparse categorical crossentropy', metrics=['se

~ Train

Train the model for 10 epochs with batch_size as 32:

history = model.fit(x train, y train, batch size=32, epochs=10)

Epoch 1/10
1875/1875 [] - 21s 1lms/step - loss: 0.9990 - ¢
Epoch 2/10
1875/1875 [] - 20s 1lms/step - loss: 0.2995 - ¢

Epoch 3/10

1875/1875 [
Epoch 4/10

1875/1875 [

Epoch 5/10

1875/1875 [

Epoch 6/10

1875/1875 [

Epoch 7/10

1875/1875 [

Epoch 8/10

1875/1875 [

Epoch 9/10

1875/1875 [

Epoch 10/10

1875/1875 [

v Show the structure of the model

model.summary ()

Model: "sequential"

20s

20s

20s

22s

21s

21s

21s

21s

llms/step - loss:
llms/step - loss:
llms/step - loss:
12ms/step - loss:
llms/step - loss:
llms/step - loss:
llms/step - loss:

llms/step - loss:

.2413

.2023

.1679

.1526

.1340

.1230

.1105

.1019

Layer (type) Output Shape Param #

flatten (Flatten) (32, 784) 0

dense (Dense) (32, 256) 200960

dense 1 (Dense) (32, 128) 32896

dense 2 (Dense) (32, 10) 1290

Total params: 235,146

Trainable params: 235,146

Non-trainable params: 0
Compare with training results on GPU
Epoch 1/10 1875/1875 [==============================| - 63 2ms/step - loss: 0.9975 -
accuracy: 0.7304
Epoch 2/10 1875/1875 [=============================x=| - 43 2ms/step - loss: 0.3008 -
accuracy: 0.9134
Epoch 3/10 1875/1875 [==============================| - 48 2ms/step - loss: 0.2401 -

accuracy: 0.9320

EpOCh 4/101875/1875 [::::::::::::::::::::::::::::::

accuracy: 0.9423

accuracy: 0.9492

Epoch 6/10 1875/1875 [==============================| - 45 2ms/step - loss: 0.1576 -
accuracy: 0.9548

Epoch 7/10 1875/1875 [==============================] - 4g 2ms/step - loss: 0.1393 -
accuracy: 0.9613

Epoch 8/10 1875/1875 [==============================| - 43 2ms/step - loss: 0.1309 -
accuracy: 0.9628

Epoch 9/10 1875/1875 [==============================] - 4g 2ms/step - loss: 0.1119 -
accuracy: 0.9680

Epoch 10/10 1875/1875 [==============================| - 4s 2ms/step - loss: 0.1042 -
Evaluate

Evaluate the model on test sets:

model.evaluate(x test, y test)

313/313 [] - 3s 9ms/step - loss: 0.1062 - accul
[0.10615649074316025, 0.968500018119812]

Compare with training results on GPU
313/313 [z=============================] - 1s 2ms/step - loss: 0.1077 - accuracy: 0.9671
[0.10774651169776917, 0.9671000242233276]

The results are nearly the same up to 3rd (loss) and 4th (accuracy) significant number after the
decimal point.

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Deep Learning Basics

Main Types of Deep Neural Networks

based on (C) MIT Deep Learning course

This tutorial accompanies the lecture on Deep Learning Basics given as part of MIT Deep

Learning. Acknowledgement to amazing people involved is provided throughout the tutorial and
at the end. You can watch the video on YouTube:

Deep
Learning
Basics

In this tutorial, we mention seven important types/concepts/approaches in deep learning,
introducing the first 2 and providing pointers to tutorials on the others. Here is a visual
representation of the seven:

Supervised Learning Unsupervised Learning
1. Feed Forward Neural Networks 5. Autoencoder T ——
Input: Network: output: Ground Truth: Input: Network: Network: ?round Truth:

H i Image, ; i

A few Dense . . g - i ! Any i Any | Exact copy !
4>{ Representation H Prediction [4-|---+ Prediction ! —> i + it H

numbers Encoder B }‘ | -I:ttt’ Encoder RS i Decoder i ofinput |

2. Convolutional Neural Networks _ K
. 6. Generative Adversarial Networks
Input: NS W o - - | SRR

Output: Ground Truth: | Throw away after training

A
'

3. Recurrent Neural Networks

Ci lutional | H Input: Network: Output: | Network:
An image » Representation Prediction [«-|---- Prediction : i
Encoder | H : i T
i . Fake i L Prediction:
Noise Generator Discriminator
Image i Real or Fake

n Network:
Input: Output: Ground Truth:
Recurrent : i
Sequence Representation }—b{ Prediction }1—————5 Prediction ! . .
Encoder ; : Reinforcement Learning
7. Networks for Learning Actions, Values, and Policies

4. Encoder-Decoder Architectures Network: Output: Ground Truth:

Input: Network: Network: Output: Ground Truth: Input: ¥

I |
Image, Any Any Image, Image, | Enwsronment EAnz H Representation H Action H Reward
Text, —» Representation —> Text, |¢t---+ Text, ! tate (EEelE?
Encoder Decoder : i []
etc. etc. etc. |

At a high-level, neural networks are either encoders, decoders, or a combination of both.
Encoders find patterns in raw data to form compact, useful representations. Decoders generate
new data or high-resolution useful infomation from those representations. As the lecture
describes, deep learning discovers ways to represent the world so that we can reason about it.
The rest is clever methods that help use deal effectively with visual information, language,
sound (#1-6) and even act in a world based on this information and occasional rewards (#7).

https://deeplearning.mit.edu/
https://www.youtube.com/watch?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf&v=O5xeyoRL95U
https://deeplearning.mit.edu/
https://www.youtube.com/watch?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf&v=O5xeyoRL95U

1. Feed Forward Neural Networks (FFNNSs) - classification and regression based on features.
See Part 1 of this tutorial for an example.

2. Convolutional Neural Networks (CNNs) - image classification, object detection, video
action recognition, etc. See Part 2 of this tutorial for an example.

3. Recurrent Neural Networks (RNNs) - language modeling, speech recognition/generation,
etc. See this TF tutorial on text generation for an example.

4. Encoder Decoder Architectures - semantic segmentation, machine translation, etc. See
our tutorial on semantic segmentation for an example.

5. Autoencoder - unsupervised embeddings, denoising, etc.
6. Generative Adversarial Networks (GANSs) - unsupervised generation of realistic images,
etc. See this TF tutorial on DCGANSs for an example.

7. Deep Reinforcement Learning - game playing, robotics in simulation, self-play, neural
arhitecture search, etc. We'll be releasing notebooks on this soon and will link them here.

There are selective omissions and simplifications throughout these tutorials, hopefully without
losing the essence of the underlying ideas. See Einstein quote...

Part O: Prerequisites:

We recommend that you run this this notebook in the cloud on Google Colab (see link with icon
at the top) if you're not already doing so. It's the simplest way to get started. You can also install
TensorFlow locally. But, again, simple is best (with caveats):

Albert Einsteirn

tf.keras is the simplest way to build and train neural network models in TensorFlow. So, that's
what we'll stick with in this tutorial, unless the models neccessitate a lower-level API.

Note that there's tf.keras (comes with TensorFlow) and there's Keras (standalone). You should

be using tf.keras because (1) it comes with TensorFlow so you don't need to install anything
extra and (2) it comes with powerful TensorFlow-specific features.

https://www.tensorflow.org/tutorials/sequences/text_generation
https://github.com/lexfridman/mit-deep-learning/blob/master/tutorial_driving_scene_segmentation/tutorial_driving_scene_segmentation.ipynb
https://github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/contrib/eager/python/examples/generative_examples/dcgan.ipynb
https://www.tensorflow.org/install/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://keras.io/
https://www.tensorflow.org/guide/keras

TensorFlow and tf.keras

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense

Commonly used modules
import numpy as np
import os

import sys

Images, plots, display, and visualization
import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import cv2

import IPython

from six.moves import urllib

print(tf. version)

2.4.1

Part 1: Boston Housing Price Prediction with Feed Forward Neural

v

Networks

Let's start with using a fully-connected neural network to do predict housing prices. The
following image highlights the difference between regression and classification (see part 2).
Given an observation as input, regression outputs a continuous value (e.g., exact temperature)
and classificaiton outputs a class/category that the observation belongs to.

Regression

What is the temperature going to
be tomorrow?

H[[[,

PREDICTION

Fahrenheit]_
oF

60 40 40 @ 0 O 10 D 0 40 50 60 M B0 B0 MO N0 120 10 WO 1M O 0 180 190 X0 20 O 2

Classification
Will it be Cold or Hot tomorrow?

PREDICTION

W0 10 D 30 40 %0 80 M B0 00 0D 1K 1D 10)

For the Boston housing dataset, we get 506 rows of data, with 13 features in each. Our task is to
build a regression model that takes these 13 features as input and output a single value

Fahrenheit 1
o % 40 %

prediction of the "median value of owner-occupied homes (in $1000)."

Now, we load the dataset. Loading the dataset returns four NumPy arrays:

e The train images and train labels arrays are the training set—the data the model
uses to learn.
e The model is tested against the test set, the test images, and test labels arrays.

(train_ features, train labels), (test features, test labels) = keras.datasets.bost

get per-feature statistics (mean, standard deviation) from the training set to n
train mean = np.mean(train features, axis=0)

train std = np.std(train features, axis=0)

train features = (train features - train mean) / train std

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-date
57344/57026 [] - 0s OQus/step

v Build the model

Building the neural network requires configuring the layers of the model, then compiling the
model. First we stack a few layers together using keras.Sequential. Next we configure the
loss function, optimizer, and metrics to monitor. These are added during the model's compile

step:

e Loss function - measures how accurate the model is during training, we want to minimize
this with the optimizer.
e Optimizer - how the model is updated based on the data it sees and its loss function.

e Metrics - used to monitor the training and testing steps.

Let's build a network with 1 hidden layer of 20 neurons, and use mean squared error (MSE) as
the loss function (most common one for regression problems):

def build model():
model = keras.Sequential([
Dense (20, activation=tf.nn.relu, input shape=[len(train features[0])]),
Dense(1)

1)

for TF1
#model.compile(optimizer=tf.train.AdamOptimizer(),
for TF2: tf.train.AdamOptimizer() => tf.optimizers.Adam()
model.compile(optimizer=tf.optimizers.Adam(),

loss="'mse"',

metrics=['mae', 'mse'l])
return model

this helps makes our output less verbose but still shows progress
class PrintDot(keras.callbacks.Callback):
def on_epoch end(self, epoch, logs):
if epoch % 100 == 0: print('")

https://storage.googleapis.com/tensorflow/tf-keras-datasets/boston_housing.npz

print('."', end='")

model = build model()

model.summary ()

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 20) 280
dense 1 (Dense) (None, 1) 21

Total params: 301
Trainable params: 301
Non-trainable params: 0

v Train the model

Training the neural network model requires the following steps:

1. Feed the training data to the model—in this example, the train features and
train_ labels arrays.

2. The model learns to associate features and labels.

3. We ask the model to make predictions about a test set—in this example, the
test features array. We verify that the predictions match the labels from the

test labels array.

To start training, call the model. fit method—the model is "fit" to the training data:

early stop = keras.callbacks.EarlyStopping(monitor="'val loss', patience=50)
history = model.fit(train features, train labels, epochs=1000, verbose=0, validati
callbacks=[early stop, PrintDot()])

hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch

hist.head()

loss
587.850525
578.270081
568.495544

558.563049

mae

22.342070

22.107761

21.872797

21.626896

mse
587.850525
578.270081
568.495544

558.563049

val_loss
497.338501
488.346130
479.016754

469.127014

val_mae
21.296099
21.056395
20.807596

20.536999

val_mse epc

497.338501
488.346130
479.016754

469.127014

>

show RMSE measure to compare to Kaggle leaderboard on https://www.kaggle.com/c/t
rmse final = np.sqrt(float(hist['val mse'].tail(1l)))

print()

print('Final Root Mean Square Error on validation set: {}'.format(round(rmse final

Final Root Mean Square Error on validation set: 2.383

show RMSE measure to compare to Kaggle leaderboard on https://www.kaggle.com/c/t
rmse_final = np.sqrt(float(hist['val mae'].tail(1l)))

print()

print('Final Root Mean Average Error on validation set: {}'.format(round(rmse fine

Final Root Mean Average Error on validation set: 1.441
Now, let's plot the loss function measure on the training and validation sets. The validation set

is used to prevent overfitting (learn more about it here). However, because our network is small,
the training convergence without noticeably overfitting the data as the plot shows.

def plot history():

plt.figure()

plt.xlabel('Epoch")

plt.ylabel('Mean Square Error [Thousand Dollars72]')
plt.plot(hist['epoch'], hist['mse'], label='Train MSE')
plt.plot(hist['epoch'], hist['val mse'], label = 'Val MSE')
plt.legend()

plt.title("Mean Square Error (MSE)")

plt.ylim([0,50])

plot history()

https://www.tensorflow.org/tutorials/keras/overfit_and_underfit

Mean Square Error (MSE)

—— Train M5E
| Wal MSE

wd Dollars?]
&

def plot history():
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Average Error [Thousand Dollars72]"')
plt.plot(hist['epoch'], hist['mae'], label='Train MAE')
plt.plot(hist['epoch'], hist['val mae'], label = 'Val MAE')
plt.legend()
plt.title("Mean Average Error (MAE)")
plt.ylim([0,50])

plot history()

Mean Average Error (MAE)

50
" —— Train MAE
E Wal MAE
8 401
E
m
v
5 307
=
3]
oo 20
&
c
[
z 10 4
=
m
2
I} T T T T T T T
] 1040 200 300 400 500 GO0

Next, compare how the model performs on the test dataset:

print(model.metrics names)

['loss', 'mae', 'mse']

test features norm = (test features - train mean) / train_ std

loss, mae, mse = model.evaluate(test features norm, test labels)
print('Loss on test set: {}'.format(round(loss, 3)))

print('Mean Average Error on test set: {}'.format(round(mae, 3)))
print('Mean Square Error on test set: {}'.format(round(mse, 3)))

rmse = np.sqrt(mse)

print('Root Mean Square Error on test set: {}'.format(round(rmse, 3)))

4/4 [] - 0s 4ms/step - loss: 18.3065 - mae: 2.¢

Loss on test set: 18.306

Mean Average Error on test set: 2.686
Mean Square Error on test set: 18.306
Root Mean Square Error on test set: 4.279

Compare the RMSE measure you get to the Kaggle leaderboard. An RMSE of 4.105 puts us in
24th place.

