
Емблема 
кафедри
(за наявності)

Department of Computing 
Technics

Design and Implementation of Operating Systems
Syllabus

Requisites of the Course

Cycle of Higher Education First cycle of higher education (Bachelor’s degree)

Field of Study 12 Information Technologies
Speciality 123 Computer Engineering
Education Program Computer Systems and Networks
Type of Course Selective
Mode of Studies Full-time
Year of studies, semester 4 year (7 semester)

ECTS workload
4 credits (ECTS). Time allotment – 108 hours, including 36 hours of lectures, 18 
hours of practice, and 54 hours of self-study.

Testing and assessment Test
Course Schedule 1.5 classes per week by the timetable http://rozklad.kpi.ua/
Language of Instruction English

Course Instructors
Lecturer: senior lecturer, Andrey Simonenko, comsys.spz@gmail.com
Practice: senior lecturer, Andrey Simonenko, comsys.spz@gmail.com

Access to the course https://drive.google.com/drive/folders/17zhNyNEvwtkHPXgndj5gkn3OBfwjM9Fy

Outline of the Course
1. Course description, goals, objectives, and learning outcomes

What will be studied. Principles of functioning, architecture and implementation of kernels of general-
purpose operating systems will be studied. Implementations of Unix-like operating system kernels and
implementations of other kernel types are taken as a basis, that is, the discipline is not focused on any
one specific  operating system.  Thorough information on  tasks  and methods  of  solving them in  the
operating system kernel  at  a low level  of  implementation is  provided.  The discipline consists  of  the
following  parts:  kernel  and  processes,  support  for  multithreaded  programs,  file  systems,  memory
management.

Why it is interesting/necessary to study. It is advisable to study this discipline for those who will develop
operating system kernels or parts of operating system kernels. This discipline is also useful for system
programmers and application programmers for  an in-depth understanding of  the functioning of  the
operating system, that will allow to develop more efficient programs.

What you can learn (learning results). Prepare to develop and understand the source code of parts of
general  purpose operating system kernels  that  implement process and  thread management,  system
calls, file systems, memory management.

How to use the acquired knowledge and skills (competencies). The acquired knowledge can be used in
the  development  of  kernels  of  operating systems,  to  support  the  source  code of  existing  operating
system kernels, in the development of effective system and application programs.

2. Prerequisites  and  post-requisites  of  the  course  (the  place  of  the  course  in  the scheme of
studies in accordance with curriculum)

Understanding Assembler, understanding C or C++ to read examples in lectures. Basic knowledge of the
disciplines Programming, Data Structures and Algorithms, Computer Architecture, System Programming.



3. Content of the course 

Part 1. Kernel and processes

Topic 1.1. Definition of the OS kernel
Topic 1.2. System modes and contexts
Topic 1.3. Switching to kernel mode
Topic 1.4. Hardware interrupts handling
Topic 1.5. System calls
Topic 1.6. Involuntary context switching
Topic 1.7. Voluntary context switching
Topic 1.8. Signals
Topic 1.9. Monolithic kernel and microkernel
Topic 1.10. Process states diagram

Part 2. Support for multithreaded programs

Topic 2.1. Definition of multithreaded program
Topic 2.2. N:1 mode
Topic 2.3. 1:1 mode
Topic 2.4. N:M mode

Part 3. File systems

Topic 3.1. Definition of FS
Topic 3.2. Virtual File System
Topic 3.3. Stackable FS
Topic 3.4. FS for flash memory
Topic 3.5. Requirements for modern local FS

Part 4. Memory Management

Topic 4.1. Segmented memory organization
Topic 4.2. Virtual memory
Topic 4.3. Page replacement algorithms
Topic 4.4. Shared memory

4. Coursebooks and teaching resources

1. Andrew Tanenbaum, Herbert Bos. Modern Operating Systems, 4th edition - Pearson, 2014. - 1136 p.
2. Daniel P. Bovet, Marco Cesati. Understanding the Linux Kernel, 3rd edition - O’Reilly Media, 2005. -

944 p. 
3. Richard McDougall, Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture, 2nd

edition - Prentice Hall, 2006. - 1020 p.
4. Chris Cooper, Chris Moore. HP-UX 11i Internals - Prentice Hall, 2004. - 432 p.
5. Amit Singh. Mac OS X Internals: A Systems Approach. - Addison-Wesley Professional, 2006. - 1641 p.



