
Емблема
кафедри
(за наявності)

Department of Computing
Technics

System programming in the Unix environment
Syllabus

Requisites of the Course

Cycle of Higher Education First cycle of higher education (Bachelor’s degree)

Field of Study 12 Information Technologies
Speciality 123 Computer Engineering
Education Program Computer Systems and Networks
Type of Course Selective
Mode of Studies Full-time
Year of studies, semester 4 year (7 semester)

ECTS workload
4 credits (ECTS). Time allotment – 108 hours, including 36 hours of lectures, 18
hours of practice, and 54 hours of self-study.

Testing and assessment Test
Course Schedule 1.5 classes per week by the timetable http://rozklad.kpi.ua/
Language of Instruction English

Course Instructors
Lecturer: senior lecturer, Andrey Simonenko, comsys.spz@gmail.com
Practice: senior lecturer, Andrey Simonenko, comsys.spz@gmail.com

Access to the course https://drive.google.com/drive/folders/16sTKRto-CYGMicfvVLhjKBBl3kt5tTwZ

Outline of the Course
1. Course description, goals, objectives, and learning outcomes

What will be studied. System programming in the Unix environment, that is, the development of system
programs for Unix-like operating systems at the level of using system calls to interact with the kernel will
be studied. Thorough information on the POSIX functions (and sufficient information on the
implementation of the corresponding system calls) used in the development of system programs will be
provided. The discipline is not focused on system programming in any specific implementation of a Unix-
like operating system, portable system programming will be studied. The discipline consists of the
following topics: program execution environment, process management, working with files, working with
signals, working with pipes, advanced input/output, process memory management, pseudo-terminal
programming and others.

Why it is interesting/necessary to study. It is advisable to study this discipline for those who will develop
system programs for Unix-like operating systems. The tasks are programmed in C, or C++, or Rust, but
the acquired knowledge will be useful in solving some system tasks for Unix-like operating systems in
other programming languages.

What you can learn (learning results). Develop system programs for Unix-like operating systems in the
C, or C++, or Rust programming language that control processes, work with files, work with signals, use
advanced input/output, work with pipes, work with pseudo-terminals.

How to use the acquired knowledge and skills (competencies). The acquired knowledge can be used in
the development of system programs for Unix-like operating systems, to support the source code of
existing system programs for Unix-like operating systems, in the development of more effective
application programs.

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

Ability to program in C, or C++, or Rust and ability to work in a Unix-like operating system at the user
level. Basic knowledge of programming, data structures and algorithms.

3. Content of the course

Topic 1. Program execution environment
Topic 2. File system tree
Topic 3. File descriptor
Topic 4. Users and credentials
Topic 5. Signals
Topic 6. Process control
Topic 7. Pipe and FIFO

4. Coursebooks and teaching resources

1. The Open Group. Single UNIX specification, version 4 - IEEE and The Open Group, 2018.
2. W. Richard Stevens, Stephen A. Rago. Advanced Programming in the UNIX Environment, 3rd edition. -

Addison-Wesley Professional, 2013 - 1032 p.
3. Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System Programming Handbook,

1st edition. - No Starch Press, 2010. - 1552 p.

Educational content
5. Methodology

Parts, topics Total, h Lectures, h Laboratory
works, h

Self-study, h

Topic 1. Program execution environment
Topic 2. File system tree
Topic 3. File descriptor
Topic 4. Users and credentials
Topic 5. Signals
Topic 6. Process control
Topic 7. Pipe and FIFO

17
12
17
12
14
18
18

6
5
5
5
5
5
5

4

4

5
5

7
7
8
7
9
8
8

Test 3

Total 108 36 18 54

Laboratory works:

1. Setting up the development environment (4 h)
2. File system tree (4 h)
3. Command interpreter (5 h)
4. Distributed shared memory (5 h)

6. Self-study

In the process of understanding topics from lectures and performing laboratory works students must
consolidate the knowledge gained during lectures and practical work, self-study certain topics using
information from Internet, deepen their knowledge for further study.

Self-study is the following:

1. Studying and understanding topics from previous lectures.
2. Performing tasks given for self-study.

3. Performing laboratory works.
4. Writing reports for laboratory works.

Policy and Assessment
7. Course policy

Course policy completely corresponds to rules and regulations published by KPI. To pass a laboratory
work one must score 60% of the maximum number of points for it. To be admitted to the test, one must
pass all laboratory works. To obtain the first attestation it is necessary to have credited the first
laboratory work. To obtain the second attestation it is necessary to have credited the first and second
laboratory works. The number of attempts to pass any laboratory work is not limited. Checks of
laboratory works are performed according to the group timetable. If in the performed laboratory work
there are errors or non-compliance with the conditions of the laboratory work and if one refuses to
correct errors or non-compliance, the laboratory work is not credited or credited with lower score.

8. Monitoring and grading policy

According to regulations published by KPI maximum number of 100 points is evenly divided between
laboratory works. Students who have fulfilled all the conditions for admission to the test, i.e. have a
rating of 60 points and above, receive a grade corresponding to their rating. Students who wish to
improve their rating can write a credit control work at the final scheduled class of the discipline in the
semester. The credit control work consists of thress questions, the maximum number of possible points of
100 for the credit control work is evenly divided between these questions. The student receives the
higher of the grades obtained by the results of the credit control work or by the rating.

The final performance score or the results of the Pass/Fail are adopted by KPI grading system as follows:
Score Grade

100-95 Excellent
94-85 Very good
84-75 Good
74-65 Satisfactory
64-60 Sufficient

Below 60 Fail
Course requirements are not met Not Graded

Syllabus of the course

Is designed by teacher senior lecturer, Andrey Simonenko

Adopted by Department of Computing Technics (protocol № 10 25.05.2022)

Approved by the Faculty Board of Methodology (protocol № 10 09.06.2022)

	Requisites of the Course
	Outline of the Course
	1. Course description, goals, objectives, and learning outcomes
	2. Prerequisites and post-requisites of the course (the place of the course in the scheme of studies in accordance with curriculum)
	3. Content of the course
	4. Coursebooks and teaching resources
	Educational content
	5. Methodology
	6. Self-study
	Policy and Assessment
	7. Course policy
	8. Monitoring and grading policy