Part 2: Classification of MNIST Dreams with Convolutional Neural
Networks

Next, let's build a convolutional neural network (CNN) classifier to classify images of
handwritten digits in the MNIST dataset with a twist where we test our classifier on high-
resolution hand-written digits from outside the dataset.

The MNIST dataset containss 70,000 grayscale images of handwritten digits at a resolution of
28 by 28 pixels. The task is to take one of these images as input and predict the most likely digit
contained in the image (along with a relative confidence in this prediction):

O 1% confidence

1% confidence
1% confidence
Input Image: 1% confidence
1% confidence
Neural
Network

91% confidence

1% confidence

1% confidence

1% confidence

1% confidence

© oo N o Ul B wN R

Now, we load the dataset. The images are 28x28 NumPy arrays, with pixel values ranging
between 0 and 255. The labels are an array of integers, ranging from 0 to 9.

(train_images, train labels), (test images, test labels) = keras.datasets.mnist.lc

reshape images to specify that it's a single channel
train images = train images.reshape(train images.shape[0], 28, 28, 1)
test images = test images.reshape(test images.shape[0], 28, 28, 1)

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-date

https://www.kaggle.com/c/boston-housing/leaderboard
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

11493376/11490434 [] - 0s Qus/step

We scale these values to a range of 0 to 1 before feeding to the neural network model. For this,
we divide the values by 255. It's important that the training set and the testing set are

preprocessed in the same way:

def preprocess images(imgs): # should work for both a single image and multiple in
sample img = imgs if len(imgs.shape) == 2 else imgs[0]
assert sample img.shape in [(28, 28, 1), (28, 28)], sample img.shape # make su
return imgs / 255.0

train_images = preprocess images(train_ images)
test images = preprocess images(test images)

Display the first 5 images from the training set and display the class name below each image.
Verify that the data is in the correct format and we're ready to build and train the network.

plt.figure(figsize=(10,2))
for i in range(5):
plt.subplot(l,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train images[i].reshape(28, 28), cmap=plt.cm.binary)
plt.xlabel(train labels[i])

Build the model

Building the neural network requires configuring the layers of the model, then compiling the
model. In many cases, this can be reduced to simply stacking together layers:

model = keras.Sequential()

32 convolution filters used each of size 3x3

model.add(Conv2D (32, kernel size=(3, 3), activation='relu', input shape=(28, 28, 1
64 convolution filters used each of size 3x3

model.add(Conv2D(64, (3, 3), activation='relu'))

choose the best features via pooling

model.add (MaxPooling2D (pool size=(2, 2)))

randomly turn neurons on and off to improve convergence

model.add (Dropout(0.25))

flatten since too many dimensions, we only want a classification output
model.add(Flatten())

fully connected to get all relevant data

model.add(Dense(128, activation='relu'))

one more dropout

model.add (Dropout(0.5))

output a softmax to squash the matrix into output probabilities
model.add(Dense(10, activation='softmax'))

Before the model is ready for training, it needs a few more settings. These are added during the
model's compile step:

* Loss function - measures how accurate the model is during training, we want to minimize
this with the optimizer.

» Optimizer - how the model is updated based on the data it sees and its loss function.

e Metrics - used to monitor the training and testing steps. "accuracy" is the fraction of
images that are correctly classified.

model.summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320
conv2d 1 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d (MaxPooling2D) (None, 12, 12, 64) 0
dropout (Dropout) (None, 12, 12, 64) 0
flatten (Flatten) (None, 9216) 0
dense 2 (Dense) (None, 128) 1179776
dropout 1 (Dropout) (None, 128) 0
dense 3 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

model.compile(optimizer=tf.optimizers.Adam(),
loss="'sparse categorical crossentropy',
metrics=['accuracy'])

+ Train the model

Training the neural network model requires the following steps:

1. Feed the training data to the model—in this example, the train images and

train_labels arrays.

2. The model learns to associate images and labels.

3. We ask the model to make predictions about a test set—in this example, the
test images array. We verify that the predictions match the labels from the

test labels array.

To start training, call the model.fit method—the model is "fit" to the training data:

history = model.fit(train images, train labels, epochs=5, validation split =

Epoch 1/5
1688/1688
Epoch 2/5
1688/1688
Epoch 3/5
1688/1688
Epoch 4/5
1688/1688
Epoch 5/5
1688/1688

print(model.metrics names)

—_
1

['loss', 'accuracy']

0.1)

11s 3ms/step - loss: 0.3720 - ac

6s

5s

5s

6s

3ms/step
3ms/step
3ms/step

3ms/step

loss:

loss:

loss:

loss:

0.0842

0.0678

0.0535

0.0418

As the model trains, the loss and accuracy metrics are displayed. This model reaches an

accuracy of about 98.68% on the training data.

hist = pd.DataFrame(history.history)

hist['epoch'] = history.epoch

hist.head()

loss
0 0.198095
1 0.084753
2 0.066670
3 0.053950

4 0.044473

accuracy
0.940278
0.975000
0.979667
0.983907

0.985796

def plot history():

val_loss val_accuracy epoch

0.048189

0.043236

0.034934

0.031506

0.032814

0.986333

0.988167

0.990000

0.990000

0.991000

0

1

acq

ac

ac(

ac(

»

plt.

plt
plt

plt.
plt.
plt.

plt

figure()
.xlabel('Epoch")
.ylabel('Loss")

legend()
.title("MNIST - loss")

#plt.ylim([0,50])

plot history()

Loss

MMIST - loss

plot(hist['epoch'], hist['loss'], label='Train')
plot(hist['epoch'], hist['val loss'], label = 'Val')

0200 4

0175 4

0150 4

0125 A

0100 4

0075 4

0050 4

0025 4

def plot history():

plt.

plt
plt

plt.
plt.
plt.

plt

figure()
.xlabel('Epoch")
.ylabel('Accuracy"')

legend()
.title("MNIST - accuracy")

#plt.ylim([0,50])

plot history()

Accuracy

MMIST - accuracy

plot(hist['epoch'], hist['accuracy'], label='Train')
plot(hist['epoch'], hist['val accuracy'], label = 'Val')

095 + ——

0.98 1

097 1

096 1

(.95 1

(.94 1

= Tain

Wal

00 05 10 15 20 25

30

15

40

v Evaluate accuracy

Next, compare how the model performs on the test dataset:

print(test images.shape)
test loss, test acc = model.evaluate(test images, test labels)

print('MNIST - Test accuracy:', test acc)

(10000, 28, 28, 1)
313/313 [] - 1s 2ms/step - loss: 0.0291 - accul
MNIST - Test accuracy: 0.9905999898910522

v Compare with ... after 5 epochs

(10000, 28, 28, 1) 313/313 [z============================z] - 1§ 2ms/step - loss: 0.0302 -
accuracy: 0.9910

Test accuracy: 0.9909999966621399

Often times, the accuracy on the test dataset is a little less than the accuracy on the training
dataset. This gap between training accuracy and test accuracy is an example of overfitting. In
our case, the accuracy is better at 99.19%! This is, in part, due to successful regularization
accomplished with the Dropout layers.

v Make predictions

With the model trained, we can use it to make predictions about some images. Let's step
outside the MNIST dataset for that and go with the beautiful high-resolution images generated
by a mixture of CPPN, GAN, VAE. See great blog_ post by hardmaru for the source data and a

description of how these morphed animations are generated:

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

Set common constants
this repo url = 'https://github.com/lexfridman/mit-deep-learning/raw/master/"'
this tutorial url = this repo url + 'tutorial deep learning basics'

mnist dream path = 'images/mnist dream.mp4'
mnist prediction path = 'images/mnist dream predicted.mp4'

download the video if running in Colab

if not os.path.isfile(mnist dream path):
print('downloading the sample video...')
vid url = this tutorial url + '/' + mnist dream path

mnist dream path = urllib.request.urlretrieve(vid url)[0]

def cv2 imshow(img):
ret = cv2.imencode('.png', img)[1].tobytes()
img ip = IPython.display.Image(data=ret)
IPython.display.display(img ip)

cap = cv2.VideoCapture(mnist dream path)
vw = None
frame = -1 # counter for debugging (mostly), 0-indexed

go through all the frames and run our classifier on the high res MNIST images as
while True: # should 481 frames

frame += 1

ret, img = cap.read()

if not ret: break

assert img.shape[0] == img.shape[l] # should be a square
if img.shape[0] != 720:
img = cv2.resize(img, (720, 720))

#preprocess the image for prediction

img proc = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

img proc = cv2.resize(img proc, (28, 28))

img proc = preprocess images(img proc)

img proc = 1 - img proc # inverse since training dataset is white text with bl
net in = np.expand dims(img proc, axis=0) # expand dimension to specify batch
net in = np.expand dims(net in, axis=3) # expand dimension to specify number c
preds = model.predict(net in)[0]

guess np.argmax(preds)
perc = np.rint(preds * 100).astype(int)

img = 255 - img
pad color = 0
img = np.pad(img, ((0,0), (0,1280-720), (0,0)), mode='constant', constant valu

line type = cv2.LINE AA

font face = cv2.FONT HERSHEY SIMPLEX
font scale = 1.3

thickness = 2

X, y = 740, 60

color = (255, 255, 255)

text = "Neural Network Output:"
cv2.putText(img, text=text, org=(x, y), fontScale=font scale, fontFace=font fe¢
color=color, lineType=line type)

text = "Input:"
cv2.putText(img, text=text, org=(30, y), fontScale=font scale, fontFace=font f
color=color, lineType=line type)

y = 130

for i, p in enumerate(perc):
if i == guess: color = (255, 218, 158)
else: color = (100, 100, 100)

rect width = 0
if p > 0: rect width = int(p * 3.3)

rect start = 180
cv2.rectangle(img, (x+rect start, y-5), (x+rect start+rect width, y-20), c

text = "{}: {:>3}%'.format(i, int(p))

cv2.putText(img, text=text, org=(x, y), fontScale=font scale, fontFace=fon
color=color, lineType=line type)

y += 60

if you don't want to save the output as a video, set this to False
save video = True

if save video:
if vw is None:
codec = cv2.VideoWriter fourcc(*'DIVX")
vid width height = img.shape[l], img.shape[0O]
vw = cv2.VideoWriter(mnist prediction path, codec, 30, vid width heigh
15 fps above doesn't work robustly so we right frame twice at 30 fps
vw.write(img)
vw.write(img)

scale down image for display

img disp = cv2.resize(img, (0,0), fx=0.5, fy=0.5)
cv2_imshow(img disp)

IPython.display.clear output(wait=True)

cap.release()
if vw is not None:
vw. release()

Neural Network Output:

O: 100% eee—————

The above shows the prediction of the network by choosing the neuron with the highest output.
While the output layer values add 1 to one, these do not reflect well-calibrated measures of

"uncertainty". Often, the network is overly confident about the top choice that does not reflect a
learned measure of probability. If everything ran correctly you should get an animation like this:

Meural Network OQutput:

s Oy 0o
|___|: ';:I‘ LY [

Acknowledgements

The contents of this tutorial is based on and inspired by the work of TensorFlow team), our MIT

Human-Centered Al team, and individual pieces referenced in the MIT Deep Learning course

slides.

https://www.tensorflow.org/
https://hcai.mit.edu/
https://deeplearning.mit.edu/

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

MeTtoaou Deep Learning

Deep Learning Methods

Lecture 05. Deep Neural Networks
In TensorFlow

(based on (C) F.Colliet, Lex Fridman, ... and others
Works)

Content

*Recommended Sources
*DL Frameworks — Basics
*DL Frameworks — Workflow
*DEMO 1: Workflow in TF2
*DEMO 2: How to Monitor Workflow In
TF2
*DL Workflow - Transfer Learning
*DEMO 3A: Learning from Scratch in TF2
*DEMO 3B: Transfer Learning in TF2

Recommended Sources
— Books

Books (scientific):

Goodfellow, |., Bengio, Y., Courville, A. (2016). Deep learning.
Cambridge: MIT press

LlutToBaHo B 23692 axepenax.

Books (with codes at github):
Alan Fontaine (2018) Mastering Predictive Analytics with
scikit-learn and TensorFlow. Packt Publishing.

Tanay Agrawal (2021). Hyperparameter Optimization in
Machine Learning: Make Your Machine Learning and Deep
Learning Models More Efficient, Apress

Recommended Sources
— Papers

Imagenet

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10), 1345-
1359.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge
In a neural network. arXiv preprint arXiv:1503.02531.

Konecny, J., McMahan, H. B., Yu, F. X, Richtarik, P., Suresh, A. T,
& Bacon, D. (2016). Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492.

DL Frameworks

Basics

Score

DL Frameworks — Evolution

Deep Learning Framework Six-Month Growth Scores 2019

83

80
66
&0
47
S
& 40
Deep Learning Framework Power Scores 2018 =
100 - 98.97 o TensorFlow PyTorch Keras FastAl
Framewaork
B0
&0
51.55
40

22.72

20 17.15
12.02
8.37 485
: A5 AN .18 1.06

%, A | My G G, A
ﬁqsﬂﬁﬁ?o:f¢$ ":}?b’b& QP,QE) b}e a}}ﬂ -'bp& 4’7&, a@@ﬂ% C}’&@‘? fa i s ﬂ%
Framework jﬂQqJ

https://www.kdnuggets.com/2019/05/which-deep-learning-framework-growing-

factact html

DL Framework — Ecosystem
(Tensorflow Example)

Train
Data Design Model Design
tf.data Keras

TF Dalasets Estimators

Training
Distribution Strategy

[GPUJ[GPU][TPUJ

Save

Deploy

Cloud, On-prem
TensorFlow Serving

Serialization
SavedModel

Android, i0S, Raspberry Pi
TensorFlow Lite

Analysis
TensorBoard

Model Repository
TensorFlow Hub

Browser and Node
TensorFlow.JS

DL Framework — Components
(Tensorflow Example)

Hardware Environment (local, cloud, Edge Computing, ...):
®CPU

€ Edge Computing Devices ...

Software Environment (local, cloud, Edge Computing, ...):
Operational System: macOS (>=10.12.6), Ubuntu
(>=16.04), Windows (>=7), Raspbian (>=9.0), ...
Programming Language: C, C++, C#, Java, Go, Julia, Ruby,
Scala, but ... Python 3
Libraries: ... numerous ...

DL Frameworks

Workflow

DL Workflow
(Tensorflow at Google Cloud Example)

® Setup Hardware Environment (at Google VM):
® sclect Runtime Type: CPU, GPU, TPU — DEMO 1.

Setup Software Environment:

Operational System: Ubuntu (pre-installed already).
Programming Language: Python 3 (pre-installed already)
Libraries: Python-libs (many pre-installed already)

Set up (get) dataset: local, cloud (AWS, GC, ... Kaggle, ...)