Educational content
5. Methodology

Parts, topics Total, h Lectures, h Laboratory
works, h

Self-study, h

Part 1. Kernel and processes

Topic 1.1. Definition of the OS kernel
Topic 1.2. System modes and contexts
Topic 1.3. Switching to kernel mode
Topic 1.4. Hardware interrupts handling
Topic 1.5. System calls
Topic 1.6. Involuntary context switching
Topic 1.7. Voluntary context switching
Topic 1.8. Signals
Topic 1.9. Monolithic kernel and microkernel
Topic 1.10. Process states diagram

26 10 2 14

Part 2. Support for multithreaded programs

Topic 2.1. Definition of multithreaded program
Topic 2.2. N:1 mode
Topic 2.3. 1:1 mode
Topic 2.4. N:M mode

20 8 12

Part 3. File systems

Topic 3.1. Definition of FS
Topic 3.2. Virtual File System
Topic 3.3. Stackable FS
Topic 3.4. FS for flash memory
Topic 3.5. Requirements for modern local FS

32 10 8 14

Part 4. Memory Management

Topic 4.1. Segmented memory organization
Topic 4.2. Virtual memory
Topic 4.3. Page replacement algorithms
Topic 4.4. Shared memory

30 8 8 14

Test 3

Total 108 36 18 54

Laboratory works (three laboratory works to choose from):

1. General purpose memory allocator using tags (5 h)
2. General purpose memory allocator using slab allocation (7 h)
3. File system, part 1 (7 h)
4. File system, part 2 (5 h)
5. Page replacement algorithms (6 h)



6. Self-study

In the process of understanding topics from lectures and performing  laboratory works students must
consolidate the knowledge gained during lectures and practical work,  self-study certain topics  using
information from Internet, deepen their knowledge for further study.

Self-study is the following:

1. Studying and understanding topics from previous lectures.
2. Performing tasks given for self-study.
3. Performing laboratory works.
4. Writing reports for laboratory works.

Policy and Assessment
7. Course policy

Course policy completely corresponds to rules and regulations published by KPI. To  pass a laboratory
work one must score 60% of the maximum number of points for it. To be admitted to the test, one must
pass  all  laboratory  works.  To  obtain  the  first  attestation  it  is  necessary  to  have  credited  the  first
laboratory work. To obtain the second attestation it is necessary to have credited the first and second
laboratory  works.  The  number  of  attempts  to  pass  any  laboratory  work  is  not  limited.  Checks  of
laboratory works are performed according to the group timetable. If in the performed laboratory work
there are errors or non-compliance with the conditions of the laboratory work and if one refuses to
correct errors or non-compliance, the laboratory work is not credited or credited with lower score.

8. Monitoring and grading policy

According to regulations published by KPI maximum number of 100 points is  evenly  divided between
laboratory works. Students who have fulfilled all the conditions for admission to the test, i.e. have a
rating of 60 points and above, receive a grade corresponding to their rating. Students who wish to
improve their rating can write a credit control work at the final scheduled class of the discipline in the
semester. The credit control work consists of four questions, the maximum number of possible points of
100 for the credit  control  work is  evenly  divided between these questions.  The student  receives the
higher of the grades obtained by the results of the credit control work or by the rating.

The final performance score or the results of the Pass/Fail are adopted by KPI grading system as follows:
Score Grade

100-95 Excellent
94-85 Very good
84-75 Good
74-65 Satisfactory
64-60 Sufficient

Below 60 Fail
Course requirements are not met Not Graded

Syllabus of the course

Is designed by teacher senior lecturer, Andrey Simonenko

Adopted by Department of Computing Technics (protocol № 10 25.05.2022)

Approved by the Faculty Board of Methodology (protocol № 10 09.06.2022)


	Requisites of the Course
	Outline of the Course
	1. Course description, goals, objectives, and learning outcomes
	2. Prerequisites and post-requisites of the course (the place of the course in the scheme of studies in accordance with curriculum)
	3. Content of the course
	4. Coursebooks and teaching resources
	Educational content
	5. Methodology
	6. Self-study
	Policy and Assessment
	7. Course policy
	8. Monitoring and grading policy