Get (define or load) model: local, TF Hub, cloud, ...

Compile (configure hyperparameters) model: loss function,
optimization method, metrics, duration, callbacks, ...

Train and validate model -> Prediction -> Production? Not yet! :)

DEMO 1: Workflow in TF2

DEMO_1 Workflow_Example_ CPU.ipynb
DEMO_1 Workflow_Example_GPU.ipynb
DEMO_1 Workflow _Example_ TPU.ipynb

11

DEMO 2:
How to Monitor Workflow in TF2

DEMO_2 External_Data Tensorboard_Binary Classification_Example.ipynb

12

DL Workflow — Learning/Training Types

- Learning from scratch:
- from random initial parameters (weights, ...)
- from previously trained attempts.

- Transfer learning — is the improvement of learning in a
new task through the transfer of knowledge from a related
task that has already been learned.

- Knowledge distillation — learning is the process of
transferring knowledge from a large model to a smaller one.

- Federated learning (also known as collaborative learning)
IS a machine learning technique that trains an algorithm
across multiple decentralized edge devices or servers holding
local data samples, without exchanging them.

DL Workflow — Learning/Training Types
— from scratch ... on datasets

Learning from scratch from random initial parameters
(weights, ...) is very resource-demanding task.

Even for MNIST (60K images), it took a time to train the
model up to the accuracy 80-90%. For a higher accuracy,
more images would be required.

DNN learns better with a higher volume of data.

notMNIST, FashionMNIST, ...
https://www.kaggle.com/yoctoman/graffiti-st-sophia-cathedral-
Kylv
CIFAR10, CIFAR100, ...
Microsoft Common Objects in Context (COCO),
PASCAL Visual Object Classes (PASCAL VOC),

ImageNet !!!

DL Workflow — Learning/Training Types

— from scratch ... on datasets
One more dataset with ancient Cyrillic letters ... from Kyiv

L C ® © | & https://www.kaggle.com/yoctoman/graffic B (90% w Search

kaggle Q

@ Home
? Compete Dataset
M Data ‘ Glyphs of Graffiti of St. Sophia Cathedral of Kyiv
¢> Code The Glagolitic and Cyrillic letters from the carved graffiti
@ Communities s
@ yoctoman s updated 2 years ago (Version 3)
< Courses

Data Tasks Code (1) Discussion (1) Activity Metadata Settings

Introduction

The unique corpus of epigraphic monuments of St. Sophia of Kyiv belongs to the oldest inscriptions, which are the most valuable and reliable
source to determine the time of construction of the main temple of Kyivan Rus. For example, they contain the cathedral inscriptions-graffiti
dated back to 1018-1022, which reliably confirmed the foundation of the St. Sophia Cathedral in 1011.

https://www.kaggle.com/yoctoman/graffiti-st-sophia-cathedral-kyiv

DL Workflow — Learning/Training Types
— from scratch ... on Imagenet

ImageNet (http://image-net.org): 14,197,122 images into
21,841 subcategories into 27 subtrees.

To classify the images in ImageNet, many ML/DL models were
developed. In 2017, one model achieved an error rate of 2.3%.

ImageNet competition results

G ® © # image-net.org k4 Search v » & =
nsi{ ©
I M .b G E 14,197,122 images, 21841 synsets indexed
g)) Explore Download Challenges Publications Updates About
Not logged in. Login | Signup 0.4-
Q
ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), 8
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have " o
an average of over five hundred images per node. We hope ImageNet will become a useful resource for - 0.3 o
researchers, educators, students and all of you who share our passion for pictures. : 8
Click here to learn more about ImageNet, Click here to join the ImageNet mailing list. g c
w
0.2
T8
o]
0.1 |
" -
What do these images have in common? Find out! 0.0

2011 2012 2013 2014 2015 2016
Year

http://image-net.org/

DL Workflow — Learning/Training Types

— Transfer Learning

Transfer learning — is the improvement of learning in a new
task through the transfer of knowledge from a related task
that has already been learned.

1. Using a Pre-Trained Model

2. Training a Model to Reuse it
To solve task A you have limited data to train a DNN.
One way: to find a related task B with an abundance of data.
Train the DNN on task B and use the model as a starting
point for solving task A.

3. Feature Extraction
Another approach is to use DNN to find the best
representation (most important features) of your problem,
and use them.

DL Workflow — Learning/Training Types -
Knowledge Distillation

A small model is trained to mimic a pre-trained, larger model (or
ensemble of models). This training setting is sometimes referred to
as “teacher-student”, where the large model is the teacher and the

small model is the student.

It has even been observed that classifiers learn much faster and
more reliably if trained with the outputs of another classifier as
soft labels, instead of from hard labels (ground truth data).

soft labels

predictions

hard labels
«— frue label

' e trained predictions
Training data -

Student

DL Workflow — Learning/Training Types

— Federated Learning

... Is In contrast to
- traditional centralized learning techniques where all the
local datasets are uploaded to one server,
- and some classical decentralized learning techniques
where local data samples are identically distributed.

Step 1 Step 2 Step 3 Step 4

\ ! o f —

Central server Central server Nodes train the Central server pools

chooses a statistical | transmits the initial model locally with model results and

model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

DL Workflow

Transfer Learning

DEMO 3A:
Learning from Scratch in TF2

DEMO_3A Model from_TF2 Keras CNN_2 4 6 cifar10_imageClassification.ipynb

21

DL Workflow — Transfer Learning

Transfer learning
— in general sense: is the improvement of learning in a new
task through the transfer of knowledge from a related task
that has already been learned,

— in ML/DL context: it is an important technique of
knowledge transfer from one to another ML/DL task.

Examples:
@ |n software engineering: people use binary libraries to
reuse the code.
® n ML/DL: the trained models contain the algorithms, the
data, the processing power, and the expert’s domain
knowledge. All these need to be transferred to the new
model. That's what the transfer learning provides.

Transfer Learning — Model Sources

» &

<« C ® © | & https://www.tensorflow.org/hub el b D 5 =

= 1 TensorFlow Q English - Signin

Pre-trained models can Hue

RSVP for your your local TensorFlow Everywhere event today!

be found everywhere:
- from your collegues,

- github, TensorFlow Hub is a repository of trained

- Kaggle, machine learning models.
but Tensorflow Hub is @ 00 i om s ose snscatt —upgrace Seneor
the WideSt and eaSieSt S S e 2 e import tensorflow_hub as hub

anywhere. Reuse trained models like

SOU rce Of pre'tralned BERT and Faster R-CNN with just a few model = hub.KerasLayer("https

lines of code. embeddings = model(["The rain

and trustable DNN ‘mainly",
models. https://www.tensorflow.org/hub

DEMO 3B:
Transfer Learning in TF2

DEMO_3B_ Model _from_TF2_ Hub_MobileNetV2_ImageNet_imageClassification.ipynb

24

Deep Learning Methods

Lecture 07

3 3fe sfe sfe ok o s sfe sfe sk ok o sfe she she sk ok s sfe sfe sk sk ke sk sfe sfe sk sk s sfe she sk sk ok sk sfe sfe sk sk ok sk sfe sfe sk sk o s she sk sk ok sl sfe sfe sk sk ok S sfe sfe sk sk o sk she sk sk sk sk sfe sfe sk sk sk sk se s sk

Lecture Slides + interactive Jupyter-notebooks for Google Colaboratory CPU/GPU/TPU cloud:
https://cloud.comsys.kpi.ua/s/SMkBSsxRTazoTD6

3 3fe sfe sfe ok o 3 sfe sfe sk ok o sfe she she sk ok s sfe she sk sk ok sk she sfe sk sk ol sfe she sk sk ok sl sfe sfe sk sk ok sk sfe sfe sk sk o s she sk sk ok sk sfe sfe sk sk ok S sfe sfe sk sk o sfe sfe sk sk sk sk sfe sfe sk sk sk ke se s sk

Lecture 07 — Deep Learning Workflow - Estimators

The course includes materials proposed by NVIDIA Deep Learning Institute (DLI) in the
framework of the common

NVIDIA Research Center
and
NVIDIA Education Center.

I NVIDIA. - NVIDIA.

GPU GPU

EDUCATION RESEARCH
CENTER CENTER

nvi
https://kpi.ua/nvidia-info

https://kpi.ua/nvidia-info

Interactive Demonstrations

DEMO A
Introduction to TF Estimators

https://drive.google.com/file/d/10C-ypmitQmGkPQt-00StL.30JGgSSvvvv/view?usp=sharing

DEMO B
Create DNN Model by TF Estimators

https://drive.google.com/file/d/1fro49geaFUoQJ4frgl JyO4FRuzNeNA7T/view?usp=sharing

DEMO C
TF Datasets Benchmark by TF Estimators
https://drive.google.com/file/d/1d AL e-tX9pyMjNKXbBikM9L6sEv34ull4/view?usp=sharing

DEMO D
Transfer Learning - Rock Paper Scissors (using NASNetMobile)

https://drive.google.com/file/d/1XvXxDE50SArPgwZ bcn3ACfFRWu5rBuV/view?usp=sharing

https://drive.google.com/file/d/1XvXxDE5OSArPgwZ_bcn3ACfFRWu5rBuV/view?usp=sharing
https://drive.google.com/file/d/1dALe-tX9pyMjNKXbBikM9L6sEv34ulI4/view?usp=sharing
https://drive.google.com/file/d/1fro49geaFUoQJ4frgLJy04FRuzNeNA7T/view?usp=sharing
https://drive.google.com/file/d/10C-ypmitQmGkPQt-0oStL3OJGgSSvvvv/view?usp=sharing

~ DEMO A - Introduction to TF Estimators

based on (C) Velayudham, Sakranha, TF Authors works

import tensorflow as tf

import pandas as pd

from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler

~ Connect to Google Drive

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

I cp /content/drive/MyDrive/2022 COLAB NN/Lecture 06 TF2 Estimators CNN RockPaperS
I 1s

drive sample data winequality-white.csv

~ Loading Data

data url='winequality-white.csv'
data=pd.read csv(data url,delimiter="';")
data.head()

free total

fixed volatile citric residual chlorides sulfur sulfur density

acidity acidity acid sugar dioxide dioxide
0 7.0 0.27 0.36 20.7 0.045 45.0 170.0 1.0010
1 6.3 0.30 0.34 1.6 0.049 14.0 132.0 0.9940
2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.9951
3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956

~ Selecting Features/Labels

data.iloc[:,:-1]
data.iloc[:, -1]

< X
([l

sc = StandardScaler()
x = sc.fit transform(x)

~ Creating datasets

xtrain, xtest, ytrain, ytest = train test split(x, y, test size = 0.3,random state

input shape = xtrain.shape[1l]

~ Defining simple FCN Keras model

small model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64,activation = 'relu',
input shape = (input_shape,)),
tf.keras.layers.Dense(1)

1)

small model.compile(loss = 'mse', optimizer = 'adam')

def input fn(features, labels, training = True, batch size = 32):
#converts inputs to a dataset
dataset = tf.data.Dataset.from tensor slices(({'dense input':features}, labels))

#shuffle and repeat in a training mode
if training:

dataset = dataset.shuffle(1000).repeat()

#giving inputs in batch for training
return dataset.batch(batch size)

~ Convert Keras model to Estimator

keras small estimator = tf.keras.estimator.model to estimator(
keras model = small model, model dir = 'keras small classifier')

/usr/local/lib/python3.7/dist-packages/keras/backend.py:450: UserWarning: °tf
warnings.warn(' tf.keras.backend.set learning phase’ is deprecated and '

~ Train

keras small estimator.train(input fn = lambda:input fn(xtrain, ytrain), steps = 2€

WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/py1
Instructions for updating:

Use Variable.read value. Variables in 2.X are initialized automatically both
WARNING:tensorflow:It seems that global step (tf.train.get global step) has
WARNING:tensorflow:It seems that global step (tf.train.get global step) has
WARNING:tensorflow:It seems that global step (tf.train.get global step) has
WARNING:tensorflow:It seems that global step (tf.train.get global step) has
WARNING:tensorflow:It seems that global step (tf.train.get global step) has
<tensorflow estimator.python.estimator.estimator.EstimatorV2 at
0x7f96901753d0>

e —

~ Evaluate

eval small result = keras small estimator.evaluate(
input fn = lambda:input fn(xtest, ytest, training = False), steps=1000)
print('Eval result: {}'.format(eval small result))

/usr/local/lib/python3.7/dist-packages/keras/engine/training v1.py:2057: Usel

updates = self.state updates
Eval result: {'loss': 0.6073161, 'global step': 2000}

~ Analyze history and metrics

%load ext tensorboard
%stensorboard --logdir ./keras small classifier

] Show data download links Q Filter tags (regular expressions supported)

[] Ignore outliers in chart scalin

global_step A
Tooltip sorting default -~
method: -
global_step/sec
tag: global_step/sec
Smoothing
760
O 0.6
740
Horizontal Axis 720
RELATIVE 700
680
WALL

200 400 600 800 1k 1.2k 1.4k 1.6k 1.

Write a regex to filter runs

OO
D O eval loss

tag: loss

loss A

TOGGLE ALL RUNS
./keras_small_classifier ! |
0.9 -
0.7
0.5
0.3
0.1

2k

Colab paid products - Cancel contracts here

+ 0s completed at 8:28 PM

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription
https://github.com/tensorflow/tensorboard/blob/master/README.md

~ DEMO B - Create DNN Model by TF Estimators

based on (C) Velayudham, Sakranha, TF Authors works

import tensorflow as tf

~ Loading Data

from sklearn import datasets
digits = datasets.load digits()

#plotting sample image

import matplotlib.pyplot as plt
plt.figure(figsize=(1,1))

fig, ax = plt.subplots(1l,4)
ax[0].imshow(digits.images|[0])
ax[1l].imshow(digits.images[1])
ax[2].imshow(digits.images[2])
ax[3].imshow(digits.images[3])
plt.show()

<Figure size 72x72 with 0 Axes>
0 0 0 0
5 5 5 5
0 5 0 5 0 5 0 5

~ Preprocessing Data

reshape the data to two dimensions
n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))
data.shape

(1797, 64)

split into training/testing

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(
data, digits.target, test size=0.05, shuffle=False)

~ Defining Input Function

create column names for our model input function
columns = ['p_'+ str(i) for i in range(1,65)]

feature columns = []
for col in columns:
feature columns.append(tf.feature column.numeric_column(key = col))

def input fn(features, labels, training = True, batch size = 32):
#converts inputs to a dataset
dataset = tf.data.Dataset.from tensor slices((dict(features),labels))
#shuffle and repeat in a training mode
if training:
dataset=dataset.shuffle(1000).repeat()

#giving inputs in batches for training
return dataset.batch(batch size)

~ Create DNNClassifier Estimator instance

classifier = tf.estimator.DNNClassifier(hidden units = [256, 128, 64],
feature columns = feature columns,

optimizer = 'Adagrad’,
n _classes = 10,
model dir = 'classifier')

~ Adding extra hidden layer

v without Dropout

classifier = tf.estimator.DNNClassifier(hidden units = [256, 128, 64, 32],
feature columns = feature columns,

optimizer = 'Adagrad’,
n classes = 10,
model dir = 'classifier"')

v with Dropout

classifier = tf.estimator.DNNClassifier(hidden units = [256, 128, 64, 32],
feature columns = feature columns,

optimizer = 'Adagrad',

n _classes = 10,

dropout = 0.2,

model dir = 'classifier')

‘\nclassifier = tf.estimator.DNNClassifier(hidden units = [256, 12

8, 64, 32],\n feature column
s = feature columns,\n optim

v AT A~ ~A

~ Model Training

create dataframes for training
import pandas as pd
dftrain = pd.DataFrame(X train, columns = columns)

classifier.train(input fn = lambda:input fn(dftrain,
y train,
training = True),
steps = 2000)

WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/py1
Instructions for updating:

Use Variable.read value. Variables in 2.X are initialized automatically both

WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/keras/optimize
Instructions for updating:

Call initializer instance with the dtype argument instead of passing it to tt
WARNING:tensorflow:It seems that global step (tf.train.get global step) has r
WARNING:tensorflow:It seems that global step (tf.train.get global step) has r
<tensorflow estimator.python.estimator.canned.dnn.DNNClassifierV2 at
0x7f988f1726d0>

~ Model Evaluation

create dataframe for evaluation
dftest = pd.DataFrame(X test, columns = columns)

eval result = classifier.evaluate(

input fn = lambda:input fn(dftest, y test, training = False)
)

eval result

{'accuracy': 0.95555556,
‘average loss': 0.2061766,

'loss': 0.19756849,
‘global step': 2000}

~ Resume at Tensorboard

%load ext tensorboard
%stensorboard --logdir ./classifier

[] Show data download links

[] 1gnore outliers in chart scalin

Tooltip sorting

method: w
Smoothing
O 0.6
Horizontal Axis
RELATIVE
WALL
Runs

Write a regex to filter runs

0o -
[J O eval

TOGGLE ALL RUNS

./classifier

0.05 -

2k

[
X

dnn 5A

dnn/hiddenlayer_0/fraction_of_zero_values
tag: dnn/hiddenlayer_0/fraction_of_zero_values

0.56 |
0.55
0.54
0.53

0.52

0 400 800 1.2k 1.6k

)

dnn/hiddenlayer_1/fraction_of_zero_values
tag: dnn/hiddenlayer_1/fraction_of_zero_values

rA
L Jd

0.475
0.465
0.455
0.445
0.435

0.425 -

0 400 800 1.2k 1.6k

https://github.com/tensorflow/tensorboard/blob/master/README.md

~ Predicting unseen data

An input function for prediction
def pred input fn(features, batch size = 32):
Convert the inputs to a Dataset without labels.
return tf.data.Dataset.from tensor slices(dict(features)).batch(batch size)

test = dftest.iloc[:2,:] #1st two data points for predictions
expected = y test[:2].tolist() #expected labels

pred = list(classifier.predict(
input fn = Tlambda:pred input fn(test))
)

for pred dict, expec in zip(pred, expected):
class id = pred dict['class ids'][0]
probability = pred dict['probabilities'][class id]
print('predicted class {} , probability of prediction {} , expected label {}'.

predicted class 8 , probability of prediction 0.9750990867614746 , expected 1
predicted class 4 , probability of prediction 0.95527184009552 , expected lat

»

Colab paid products - Cancel contracts here

v 0s completed at 8:58 PM ® X

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

~ DEMO C - TF Datasets Benchmark by TF Estimators

based on (C) Velayudham, Sakranha, TF Authors works

To avoid the compatibility issue with Tensorflow, cuda and models repo code.

Try installing the below TensorFlow version and cuda version at the start of col
I'pip install tensorflow==2.8

lapt install --allow-change-held-packages libcudnn8=8.1.0.77-1+cudall.?

Requirement already satisfied: flatbuffers>=1.12 in /usr/local/lib/python3.*
Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.7/dist
Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.7/di
Requirement already satisfied: absl-py>=0.4.0 in /usr/local/lib/python3.7/d
Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python
Requirement already satisfied: libclang>=9.0.1 in /usr/local/lib/python3.7/
Requirement already satisfied: keras-preprocessing>=1.1.1 in /usr/local/lik
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr
Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python
Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.
Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.7
Requirement already satisfied: wheel<l1.0,>=0.23.0 in /usr/local/lib/python3
Requirement already satisfied: cached-property in /usr/local/lib/python3.7/
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/
Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/pyth
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /us
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/loc
Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/pyt
Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/di
Requirement already satisfied: pyasnl-modules>=0.2.1 in /usr/local/lib/pyth
Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/g
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/py
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-g
Requirement already satisfied: pyasnl<0.5.0,>=0.4.6 in /usr/local/lib/pythc
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dis
Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/g
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/pyth
Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/

Installing collected packages:

tf-estimator-nightly, tensorboard, keras, te

Attempting uninstall: tensorboard
Found existing installation: tensorboard 2.10.1
Uninstalling tensorboard-2.10.1:
Successfully uninstalled tensorboard-2.10.1
Attempting uninstall: keras
Found existing installation: keras 2.10.0

Uninstalling keras-2.10.0:

Successfully uninstalled keras-2.10.0
Attempting uninstall: tensorflow
Found existing installation: tensorflow 2.10.0
Uninstalling tensorflow-2.10.0:

Successfully uninstalled tensorflow-2.10.0

ERROR: pip's dependency resolver does not currently take into account all t
tfx-bsl 1.10.1 requires tensorflow!=2.0.%*,1=2.1.*% 1=2.,2.%, 1=2.3 %, 1=2.4 % I
tensorflow-serving-api 2.10.0 requires tensorflow<3,>=2.10.0, but you have
tensorflow-data-validation 1.10.0 requires tensorflow!=2.0.%*,!1=2.1.*,61=2.2.
Successfully installed keras-2.8.0 tensorboard-2.8.0 tensorflow-2.8.0+zzzcc
Reading package lists... Done

Building dependency tree

Reading state information... Done

libcudnn8 is already the newest version (8.1.0.77-1+cudall.2).

The following package was automatically installed and is no longer required

libnvidia-common-460
»

import tensorflow as tf
import tensorflow datasets as tfds

v TensorFlow Datasets

#To get the list of available
tfds.list builders()

"huggingface:psc’,
"huggingface:ptb text only',
"huggingface:pubmed’,
"huggingface:pubmed qga',
"huggingface:py ast',
"huggingface:qadmre’,
"huggingface:qa srl',
"huggingface:qa zre',
"huggingface:qgangaroo',
"huggingface:qanta’',
"huggingface:qasc’,
"huggingface:qasper',
"huggingface:qed’,
"huggingface:qged amara',
"huggingface:quac',
"huggingface:quail’,
"huggingface:quarel',
"huggingface:quartz',
"huggingface:quickdraw',
"huggingface:quora',
"huggingface:quoref',
"huggingface:race’,
"huggingface:re dial',
"huggingface:reasoning bg',
"huggingface:recipe nlg',
"huggingface:reclor',
"huggingface:red caps',
"huggingface:reddit’,
"huggingface:reddit tifu',
"huggingface:refresd',
"huggingface:reuters21578',
"huggingface:riddle sense',
"huggingface:ro sent',
"huggingface:ro sts',
"huggingface:ro sts parallel’,
"huaainaface: roman urdu'.

"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:

"hitmnAadinAafaras

1122

roman _urdu_hate speech',
ronec',

ropes',

rotten tomatoes',
russian super glue',
rvl cdip',

s2orc',

samsum',

sanskrit classic',
saudinewsnet',
sberquad',

sbu _captions',
scan',

scb mt enth 2020°',
scene parse 150°',
schema guided dstc8',
scicite',

scielo',

scientific papers',
scifact',

sciq',

scitail',

rrat+T AR

len(tfds.list builders())

#ds, ds info = tfds.load('cifarlQ', split='train', with info=True)
ds, ds info = tfds.load('fashion mnist', split='train', with info=True)
fig = tfds.show examples(ds, ds info)

i KB

v Benchmark your datasets

Note: This APl is new and only available via

I pip install tfds-nightly

B ‘I I L [p—

#! pip install tfds-nightly
. | I ' N el 1

I nvidia-smi
Mon Oct 3 18:41:21 2022
o e mm e m ==
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2
R T R T T oo s
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. EC(
| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M.
| | | MIG M.
| + +
| 0 Tesla T4 Off | 00000000:00:04.0 Off | ¢
| N/A 61C PO 30W / 70W | 286MiB / 15109MiB | 0% Defauli
| | | N/4
e T R R T LR
e meceee e e e e e e ccmeemmeeeemeemeee e e e e e e eeeeeee e e e e e e e e e e e e e e e ——————--a
| Processes:
| GPU GI CI PID Type Process name GPU Memory
| ID ID Usage
|
e meceee e e e e e e ccmeemmeeeemeemeee e e e e e e eeeeeee e e e e e e e e e e e e e e e ——————--a

Benchmark your datasets - GPU
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch size=32)
tfds.benchmark(ds, batch size=32) # Second epoch much faster due to auto-caching

3k 3k ok 3k ok ook ok ok ok 5k ok ok Summary 3k 3k 3k ok 5k 5k 5k 5k 5k K K K

100% 1875/1875 [00:04<00:00, 257.26it/s]

Examples/sec (First included) 12025.68 ex/sec (total: 60032 ex, 4.9
Examples/sec (First only) 364.56 ex/sec (total: 32 ex, 0.09 sec)
Examples/sec (First excluded) 12234.40 ex/sec (total: 60000 ex, 4.9

3k 3k 3k 3k 3Kk ok ok ok ok ok ok Summary >k >k >koskokoskoskoskoskookoskok

100% 1875/1875 [00:00<00:00, 2256.08it/s]

Benchmark your datasets - TPU
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch size=32)
tfds.benchmark(ds, batch size=32) # Second epoch much faster due to auto-caching

3k 3k ok 3k ok ok ok ok ok 5k ok ok Summary 3k 3k 3k kK 5k 5k 5k 5k K K K

100% 59/59 [00:00<00:00, 125.63it/s]

Examples/sec (First included) 3414.61 ex/sec (total: 1920 ex, 0.56
Examples/sec (First only) 249.06 ex/sec (total: 32 ex, 0.13 sec)
Examples/sec (First excluded) 4352.14 ex/sec (total: 1888 ex, 0.43

3k 3k 3k koK ok ok ok ok ok 5k ok Summary >k 3k 3k skookoskoskoskoskoskokok

100% 59/59 [00:00<00:00, 174.71it/s]

Examples/sec (First included) 4876.42 ex/sec (total: 1920 ex, 0.39
Examples/sec (First only) 269.12 ex/sec (total: 32 ex, 0.12 sec)
Examples/sec (First excluded) 6869.81 ex/sec (total: 1888 ex, 0.27
BenchmarkResult:

duration num_examples avg
first+lasts 0.393731 1920 4876.422340
first 0.118906 32 269.121261

#! pip install tensorflow data validation

Display the datasets statistics on a Colab/Jupyter notebook
tfds.show statistics(ds info)

Sort by

Feature order Reverse

Feature search (regex enab...

order
Features: [_] fixed-length ints(2)

Numeric Features (2)
count missing

image
60.0k 0%

label

~ Import VGG16 module

mean std dev Zeros

0 0 0%

keras Vgglée = tf.keras.applications.VGG16 (
input shape=(160, 160, 3), include top=False)

keras Vggl6.trainable = False

min med

~ Create Keras model by adding layers to VGG16 model

estimator model = tf.keras.Sequential([

keras Vggle,

tf.keras.layers.GlobalAveragePooling2D(),

tf.keras.layers.Dense(256),
tf.keras.layers.Dense(1)

1)

keras Vggl6.summary ()

Model: "vggl6"

Layer (type) Output Shape Param #
input 1 (InputLayer) [(None, 160, 160, 3)] 0
blockl convl (Conv2D) (None, 160, 160, 64) 1792
blockl conv2 (Conv2D) (None, 160, 160, 64) 36928
blockl pool (MaxPooling2D) (None, 80, 80, 64) 0
block2 convl (Conv2D) (None, 80, 80, 128) 73856
block2 conv2 (Conv2D) (None, 80, 80, 128) 147584

block2 pool (MaxPooling2D) (None, 40, 40, 128) 0
block3 convl (Conv2D) (None, 40, 40, 256) 295168
block3 conv2 (Conv2D) (None, 40, 40, 256) 590080
block3 conv3 (Conv2D) (None, 40, 40, 256) 590080
block3 pool (MaxPooling2D) (None, 20, 20, 256) 0
block4 convl (Conv2D) (None, 20, 20, 512) 1180160
block4 conv2 (Conv2D) (None, 20, 20, 512) 2359808
block4 conv3 (Conv2D) (None, 20, 20, 512) 2359808
block4 pool (MaxPooling2D) (None, 10, 10, 512) 0
block5 convl (Conv2D) (None, 10, 10, 512) 2359808
block5 conv2 (Conv2D) (None, 10, 10, 512) 2359808
block5 conv3 (Conv2D) (None, 10, 10, 512) 2359808
block5 pool (MaxPooling2D) (None, 5, 5, 512) 0

Total params: 14,714,688

Trainable params: 0

Non-trainable params: 14,714,688

estimator _model.summary ()

Model: "sequential"
Layer (type) Output Shape Param #
vggle (Functional) (None, 5, 5, 512) 14714688
global average pooling2d (G (None, 512) 0
lobalAveragePooling2D)

dense (Dense) (None, 256) 131328
dense 1 (Dense) (None, 1) 257

Total params: 14,846,273
Trainable params: 131,585

Non-trainable params: 14,714,688

~ Compile

Compile the model

estimator model.compile(
optimizer = 'adam',
loss=tf.keras.losses.BinaryCrossentropy(from logits = True),
metrics = ['accuracy'])

~ Create Estimator

est vggle = tf.keras.estimator.model to estimator(keras model = estimator model,
model dir = 'classifier')

~ Data preprocessing

IMG SIZE = 160
import tensorflow datasets as tfds
def preprocess(image, label):
image = tf.cast(image, tf.float32)
#image = (image/127.5) - 1
image = tf.image.resize(image, (IMG SIZE, IMG SIZE))
return image, label

~ Input function

def train input fn(batch size):
data = tfds.load('cats vs dogs', as supervised=True)
train data = data['train']
train data = train data.map(preprocess).shuffle(500).batch(batch size)
return train data

~ Training

#%%time
est vggl6.train(input fn = lambda: train input fn(32), steps = 500)

WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/py1
Instructions for updating:

Use Variable.read value. Variables in 2.X are initialized automatically both
/usr/local/lib/python3.7/dist-packages/keras/backend.py:450: UserWarning: °tf
warnings.warn(' tf.keras.backend.set learning phase” is deprecated and '
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/py1

Instructions for updating:

Use standard file utilities to get mtimes.

<tensorflow estimator.python.estimator.estimator.EstimatorV2 at
0x7fbab5713650>

~ Evaluation

est vggl6.evaluate(input fn = lambda: train_input fn(32), steps=10)

/usr/local/lib/python3.7/dist-packages/keras/engine/training v1.py:2057: User

updates = self.state updates

{'accuracy': 0.934375, 'loss': 0.3812843, 'global step': 500}

~ Monitoring

%load ext tensorboard
%tensorboard --logdir ./classifier

[] Show data download links Q Filter tags (regular expressions su...

[] Ignore outliers in chart scalin

. _ accuracy v
Toq!tlp Isortlng default -~
Smoothing loss o
O 0.6
loss_1 A
Horizontal Axis
loss_1
tag: loss_1
RELATIVE
WALL 261
22 -
Runs 1.8 -
Write a regex to filter runs 1.4
OO - “
[J O eval 0 50 100 150 200 250 ¢
S
TOGGLE ALL RUNS Ld= IZI

./classifier

v 0s completed at 9:42 PM

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription
https://github.com/tensorflow/tensorboard/blob/master/README.md

v

DEMO D - Transfer Learning - Rock Paper Scissors (using
NASNetMobile)

based on (C) Ng, Moroney, Mingxing Tan, Quoc V. Le, Rawlani, and Oleksii Trekhleb ("Our Man in
Uber":))

Experiment overview

In this experiment we will build a Convolutional Neural Network (CNN) model using Tensorflow

to recognize Rock-Paper-Scissors signs (gestures) on the photo.

Instead of training the model from scratch we will use transfer learning method (look at DEMOs
in previous lectures) a family of TF2-Keras-Applications models. Here we will actually use
NASNetMobile and other models which are pre-trained on the ImageNet dataset, a large dataset
of 1.4M images and 1000 classes of web images.

Importing dependencies

import tensorflow as tf

import tensorflow datasets as tfds
import matplotlib.pyplot as plt
import numpy as np

import platform

import datetime

import os

import math

import random

print('Python version:', platform.python version())
print('Tensorflow version:', tf. version)
print('Keras version:', tf.keras. version)

Python version: 3.7.14
Tensorflow version: 2.8.2
Keras version: 2.8.0

Configuring TensorBoard

We will use TensorBoard as a helper to debug the model training process.

Load the TensorBoard notebook extension.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://www.tensorflow.org/
https://keras.io/api/applications/
http://www.image-net.org/

%reload ext tensorboard
%load ext tensorboard

Clear any logs from previous runs.
'rm -rf ./logs/

Dataset - Example

We will download Rock-Paper-Scissors dataset from TensorFlow Datasets collection. To do that

we loaded a tensorflow datasets module.
tensorflow datasets defines a collection of datasets ready-to-use with TensorFlow.

Each dataset is defined as a tfds.core.DatasetBuilder, which encapsulates the logic to

download the dataset and construct an input pipeline, as well as contains the dataset
documentation (version, splits, number of examples, etc.).

See available datasets
tfds.list builders()

"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huaainaface:

quac',

quail',

quarel',

quartz',
quickdraw',
quora',

quoref',

race',

re dial',
reasoning bg',
recipe nlg',
reclor',

red caps',
reddit',

reddit tifu',
refresd',
reuters21578',
riddle sense',

ro sent',

ro sts',

ro sts parallel’,
roman urdu',
roman_urdu_hate speech',
ronec',

ropes',

rotten tomatoes',
russian super glue',
rvl cdip',
s2orc',

samsum',

sanskrit classic',

saudinewsnet',
sberquad',

sbu captions',
scan',

sch mt enth 2020"'.

https://github.com/tensorflow/datasets
https://www.tensorflow.org/datasets/api_docs/python/tfds/core/DatasetBuilder

"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:
"huggingface:

scene parse 150",
schema guided dstc8',
scicite',

scielo',

scientific papers’,
scifact',

sciq',

scitail',

scitldr',

search ga',

sede',

selga',

sem eval 2010 task 8',
sem eval 2014 task 1',
sem eval 2018 task 1°',
sem eval 2020 task 11°',
sent _comp',

senti lex',

senti ws',
sentimentl140',

sepedi ner',
sesotho ner corpus',

We will use the classic dataset by Moroney:

Rock

Title: rock_paper_scissors

Description: Images of hands playing rock, paper, scissor game.

Homepage: http://laurencemoroney.com/rock-paper-scissors-dataset

Source code: tfds.image classification.RockPaperScissors

Versions: 3.0.0 (default): New split API (https://tensorflow.org/datasets/splits)

Download size: 219.53 MiB

Image Examples:

http://laurencemoroney.com/rock-paper-scissors-dataset
https://tensorflow.org/datasets/splits

Paper

Scissors

v Loading the dataset

DATASET NAME = 'rock paper scissors'

(dataset train raw, dataset test raw), dataset info = tfds.load(
name=DATASET NAME,
data dir="tmp',
with info=True,
as_supervised=True,
split=[tfds.Split.TRAIN, tfds.Split.TEST],

Downloading and preparing dataset 219.53 MiB (download: 219.53 MiB, generatec
DI Completed...: 100% 2/2 [00:05<00:00, 2.84s/ url]

DI Size...: 100% 219/219 [00:05<00:00, 46.67 MiB/s]

Dataset rock paper scissors downloaded and prepared to tmp/rock paper scissoi
>

print('Raw train dataset:', dataset train raw)

print('Raw train dataset size:', len(list(dataset train raw)), '\n')
print('Raw test dataset:', dataset test raw)
print('Raw test dataset size:', len(list(dataset test raw)), '\n')

Raw train dataset: <PrefetchDataset element spec=(TensorSpec(shape=(300, 300,
Raw train dataset size: 2520

Raw test dataset: <PrefetchDataset element spec=(TensorSpec(shape=(300, 300,
Raw test dataset size: 372

dataset info

tfds.core.DatasetInfo(
name='rock paper scissors',
full name='rock paper scissors/3.0.0°',
description="""
Images of hands playing rock, paper, scissor game.

monn
’

homepage="http://laurencemoroney.com/rock-paper-scissors-dataset’,
data path='tmp/rock paper scissors/3.0.0',
file format=tfrecord,
download size=219.53 MiB,
dataset size=219.23 MiB,
features=FeaturesDict({
"image': Image(shape=(300, 300, 3), dtype=tf.uint8),
‘label': ClassLabel(shape=(), dtype=tf.int64, num classes=3),

b,

supervised keys=('image', 'label'),

disable shuffling=False,

splits={
‘test': <SplitInfo num _examples=372, num_shards=1>,
"train': <SplitInfo num_examples=2520, num shards=2>,

}

citation="""@ONLINE {rps,

author = "Laurence Moroney",

title "Rock, Paper, Scissors Dataset",

month "feb",

year = "2019",

url = "http://laurencemoroney.com/rock-paper-scissors-dataset"

P,

NUM TRAIN EXAMPLES = dataset info.splits['train'].num examples
NUM TEST EXAMPLES = dataset info.splits['test'].num examples
NUM CLASSES = dataset info.features['label'].num classes

print('Number of TRAIN examples:', NUM TRAIN EXAMPLES)
print('Number of TEST examples:', NUM TEST EXAMPLES)
print('Number of label classes:', NUM CLASSES)

Number of TRAIN examples: 2520
Number of TEST examples: 372

http://laurencemoroney.com/rock-paper-scissors-dataset
http://laurencemoroney.com/rock-paper-scissors-dataset

Number of label classes: 3

INPUT IMG SIZE ORIGINAL = dataset info.features['image'].shape[0]
INPUT IMG SHAPE ORIGINAL = dataset info.features['image'].shape

For some models only some sizes are possible, for example:
for NASNetMobile - 224,
INPUT IMG SIZE REDUCED = 224
INPUT IMG SHAPE REDUCED = (
INPUT IMG SIZE REDUCED,
INPUT IMG SIZE REDUCED,
INPUT IMG SHAPE ORIGINAL[2]

)

Here we may switch between bigger or smaller image sized that we will train our
INPUT IMG SIZE = INPUT IMG SIZE REDUCED
INPUT IMG SHAPE = INPUT_ IMG_SHAPE REDUCED

print('Input image size (original):', INPUT IMG_SIZE ORIGINAL)
print('Input image shape (original):', INPUT IMG_SHAPE ORIGINAL)
print('\n')

print('Input image size (reduced):', INPUT IMG SIZE REDUCED)
print('Input image shape (reduced):', INPUT IMG SHAPE REDUCED)
print('\n')

print('Input image size:', INPUT IMG SIZE)

print('Input image shape:', INPUT IMG SHAPE)

Input image size (original): 300
Input image shape (original): (300, 300, 3)

Input image size (reduced): 224
Input image shape (reduced): (224, 224, 3)

Input image size: 224
Input image shape: (224, 224, 3)

Function to convert label ID to labels string.
get label name = dataset info.features['label'].int2str

print(get label name(0));
print(get label name(1));
print(get label name(2));

rock

paper
scissors

v Exploring the dataset

def preview dataset(dataset):

plt.figure(figsize=(12, 12))
plot index = 0

for features in dataset.take(12):

(image, label) = features

plot index +=1

plt.subplot(3, 4, plot index)
plt.axis('0ff")
label = get label name(label.numpy())
plt.title('Label: %s' % label)

plt.imshow(image.numpy())

Explore raw training dataset images.

preview dataset(dataset train raw)

100 A
150
200 A
250 1

100 A
150
200 1
250 4

100 A
150 1
200
250 A

Label: scissors 0 Label: scissors 0 Label: rock 0 Label: paper
50 1 50 50 1
100 A 100 A 100 A
150 150 150
200 A 200 A 200 A
250 1 250 1 250 1
0 100 200 100 200
Label: rock Label: paper Label: scissors Label: paper
0 0 0
50 4 50 4 50 4
100 A 100 A 100 A
150 150 A 150
200 1 200 1 200 1
250 A 250 A 250 1
T T
0 100 200
Label: scissors 0 Label: scissors 0 Label: paper 0 Label: paper
\ka 50 50 - 50
_\‘ Ih 100 - 100 - 100 -
J 1501 g 150 150
200 200 4 200
250 A 250 A 250 1
T T T T
0 100 200 100 200

Explore what values are used to represent the image.
(first image, first lable) = list(dataset train raw.take(1))[0]

print('Label:', first lable.numpy(),

‘\n")

print('Image shape:', first image.numpy().shape,

print(first image.numpy())

Label:

2

Image shape: (300, 300, 3)

[[[254
[253
[254
[251
[250
[250

[[254
[254
[253
[250
[251
[249

[[254
[254
[254
[251
[250
[252

[[252
[251
[252
[247
[249
[248

[[253
[253
[251
[248
[248
[248

[[252
[253
[252
[248
[247
[250

254
253
254

251
250
250

254
254
253

250
251
249

254
254
254

251
250
252

252
251
252

247
249
248

253
253
251

248
248
248

252
253
252

248
247
250

254]
253]
254]

251]
250]
250]1

254]
254]
253]

2501
251]
249]1]

254]
254]
254]

251]
250]
252]1

252]
251]
252]

247]
249]
24811

253]
253]
251]

248]
248]
248]1]

252]
253]
252]

248]
247]
250]1]

‘\n")

v Pre-processing the dataset

def format example(image, label):
Make image color values to be float.
image = tf.cast(image, tf.float32)
Make image color values to be in [0..1] range.
image = image / 255.
Make sure that image has a right size
image = tf.image.resize(image, [INPUT IMG SIZE, INPUT IMG SIZE])
return image, label

dataset train = dataset train raw.map(format example)
dataset test = dataset test raw.map(format example)

Explore what values are used to represent the image.
(first image, first lable) = list(dataset train.take(1))[0]
print('Label:', first lable.numpy(), '\n')

print('Image shape:', first image.numpy().shape, '\n')
print(first image.numpy())

Label: 2
Image shape: (224, 224, 3)
[[[0.995526

[0.9941408
[0.99597746

.995526
.9941408
.99597746

.995526 |
9941408]
.99597746]

[cNoNo)
[cNoNo)

[0.9869748 .9869748 .9869748 |
[0.98237604 0.98237604 0.98237604]
[0.97995263 0.97995263 0.97995263]]

[cNo]
[cNo]

[[0.99607843
[0.99509835
[0.99578613

.99607843
99509835
.99578613

.99607843]
.99509835]
.99578613]

[cNoNo)
[cNoNo)

[0.98232853
[0.98235357
[0.9824342

.98232853
. 98235357
9824342

.98232853]
.98235357]
9824342]]

[oNoNo])
[oNoNo])

(o]
(<]

[[0.99607843 0.99607843 0.99607843]
[0.99438554 0.99438554 0.99438554]
[0.9955736 0.9955736 0.9955736]

[0.982799
[0.97900224
[0.98414266

.982799
.97900224
.98414266

.982799]
.97900224]
.98414266]]

[cNoNo)
[cNoNo)

[[0.9886986 . 9886986 .9886986 |
[0.98788357 0.98788357 0.98788357]
[0.98773044 0.98773044 0.98773044]

[cNo]
[cNo]

[0
[0
[0

[[O

[0.
(0.
[0.
[0.
[0.

[[0O.
[0.
[O.
(0.
[0.
[0.

.97477514
.9725384
.96988803

.98982257
9872209
98630947

9689198
97251344
9728876

98945296
9898225
98757

9692227
9709499
9774043

[cNoNo)

[cNoNo)

.97477514
.9725384
.96988803

. 98982257
. 9872209
. 98630947

.9689198
.97251344
.9728876

. 98945296
.9898225
. 98757

. 9692227
. 9709499
.9774043

[cNoNo)

[cNoNo)

.97477514]
9725384]
.96988803]]

.98982257]
.9872209]
.98630947]

.9689198 |
.97251344]
9728876]]

.98945296]
.9898225]
. 98757]

9692227]
9709499]
.9774043 111

Explore preprocessed training dataset images.

preview dataset(dataset train)

Label: scissors Label: scissors Label: rock Label: paper

07 g 1 07 1 07 1 07

~ Data augmentation

One of the way to fight the model overfitting and to generalize the model to a broader set of
examples is to augment the training data.

As you saw from the previous section all training examples have a white background and
vertically positioned right hands. But what if the image with the hand will be horizontally
positioned or what if the background will not be that bright. What if instead of a right hand the
model will see a left hand. To make our model a little bit more universal we're going to flip and
rotate images and also to adjust background colors.

You may read more about a Simple and efficient data augmentations using_the Tensorfow
tf.Data and Dataset API.

200 4 B |0 L TERELS || | 200 4 . A

def augment flip(image: tf.Tensor) -> tf.Tensor:
image = tf.image.random flip left right(image)
image = tf.image.random flip up down(image)
return image

I L I A 4 I N Ba I Al o

def augment color(image: tf.Tensor) -> tf.Tensor:
image = tf.image.random hue(image, max delta=0.08)
image = tf.image.random saturation(image, lower=0.7, upper=1l.3)
image = tf.image.random brightness(image, 0.05)
image = tf.image.random contrast(image, lower=0.8, upper=1)
image = tf.clip by value(image, clip value min=0, clip value max=1)
return image

def augment rotation(image: tf.Tensor) -> tf.Tensor:
Rotate 0, 90, 180, 270 degrees
return tf.image.rot90(
image,
tf.random.uniform(shape=[], minval=0, maxval=4, dtype=tf.int32)

def augment inversion(image: tf.Tensor) -> tf.Tensor:
random = tf.random.uniform(shape=[], minval=0, maxval=1l)
if random > 0.5:
image = tf.math.multiply(image, -1)
image = tf.math.add(image, 1)
return image

def augment zoom(image: tf.Tensor, min zoom=0.8, max zoom=1.0) -> tf.Tensor:
image width, image height, image colors = image.shape
crop size = (image width, image height)

Generate crop settings, ranging from a 1% to 20% crop.

https://en.wikipedia.org/wiki/Overfitting
https://www.wouterbulten.nl/blog/tech/data-augmentation-using-tensorflow-data-dataset/

scales = list(np.arange(min zoom, max zoom, 0.01))
boxes = np.zeros((len(scales), 4))

for i, scale in enumerate(scales):
x1l =yl =0.5- (0.5 * scale)
X2 =y2 =0.5+ (0.5 * scale)
boxes[i] = [x1, yl, x2, y2]

def random crop(img):
Create different crops for an image
crops = tf.image.crop _and resize(
[img],
boxes=boxes,
box indices=np.zeros(len(scales)),
crop_size=crop_size
)
Return a random crop
return crops[tf.random.uniform(shape=[], minval=0, maxval=len(scales), dty

choice = tf.random.uniform(shape=[], minval=0., maxval=1l., dtype=tf.float32)

Only apply cropping 50% of the time
return tf.cond(choice < 0.5, lambda: image, lambda: random crop(image))

def augment data(image, label):
image = augment flip(image)
image = augment color(image)

image = augment rotation(image)
image = augment zoom(image)
image = augment inversion(image)

return image, label

dataset train augmented = dataset train.map(augment data)

Explore augmented training dataset.
preview dataset(dataset train augmented)

Label: scissors Label: scissors Label: rock Label: paper
07 0 0 0
50 4 50 4 50 4 50 4
100 1 100 1 100 1 100 1
150 A 150 A 150 A 150 A
200 - 200 - 200 A 200 -
T T T T T T T
0 100 200 0 100 200 o 100 200 o 100 200
Label: rock Label: paper Label: scissors Label: paper
0
50 4 50 / 50
100 - 100 ; 100
150 4 150 ﬁ 150
200 + 200 200

Explore test dataset.

preview dataset(dataset test)

Label: scissors Label: paper Label: scissors Label: rock

Joan Lo 1 g Lo
~ Data shuffling and batching

We don't want our model to learn anything from the order or grouping of the images in the
dataset. To avoid that we will shuffle the training examples. Also we're going to split the training
set by batches to speed up training process and make it less memory consuming.

BATCH SIZE = 800

dataset train augmented shuffled = dataset train augmented.shuffle(
buffer size=NUM TRAIN EXAMPLES

)

dataset train augmented shuffled = dataset train augmented.batch(
batch size=BATCH SIZE
)

Prefetch will enable the input pipeline to asynchronously fetch batches while yc

dataset train augmented shuffled = dataset train augmented shuffled.prefetch(
buffer size=tf.data.experimental.AUTOTUNE

)

dataset test shuffled = dataset test.batch(BATCH SIZE)

I U I __ I -

print(dataset train augmented shuffled)
print(dataset test shuffled)

<PrefetchDataset element spec=(TensorSpec(shape=(None, 224, 224, 3), dtype=ti
<BatchDataset element spec=(TensorSpec(shape=(None, 224, 224, 3), dtype=tf.fl

»

Debugging the batches using conversion to Numpy arrays.
batches = tfds.as numpy(dataset train augmented shuffled)
for batch in batches:
image batch, label batch = batch
print('Label batch shape:', label batch.shape, '\n')
print('Image batch shape:', image batch.shape, '\n')
print('Label batch:', label batch, '\n')

for batch item index in range(len(image batch)):
print('First batch image:', image batch[batch item index], '\n')
plt.imshow(image batch[batch item index])
plt.show()
Break to shorten the output.
break
Break to shorten the output.
break

Label batch shape: (800,)

Image batch shape: (800, 224, 224, 3)

Label batch: [2201012122112111111110000112220°:¢

OO HFFONMNOFOFRFOONRFNRFEFRFRFONON
OFRP NNOONORFONRFRFPFRFPONREFEFNOOR

First batch image:
[0.
[0O.
[0.
[0.
[0.

[[O.
[0.
[0.
[0.
[0.
[0.

[[0.
[0.
[0.
[O.
[0.
[0.

[[0O.
[0.
[0.
[0.
[0.
[0.

(o)

O FPFNFFRFOKFRFNOONOMNMNNKEFRERNRENOGO
ONNOFRFPFFMFEFOFROFOMNRKFNNRFRFRKE

RPFRPRFRPFRFRPROORFRMFRFEFNRFEFORFRNONDNORKROO
RFOMNREFEFNNOMNMNNORFRFMNMNNREFNONRKENREFO
HFHEFEFRFONOOOONEKEFNNNONRKEKFNOOGOO
NNNOOMNNONRFRFOOOORFRONRKF O
NOOMNRFORKFKFEFEFNNRFRPFORFRFONRFRORRE
OO HFRPONNMNOOOMNMNDMNNRPFOOFORFRFEFEFEN
NOFRFFRFONOFOFMNMNMNMNNNNORFONRKN
ONPEFFEFNRFEFENRFEFRPRREPENONOONRKRRERO
OCOFRFFNONNREFMNREFNNNONRPFOONO
NONFFRFFOONOOHFHROOORR NGO KN
NNOONRFOOONREKFEFMNNONRPFORKLRNRKFRF
PFNPFPFNORFROONRFNONONOOKNOR
HFNMNMNRFRFNNRFRFONMFORFRNOONNOO OO
NONONRFRFNOFRFOONONOKFKENNDNOGO

03945327
03937632

05511546
05506533
05474198

03894454
03992707
04030651

05373991
05399573
05498832

03742933
04090953
04145235

05520302
05519873
05594653

03455669
03422618
03446275

0422284
04246092
0427838

0.
0.

0.

0.
0.05591357

[cNoNo) [cNo] [cNoNo)

[oNo]

(o] [cNoNo)

[cNo]

0406248
04054785

05628705
05623692

.04011607
.04109859
.04147804

.05491149
.05516732
.05615991

.03860086
.04208106
.04262388

.05637455
.05637026
.05711806

03572822
.03539771
.03563428

.04339993
.04363251
.04395533

[[[0.03961003 0.
0.
0.

0.

0.
0.05671376] 1]

[cNoNo) [cNo]

[oNo]

(<] [cNoNo)

[cNo]

04142505]
0413481]

057087241
05703712]

.04091632]
.04189885]
.04227829]

.05571169]
.05596751]
.05696011]]

.03940111]
.04288131]
.04342413]

.0571748]
.05717051]
.05791831]]

.03652847]
.03619796]
.03643453]

.04420018]
0444327]
.04475558]]

NORFRPRRFPNONOFRFNONNNNRENREDNERE
NOMNRFNORFOFFOOFONORFRNORKN
NFFRFNNNRPFRFONNOFRFNMFEFFRFPFRPOOOOR
FFEFNNOOOMNOORFRFRFRFOOOR NOKF OO
RPFORFRPRRFRFOOMNMNDMNMNMRPEPORFRFRFEFPFNOORFR NNORKFO

]

HFNONNOMNMNNOOKFF MFOMNNRKRRKRERFRO

RFRPFONOOONONHMFHFOFRNOKFREFONDOGO

FNHFHREFRRNOHRNNROHRRKREFOH MR
HFORNONNRHREPRHREPEREREOHRRKRNRN

04078156 0.04158181]

P OOOMNRKFNMFEFOMNRFRFRFMFEHFONONRKFOR

HFRNNNRRNONRFROONRKREFERONOR
OCONONONRFRNRONNOROKNON
HFOFRHRMHRORNNRROHKHNNRERNN

NFFPFFEFNRPFPFOFFMFEFNOORFROHRMFPFORFRPROOR
P ONOOFRFOFNNMNONREFEFNONNORK
HFNNMNNNNOHFOFOHFONNRFOO KM

NFNORFRFFONNNOOKFFORFRNREFRFER

NFRPROORRPFRPKHENRPRORKRERLREPRELENERE

FNNNOONKFEFNOOOOONNDNNON

[[O

[0.
[0.

.03543866
03501242
03423661

.03661019
.03618395
.03540814

.03741044]
.03698421]
.03620839]

04182118
04188967
04121393

(o]

.04299271
.04306126
.04238546

(o]

(6.
[0.
[0.

.04379296]
.04386145]
.04318571]]

[cNo]
[cNo]

.0322209
[0.03201157
[0.03320897 0O

03339243
.0331831
.0343805 0.

.03419268]
.03398335]
03518075]

[oNo]
[oNo]

(6.
(0.
(6.

04205447
04196447
04137576

(<]

.043226
.043136
.04254729

(o]

.04402626]
.04393625]
.04334754]11]1

[oNo]
[oNo]

25

L=

100

125

150

175
200

100

1540

200

v Creating the model

v Loading model

We don't want to use the top classification layer of the pre-trained model as it contains 1000
classes when we need only 3 (rock, paper and scissors). We will specify that by setting a
include top parameterto False.

You may read more about Keras models on Keras Documentation

base model = tf.keras.applications.NASNetMobile(
input shape=INPUT IMG SHAPE,
include top=False,
weights="'imagenet',
pooling="avg'

)

https://keras.io/applications

Downloading data from https://storage.googleapis.com/tensorflow/keras-applice
19996672/19993432 [] - 1s Ous/step
20004864/19993432 [] - 1s Ous/step

Freezing the base model since we don't want to re-train it.
We're only interesting in its feature extraction.
base model.trainable = False

base model.summary()

'separabla
t2 10[0][€
normal add 3 10 (Add) (None, 7, 7, 176) 0 ['normal 1
‘adjust
normal add 4 10 (Add) (None, 7, 7, 176) 0 ['normal 1
‘normal r
normal add 5 10 (Add) (None, 7, 7, 176) 0 ['separabl
5 10[0]1[0]
‘normal k
normal concat 10 (Concatenate) (None, 7, 7, 1056) © ['adjust L
‘normal &
‘normal &
'normal &
‘normal &
‘normal &
activation 163 (Activation) (None, 7, 7, 1056) 0 ['normal c
activation 164 (Activation) (None, 7, 7, 1056) 0 ['normal c
adjust _conv_projection 11 (Con (None, 7, 7, 176) 185856 ['activati
v2D)
normal conv 1 11 (Conv2D) (None, 7, 7, 176) 185856 ['activati
adjust bn 11 (BatchNormalizati (None, 7, 7, 176) 704 ['adjust ¢
on) "1
normal bn 1 11 (BatchNormaliza (None, 7, 7, 176) 704 ['normal c
tion)
activation 165 (Activation) (None, 7, 7, 176) 0 ['normal kL
activation 167 (Activation) (None, 7, 7, 176) 0 ['adjust L
activation 169 (Activation) (None, 7, 7, 176) 0 ['adjust L
activation 171 (Activation) (None, 7, 7, 176) 0 ['adjust L
activation 173 (Activation) (None, 7, 7, 176) 0 ['normal L
separable conv_1 normal leftl (None, 7, 7, 176) 35376 ['activati

11 (SeparableConv2D)

https://storage.googleapis.com/tensorflow/keras-applications/nasnet/NASNet-mobile-no-top.h5

separable conv_1 normal rightl

11 (SeparableConv2D)

separable conv_1 normal left2

11 (SeparableConv2D)

separable conv_1 normal right2

11 (SeparableConv2D)

canarahla rAanvi 1 NnAarmal

tf.keras.utils.plot model(
base model,
show shapes=True,
show layer names=True,

T1af+R

(None, 7,
(None, 7,
(None, 7,

(NlAnoa 7

176)

176)

176)

17R)\

32560

35376

32560

RDIEAN

["activati

['activati

["activati

[M"artdvats

4

14

1

1 1

v Adding a classification head

model = tf.keras.models.Sequential()

model.add (base model)

model.add(tf.keras.layers.GlobalAveragePooling2D())

model.add(tf.keras.layers.Dropout(0.5))

model.add(tf.keras.layers.Dense(
units=NUM CLASSES,
activation=tf.keras.activations.softmax,

kernel reqularizer=tf.keras.regularizers.12(1=0.01)

))

model.summary ()

Model: "sequential"

Layer (type) Output Shape Param #
NASNet (Functional) (None, 1056) 4269716
dropout (Dropout) (None, 1056) 0

dense (Dense) (None, 3) 3171

Total params: 4,272,887
Trainable params: 3,171

Non-trainable params: 4,269,716

tf.keras.utils.plot model(
model,
show shapes=True,
show layer names=True,

NASNet_input | input:

[(None, 224, 224, 3)] | [(None, 224, 224, 3)]

'

(None, 224, 224, 3) | (None, 1056)

'

(None, 1056) | (None, 1056)

'

(None, 1056) | (None, 3)

InputLayer output:

NASNet input:
Functional | output:

dropout | input:

Dropout | output:

dense | input:

Dense | output:

v Compiling the model

adam optimizer = tf.keras.optimizers.Adam(learning rate=0.001)
rmsprop_optimizer = tf.keras.optimizers.RMSprop(learning rate=0.001)

model.compile(
optimizer=rmsprop optimizer,
loss=tf.keras.losses.sparse categorical crossentropy,
metrics=['accuracy']

+ Training the model

steps per epoch = NUM TRAIN EXAMPLES // BATCH SIZE
validation steps = NUM TEST EXAMPLES // BATCH SIZE if NUM TEST EXAMPLES // BATCH S

print('steps per epoch:', steps per epoch)
print('validation steps:', validation steps)

steps per epoch: 3
validation steps: 1

'rm -rf tmp/checkpoints
'rm -rf logs

Preparing callbacks.
os.makedirs('logs/fit', exist ok=True)
tensorboard log dir = 'logs/fit/' + datetime.datetime.now().strftime('%Y%m%d -%H%M
tensorboard callback = tf.keras.callbacks.TensorBoard(
log dir=tensorboard log dir,
histogram freqg=1

~AO

)

os.makedirs('tmp/checkpoints', exist ok=True)

model checkpoint callback = tf.keras.callbacks.ModelCheckpoint(
filepath="tmp/checkpoints/weights.{epoch:02d}-{val loss:.2f}.hdf5"

)

early stopping callback = tf.keras.callbacks.EarlyStopping(
patience=10,
monitor="'val accuracy'
monitor="'val loss'

initial epochs = 20

training history = model.fit(
x=dataset train augmented shuffled.repeat(),
validation data=dataset test shuffled.repeat(),
epochs=initial epochs,
steps per epoch=steps per epoch,
validation steps=validation steps,
callbacks=][
model checkpoint callback,
early stopping callback,
tensorboard callback

I,
verbose=2

Epoch 1/20
3/3 - 49s - loss: 1.3788 - accuracy: 0.3658 - val loss: 1.0261 - val accuracy
Epoch 2/20
3/3 - 25s - loss: 1.1668 - accuracy: 0.4640 - val loss: 0.9962 - val accuracy
Epoch 3/20
3/3 - 23s - loss: 1.1169 - accuracy: 0.5017 - val loss: 0.9978 - val accuracy
Epoch 4/20
3/3 - 17s - loss: 1.0405 - accuracy: 0.5314 - val loss: 0.8654 - val accuracy
Epoch 5/20
3/3 - 31s - loss: 0.9708 - accuracy: 0.5854 - val loss: 0.9098 - val accuracy
Epoch 6/20
3/3 - 25s - loss: 0.9220 - accuracy: 0.6110 - val loss: 0.9252 - val accuracy

Epoch 7/20

3/3 - 20s - loss:

Epoch 8/20

3/3 - 18s - loss:

Epoch 9/20

3/3 - 30s - loss:

Epoch 10/20

3/3 - 25s - loss:

Epoch 11/20

3/3 - 20s - loss:

Epoch 12/20

3/3 - 17s - loss:

Epoch 13/20

3/3 - 31s - loss:

Epoch 14/20

3/3 - 25s - loss:

Epoch 15/20

3/3 - 20s - loss:

Epoch 16/20

3/3 - 17s - loss:

Epoch 17/20

3/3 - 31s - loss:

Epoch 18/20

3/3 - 26s - loss:

Epoch 19/20

3/3 - 20s - loss:

Epoch 20/20

3/3 - 17s - loss:

.8553

.8091

.8235

.7650

.7729

L7122

.6899

.6873

.6455

.6388

.6303

.6307

.5980

.5676

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.6547

.6727

.6612

.6948

.6977

.7221

.7346

.7302

.7506

. 7750

7742

.7651

.7913

.8076

def render training history(training history):

loss = training history.history['loss"']
val loss = training history.history['val loss']
accuracy = training history.history['accuracy"']
val accuracy = training history.history['val accuracy']

plt

plt.

plt
plt
plt

plt.
plt.
plt.

plt

plt.

plt
plt
plt

plt.
plt.
plt.

plt

subplot(1l, 2, 1)
.title('Loss"')
.xlabel('Epoch")
.ylabel('Loss"')
plot(loss, label='Training set')

subplot (1, 2, 2)
.title('Accuracy')
.xlabel('Epoch")
.ylabel('Accuracy"')
plot(accuracy, label='Training set')

.figure(figsize=(14, 4))

val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:
val loss:

val loss:

plot(val loss, label='Test set', linestyle='--")
legend()
.grid(linestyle='--"', linewidth=1, alpha=0.5)

plot(val accuracy, label='Test set', linestyle='--"')
legend()
.grid(linestyle="'--"', linewidth=1, alpha=0.5)

. 8942

.8893

. 8085

. 8547

. 7985

.8077

. 7447

. 7823

.7048

.6474

.6810

. 7209

.6859

.6541

val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy
val accuracy

val accuracy

>

N1+ ~hAa /)

render training history(training history)

Loss Accuracy

14
—— Training set 0.8 { = Taining set

13 Test set st set

12 07

11

L]

Aocuracy

09
08 05

07

04
06

0o 25 50 75 10.0 125 15.0 17.5 00 25 5.0 75 10.0 12.5 5.0 17.5
Epoch Epoch

v Model fine tuning

We may try to unfreeze some of the top layers of the base model and to train it a little bit more
so to adjust top layers to our Rock-Paper-Scissors dataset.

Un-freeze the top layers of the model
base model.trainable = True

print("Number of layers in the base model: ", len(base model.layers))

Number of layers in the base model: 770

Fine tune from this layer onwards.
fine tune at = 149 # MobileNetV2
fine tune at = 752

Freeze all the layers before the “fine tune at™ layer
for layer in base model. layers[:fine tune at]:
layer.trainable = False

Compile the model using a much-lower training rate.
adam optimizer = tf.keras.optimizers.Adam(learning rate=0.0001)
rmsprop_optimizer = tf.keras.optimizers.RMSprop(learning rate=0.0001)
model.compile(
optimizer = rmsprop optimizer,
loss=tf.keras.losses.sparse categorical crossentropy,
metrics=["'accuracy']

)

model.summary ()

Model: "sequential"

Layer (type) Output Shape Param #

NASNet (Functional) (None, 1056) 4269716
dropout (Dropout) (None, 1056) 0
dense (Dense) (None, 3) 3171

Total params: 4,272,887
Trainable params: 70,051
Non-trainable params: 4,202,836

The number of additional epochs during which we're going to fine tune the model.
fine tuning epochs = 10

training history fine = model.fit(
x=dataset train augmented shuffled.repeat(),
validation data=dataset test shuffled.repeat(),
epochs=initial epochs + fine tuning epochs,
initial epoch=initial epochs,
steps per epoch=steps per_epoch,
validation steps=validation steps,
callbacks=[tensorboard callback],
verbose=1

Epoch 21/30

3/3 [] - 46s 12s/step - loss: 0.5662 - accuracy
Epoch 22/30
3/3 [] - 25s 12s/step - loss: 0.5352 - accuracy
Epoch 23/30
3/3 [] - 21s 9s/step - loss: 0.5184 - accuracy:
Epoch 24/30
3/3 [] - 17s 7s/step - loss: 0.5224 - accuracy:
Epoch 25/30
3/3 [] - 31s 1ls/step - loss: 0.5036 - accuracy
Epoch 26/30
3/3 [] - 24s 12s/step - loss: 0.5107 - accuracy
Epoch 27/30
3/3 [] - 20s 9s/step - loss: 0.5002 - accuracy:
Epoch 28/30
3/3 [] - 17s 7s/step - loss: 0.4890 - accuracy:
Epoch 29/30
3/3 [] - 31s 11s/step - loss: 0.4789 - accuracy
Epoch 30/30
3/3 [] - 25s 12s/step - loss: 0.4831 - accuracy

»

loss = training history.history['loss'] + training history fine.history['loss']
val loss = training history.history['val loss'] + training history fine.history['v

accuracy = training history.history['accuracy'] + training history fine.history['e
val accuracy = training history.history['val accuracy'] + training history fine.hi

plt.figure(figsize=(14, 4))

plt.subplot(1l, 2, 1)
plt.title('Loss")
plt.xlabel('Epoch")
plt.ylabel('Loss")

plt.plot(loss, label='Training set')

plt.plot(val loss, label='Test set', linestyle='--")
plt.plot(

[initial epochs, initial epochs],

plt.ylim(),

label="'Start Fine Tuning',

linestyle="--"

)
plt.legend()
plt.grid(linestyle='--', linewidth=1, alpha=0.5)

plt.subplot(l, 2, 2)
plt.title('Accuracy')
plt.xlabel('Epoch")
plt.ylabel('Accuracy')
plt.plot(accuracy, label='Training set')

plt.plot(val accuracy, label='Test set', linestyle='--")
plt.plot(

[initial epochs, initial epochs],

plt.ylim(),

label='Start Fine Tuning',

linestyle="--"

)

plt.legend()

plt.grid(linestyle="'--"', linewidth=1, alpha=0.5)
plt.show()

Loss Accuracy

—— Training set
Test sat

14 A

1 === Start Fine Tuning
12 1

1 1
1 1
1 1
1
1 1
1 1
i o
1 1
1 . 1
o 107 : 3 !
E i S 06 !
1 & 1
0.8 1 ! !
1 05 - 1
1 1
] . i
0.6 1 — Taining set = :
st set | 0.4 4 i
=== Start Fine Tuning i i
Dq o T T T T T T T T T T T T
o 5 10 15 20 25 30 o 5 10 15 20
Epoch Epoch

v Debugging the training with TensorBoard

Deep Learning Methods

Lecture 08

3 3fe sfe sfe ok o s sfe sfe sk ok o sfe she she sk ok s sfe sfe sk sk ke sk sfe sfe sk sk s sfe she sk sk ok sk sfe sfe sk sk ok sk sfe sfe sk sk o s she sk sk ok sl sfe sfe sk sk ok S sfe sfe sk sk o sk she sk sk sk sk sfe sfe sk sk sk sk se s sk

Lecture Slides + interactive Jupyter-notebooks for Google Colaboratory CPU/GPU/TPU cloud:
https://cloud.comsys.kpi.ua/s/SMkBSsxRTazoTD6

3 3fe sfe sfe ok o 3 sfe sfe sk ok o sfe she she sk ok s sfe she sk sk ok sk she sfe sk sk ol sfe she sk sk ok sl sfe sfe sk sk ok sk sfe sfe sk sk o s she sk sk ok sk sfe sfe sk sk ok S sfe sfe sk sk o sfe sfe sk sk sk sk sfe sfe sk sk sk ke se s sk

Lecture 08 - Deep Learning Methods - Model Deployment

The course includes materials proposed by NVIDIA Deep Learning Institute (DLI) in the
framework of the common

NVIDIA Research Center
and
NVIDIA Education Center.

NVIDIA. ~NVIDIA.

GPU GPU

EDUCATION RESEARCH
CENTER CENTER

nvi
https://kpi.ua/nvidia-info

https://kpi.ua/nvidia-info

Interactive Demonstrations

DEMO A - CPU
Deep Learning Model Deployment Example - MNIST WebApp (Flask + Google Colab)

https://drive.google.com/file/d/1lywWNaf8Y2MUG526p1tiKi6lHyDkcmz3C/view?usp=sharing

DEMO B - GPU
Deep Learning Model Deployment Example - MNIST WebApp (Flask + Google Colab)
https://drive.google.com/file/d/11eReb0X2kJ3KScPHNMb511Xpl.g2R560V0/view?usp=sharing

DEMO C - TPU

Deep Learning Model Deployment Example - MNIST WebApp (Flask + Google Colab)
https://drive.google.com/file/d/1X8s0Rab06415R0qCv1z8ISDr3JJUBohK/view?
usp=sharing

https://drive.google.com/file/d/1X8soRab064l5ROqCv1z8JSDr3JJUBohK/view?usp=sharing
https://drive.google.com/file/d/1X8soRab064l5ROqCv1z8JSDr3JJUBohK/view?usp=sharing
https://drive.google.com/file/d/11eReb0X2kJ3KScPHNM5I1XpLq2R560V0/view?usp=sharing
https://drive.google.com/file/d/1ywWNaf8Y2MUG526p1tiKi6lHyDkcmz3C/view?usp=sharing

Lecture 7 - DEMO A - CPU - Deep Learning Model
Deployment Example - MNIST WebApp (Flask + Google

Colab)

based on (C) Tensorflow Authors Team, Parsaniya, Heaton, Jadhav and other works

~ Connect to Google Drive

from google.colab import drive
drive.mount('/content/drive"')

Mounted at /content/drive

~ Go to Project Folder at Google Drive and Check It

%scd 'drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app'

I 1s

/content/drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app
generated image
Lecture 07 DL Web-app.zip
Lecture 07 MNIST DEMO A web app CPU EMPTY.ipynb static
Lecture 07 MNIST DEMO B web app GPU EMPTY.ipynb templates
Lecture 07 MNIST DEMO C web app TPU EMPTY.ipynb uploads

+ Install Flask

Ipip install flask-ngrok

MNIST test images
model

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
Collecting flask-ngrok
Downloading flask ngrok-0.0.25-py3-none-any.whl (3.1 kB)

Requirement
Requirement
Requirement
Requirement
Requirement

Requirement

already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

atiod:
: MarkupSafe>=0.23 in /usr/local/lib/python3.7/c
: certifi>=2017.4.17 in /usr/local/lib/python3.7
0 : urllib3!=1.25.0,!'=1.25.1,<1.26,>=1.21.1 in /us
satisfied:

Flask>=0.8 in /usr/local/lib/python3.7/dist-p:
requests in /usr/local/lib/python3.7/dist-pack
itsdangerous<2.0,>=0.24 in /usr/local/lib/pytt
Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.
click<8.0,>=5.1 in /usr/local/lib/python3.7/di
Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.

idna<3,>=2.5 in /usr/local/lib/python3.7/dist-

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7,
Installing collected packages: flask-ngrok
Successfully installed flask-ngrok-0.0.25

~ Import Libraries

import cv2

import numpy as np

import matplotlib.pyplot as plt

from flask import Flask, flash, redirect, render template, request, url for, send
from flask ngrok import run with ngrok

from tensorflow.keras.models import load model

~ Load Trained Model

mnist model = load model('model/mnist.h5")

~ Configure Web-app

app = Flask(_name)
run_with ngrok(app)
app.secret key = 'Putin Huylo'

app.config["MNIST BAR"] = "generated image/mnist vis"
app.config["IMAGES"] = "upload"

@app.route('/")

def home():
flash("Try CNN Model Trained on MNIST-dataset for Single Digit Prediction...")
return render template('index.html"')

@app.route('/mnist/")
def mnist home():
return render template('mnist.html")

@app.route('/mnistprediction/', methods=['GET', 'POST'])
def mnist prediction():
if request.method == "POST":
if not request.files['file'].filename:
flash("No File Found")

ile']

ilename)
image gray = cvZ.imread("uploads/"+f.filename, cv2.IMREAD GRAYSCALE)
img resize = cv2.resize(image gray, (28,28))

Saved successfully!

image bw = cvZ.threshold(img resize, /5, 255, cvZ2.IHRESH BINARY)|1]
bitwise not image = cv2.bitwise not(image bw, mask=None)
pred img = np.reshape(bitwise not image,(1,28,28,1))/255.0

predictions = mnist model.predict(pred img)
number = int(np.argmax(predictions))
print (number)

plt.figure()

y pos = np.arange(10)

plt.bar(y pos, predictions[0])
plt.savefig('generated image/mnist vis/'+f.filename)

return str(number)

@app.route("/get-mnist-image/<image name>")
def get mnist image(image name):

try:

return send from directory(app.config["MNIST BAR"], filename=image name)
except FileNotFoundError:
abort(404)

Install pyngrok
Ipip install pyngrok==4.1.1

Register,

get 'your authtoken', and replace my token below:

!'ngrok authtoken 'your authtoken'
Ingrok authtoken '2FdbDL8Rak9en9IT4S3pSeMjq0OI 6Ntx7LfKFyeS9qLSFAoks'

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
Collecting pyngrok==4.1.1
Downloading pyngrok-4.1.1.tar.gz (18 kB)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packac
Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packac
Building wheels for collected packages: pyngrok
Building wheel for pyngrok (setup.py) ... done
Created wheel for pyngrok: filename=pyngrok-4.1.1-py3-none-any.whl size=15¢
Stored in directory: /root/.cache/pip/wheels/bl/d9/12/045a042fee3127dc40bat
Successfully built pyngrok
Installing collected packages: pyngrok
Successfully installed pyngrok-4.1.1
Authtoken saved to configuration file: /root/.ngrok2/ngrok.yml

~ Start Web-app

After start ...

¢ click on the link in the row like

]
Saved successfully! X

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

o |oad the local images of single digit numbers and obtain predictions;
o try images of different quality.

IMPORTANT: this Web-app is cloud-based and ... some delay can be observed!

bapp.run()

Saved successfully! X

10 4

0.3 4

0.6 4

04

02

0.0

06 4

05

04

0.3 -

02

01

0.0

0.7

0.5 4

05

04

0.3 4

0.2

01 A

00 -

104

0.3 4

0.5 4

04

0.2 A

Saved successfully!

Lecture 7 - DEMO B - GPU - Deep Learning Model
~ Deployment Example - MNIST WebApp (Flask + Google
Colab)

based on (C) Tensorflow Authors Team, Parsaniya, Heaton, Jadhav and other works

! nvidia-smi

Mon Oct 3 19:43:07 2022

e e e e e e e m e e e e m e e e f e e e e m e e e e m e mm e mm =
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2

|----mmm - B L
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. EC(
| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M.
| | | MIG M.
| + +

| 0O Tesla T4 0Off | 00000000:00:04.0 Off | ¢
| NJA 43C P8 ow / 76w | OMiB / 15109MiB | 0% Defaulit
| | | N/#
e I I T I L L T I
o e e e e e e e e e e m e e e m e m e e e m e
| Processes:

| GPU GI CI PID Type Process name GPU Memory
| ID ID Usage

|

| No running processes found

o e mm e mm ==

~ Connect to Google Drive

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

~ Go to Project Folder at Google Drive and Check It

%scd 'drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app'
I 1s

/content/drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app
generated image MNIST test images

T model

app_GPU EMPTY.ipynb templates

Lecture 07 MNIST DEMO C web app TPU EMPTY.ipynb uploads

~ Install Flask

Ipip install flask-ngrok

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
Collecting flask-ngrok

Downloading flask ngrok-0.0.25-py3-none-any.whl (3.1 kB)
Requirement already satisfied: Flask>=0.8 in /usr/local/lib/python3.7/dist-ps
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/pytt
Requirement already satisfied: Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.
Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.
Requirement already satisfied: click<8.0,>=5.1 in /usr/local/lib/python3.7/d
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/c
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7,
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.’
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /us
Installing collected packages: flask-ngrok
Successfully installed flask-ngrok-0.0.25

~ Import Libraries

import cv2

import numpy as np

import matplotlib.pyplot as plt

from flask import Flask, flash, redirect, render template, request, url for, send_
from flask ngrok import run with ngrok

from tensorflow.keras.models import load model

~ Load Trained Model

mnist model = load model('model/mnist.h5")

mnist model.summary()

Model: "sequential"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 26, 26, 32) 320

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

one, 22 3

Tax_poolingZd (MaxPooling2D (None, 12, 12, 32) 0
dropout (Dropout) (None, 12, 12, 32) 0
conv2d 2 (Conv2D) (None, 12, 12, 64) 18496
conv2d 3 (Conv2D) (None, 12, 12, 64) 36928
max_pooling2d 1 (MaxPooling (None, 6, 6, 64) 0

2D)

dropout 1 (Dropout) (None, 6, 6, 64) 0
conv2d 4 (Conv2D) (None, 6, 6, 128) 73856
dropout 2 (Dropout) (None, 6, 6, 128) 0
flatten (Flatten) (None, 4608) 0
dense (Dense) (None, 128) 589952
batch normalization (BatchN (None, 128) 512
ormalization)

dropout 3 (Dropout) (None, 128) 0
dense 1 (Dense) (None, 10) 1290

Total params: 730,602
Trainable params: 730,346
Non-trainable params: 256

~ Configure Web-app

app = Flask(__name)
run_with ngrok(app)
app.secret key = 'ACAB Ttaku pa ACAB'

app.config["MNIST BAR"] = "generated image/mnist vis"
app.config["IMAGES"] = "upload"

@app.route('/")
def home():

flash("Try CNN Model Trained on MNIST-dataset for Single Digit Prediction...

return render template('index.html")

@app.route('/mnist/"')
def mnist home():
return render template('mnist.html')

if request.method == "POST":

if not request.files['file'].filename:
flash("No File Found")

else:
f = request.files['file']
f.save("uploads/"+f.filename)
image gray = cv2.imread("uploads/"+f.filename, cv2.IMREAD GRAYSCALE)
img resize = cv2.resize(image gray, (28,28))
image bw = cv2.threshold(img resize, 75, 255, cv2.THRESH BINARY)[1]
bitwise not image = cv2.bitwise not(image bw, mask=None)
pred img = np.reshape(bitwise not image, (1,28,28,1))/255.0

predictions = mnist model.predict(pred img)
number = int(np.argmax(predictions))
print(number)

plt.figure()

y pos = np.arange(10)

plt.bar(y pos, predictions[0])
plt.savefig('generated image/mnist vis/'+f.filename)

return str(number)

@app.route("/get-mnist-image/<image name>")
def get mnist image(image name):
try:
return send from directory(app.config["MNIST BAR"], filename=image name)
except FileNotFoundError:
abort(404)

Install pyngrok
Ipip install pyngrok==4.1.1

Register, get 'your authtoken', and replace my token below:
Ingrok authtoken 'your authtoken'
I'ngrok authtoken '2FdbDL8Rak9en9IT4S3pSeMjqOI 6Ntx7LfKFyeS9qLSFAoks'

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
Collecting pyngrok==4.1.1
Downloading pyngrok-4.1.1.tar.gz (18 kB)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packac
Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packac
Building wheels for collected packages: pyngrok
Building wheel for pyngrok (setup.py) ... done
Created wheel for pyngrok: filename=pyngrok-4.1.1-py3-none-any.whl size=15¢
Stored in directory: /root/.cache/pip/wheels/b1/d9/12/045a042fee3127dc40bat
Successfully built pyngrok
Installing collected packages: pyngrok
Successfully installed pyngrok-4.1.1
Authtoken saved to configuration file: /root/.ngrok2/ngrok.yml

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

aved successtully! X

After start ...
e click on the link in the row like:
Running on [your_website_at_ngrok.io]
e follow the web-user interface:

o load the local images of single digit numbers and obtain predictions;
o try images of different quality.

IMPORTANT: this Web-app is cloud-based and ... some delay can be observed!

bapp.run()

* Serving Flask app " main " (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deplc
Use a production WSGI server instead.
* Debug mode: off
INFO:werkzeug: * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Running on http://dbd3-34-72-230-125.ngrok.io
* Traffic stats available on http://127.0.0.1:4040
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:44:12] " " 200 -
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:44:12] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:44:12] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:44:13] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:44:13] "

[

http://127.0.0.1:5000/
http://dbd3-34-72-230-125.ngrok.io/
http://127.0.0.1:4040/

aved successtully! X . .
Y s if-Guided Experiments:

try to train, save and use other *.h5 model (like it was described in the previous DEMOs),

try to use other datasets and related models,

try to port the web-app to your local environment,

Colab paid products - Cancel contracts here

» Executing (2s) Cell > new_run() > run() > run_simple() > inner() > serve_forever() > serve_forever() > select() .- X

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Lecture 8 - DEMO C - TPU - Deep Learning Model
Deployment Example - MNIST WebApp (Flask + Google
Colab)

based on (C) Tensorflow Authors Team, Parsaniya, Heaton, Jadhav and other works

~ Connect to Google Drive

from google.colab import drive
drive.mount('/content/drive"')

Mounted at /content/drive

~ Go to Project Folder at Google Drive and Check It

%scd 'drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app'

I 1s

/content/drive/MyDrive/2022 COLAB NN/Lecture 07 DL Web-app

generated im

age

Lecture 07 DL Web-app.zip

MNIST test images
model

Lecture 07 MNIST DEMO A web app CPU EMPTY.ipynb
Lecture 07 MNIST DEMO B web app GPU EMPTY.ipynb
Lecture 07 MNIST DEMO C web app TPU EMPTY.ipynb

+ Install Flask

Ipip install flask-ngrok

static
templates
uploads

Looking in 1
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

ndexes:
already
already
already
already
already
already
already
already
already
already
already
already

https://pypi.org/simple, https://us-python.pkg.dev/colab-

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

flask-ngrok in /usr/local/lib/python3.7/dist-¢
requests in /usr/local/lib/python3.7/dist-pack
Flask>=0.8 in /usr/local/lib/python3.7/dist-p:
itsdangerous<2.0,>=0.24 in /usr/local/lib/pytt
click<8.0,>=5.1 in /usr/local/lib/python3.7/di
Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.
Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.
MarkupSafe>=0.23 in /usr/local/lib/python3.7/¢
certifi>=2017.4.17 in /usr/local/lib/python3.7
idna<3,>=2.5 in /usr/local/lib/python3.7/dist-
chardet<4,>=3.0.2 in /usr/local/lib/python3.7,
urllib3'!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /us

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

~ Import Libraries

import cv2

import numpy as np

import matplotlib.pyplot as plt

from flask import Flask, flash, redirect, render template,
from flask ngrok import run with ngrok

from tensorflow.keras.models import load model

~ Load Trained Model

mnist model = load model('model/mnist.h5")

~ Configure Web-app

app = Flask(name)
run_with ngrok(app)
app.secret key = 'ACAB Taku pa ACAB'

app.config["MNIST BAR"] = "generated image/mnist vis"
app.config["IMAGES"] = "upload"

@app.route('/")
def home():

request, url for, send

flash("Try CNN Model Trained on MNIST-dataset for Single Digit Prediction...")

return render template('index.html')

@app.route('/mnist/")
def mnist home():
return render template('mnist.html')

@app.route('/mnistprediction/', methods=['GET', 'POST'])
def mnist prediction():
if request.method == "POST":
if not request.files['file'].filename:
flash("No File Found")
else:
f = request.files['file']
f.save("uploads/"+f.filename)

image gray = cv2.imread("uploads/"+f.filename, cv2.IMREAD GRAYSCALE)

img resize = cv2.resize(image gray, (28,28))

image bw = cv2.threshold(img resize, 75, 255, cv2.THRESH BINARY)[1]
bitwise not image = cv2.bitwise not(image bw, mask=None)
pred img = np.reshape(bitwise not image,(1,28,28,1))/255.0

predictions = mnist model.predict(pred img)
number = int(np.argmax(predictions))
print (number)

plt.figure()

y pos = np.arange(10)

plt.bar(y pos, predictions[0])
plt.savefig('generated image/mnist vis/'+f.filename)

return str(number)

@app.route("/get-mnist-image/<image name>")
def get mnist image(image name):
try:
return send from directory(app.config["MNIST BAR"], filename=image name)
except FileNotFoundError:
abort(404)

Install pyngrok
Ipip install pyngrok==4.1.1

Register, get 'your authtoken', and replace my token below:
Ingrok authtoken 'your authtoken'
I'ngrok authtoken '2FdbDL8Rak9en9IT4S3pSeMjqOI 6Ntx7LfKFyeS9qLSFAoks'

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-
Collecting pyngrok==4.1.1
Downloading pyngrok-4.1.1.tar.gz (18 kB)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packac
Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packac
Building wheels for collected packages: pyngrok
Building wheel for pyngrok (setup.py) ... done
Created wheel for pyngrok: filename=pyngrok-4.1.1-py3-none-any.whl size=15¢
Stored in directory: /root/.cache/pip/wheels/bl/d9/12/045a042fee3127dc40bat
Successfully built pyngrok
Installing collected packages: pyngrok
Successfully installed pyngrok-4.1.1
Authtoken saved to configuration file: /root/.ngrok2/ngrok.yml

~ Start Web-app

After start ...
e click on the link in the row like
Running on [your_website_at_ngrok.io]
 follow the web-user interface:

o load the local images of single digit numbers and obtain predictions;
o try images of different quality.

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/

IMPORTANT: this Web-app is cloud-based and ... some delay can be observed!

bapp.run()

* Serving Flask app " main_ " (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deplc
Use a production WSGI server instead.
* Debug mode: off
INFO:werkzeug: * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Running on http://3a76-35-222-189-46.ngrok.io
* Traffic stats available on http://127.0.0.1:4040
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:48:01] " " 200 -
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:48:02] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:48:02] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:48:02] "
INFO:werkzeug:127.0.0.1 - - [03/0ct/2022 19:48:02] "

(R R

http://127.0.0.1:5000/
http://3a76-35-222-189-46.ngrok.io/
http://127.0.0.1:4040/

~ Some Possible Tasks for Self-Guided Experiments:

try to train, save and use other *.h5 model (like it was described in the previous DEMOs),

try to use other datasets and related models,

try to port the web-app to your local environment,

Colab paid products - Cancel contracts here

» Executing (21s) C.. > new_ru.. > run.. > run_simpl.. > inne.. > serve_foreve.. > serve_foreve.. > select... = X

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

