
Технології графічного процесінгу

(Масивно-паралельні обчислення на
графічних прискорювачах

...
Massively Parallel Computing on Graphic

Processing Units - GPUs)

Lecture 7. CUDA Specialized Libraries
and Development Tools

Yuri G. Gordienko
(NTUU-KPI, 2021)

(on the basis of materials by NVIDIA, W.Hwu, D.Kirk, S.Tomow,
A.Klockner)

From the previous lecture:
Parallel Patterns

• Think at a higher level than individual CUDA kernels

• Specify what to compute, not how to compute it

• Let programmer worry about algorithm

• Defer pattern implementation to someone else

From the previous lecture:
Parallel Computing Scenarios

• Many parallel threads need to generate a single result

 Reduce

• Many parallel threads need to partition data

 Split

• Many parallel threads produce variable output /
thread

 Compact / Expand

From the previous lecture:
Current trends in GPU programming

Parallel Computing Algorithms:
CUDA Libraries –> Thrust

What is Thrust?

• High-Level Parallel Algorithms Library

• Parallel Analog of the C++ Standard Template
Library (STL)

• Performance-Portable Abstraction Layer

• Productive way to program CUDA

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

int main(void)
{
 // generate 16M random numbers on the host
 thrust::host_vector<int> h_vec(1 << 24);
 thrust::generate(h_vec.begin(), h_vec.end(), rand);
 // transfer data to the device
 thrust::device_vector<int> d_vec = h_vec;
 // sort data on the device
 thrust::sort(d_vec.begin(), d_vec.end());
 // transfer data back to host
 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
 return 0;
}

Code Example: Magically Simple!

Other
CUDA Specialized Libraries

CUDA Specialized Libraries: CUBLAS

CUDA Specialized Libraries: CUBLAS

• Cuda Based Linear Algebra Subroutines

• SAXPY, conjugate gradient, linear solvers.

• 3D reconstruction of planetary nebulae
example

CUBLAS

CUBLAS Features

CUBLAS: Performance – CPU vs GPU

CUBLAS

• GPU variant 100 times faster than CPU version

• Matrix size is unlimited (limited by graphics
card memory and texture size)

• Although taking advantage of sparce matrices
will help reduce memory consumption, sparse
matrix storage is not implemented by CUBLAS.

CUDA Specialized Libraries: CUFFT

CUDA Specialized Libraries: CUFFT

• Cuda Based Fast Fourier Transform Library.

• The FFT is a divide-and-conquer algorithm for
efficiently computing discrete Fourier
transforms of complex or real-valued data
sets,

• One of the most important and widely used
numerical algorithms, with applications that
include computational physics and general
signal processing

CUFFT

CUFFT

• If number of elements <8192, that it is slower
than parallel fftw

• If >8192, 5x speedup over threaded fftw

 and 10x speedup over serial fftw.

CUFFT: Example

CUFFT: Performance – CPU vs GPU

CUDA Specialized Libraries: MAGMA

CUDA Specialized Libraries: MAGMA

• Matrix Algebra on GPU and Multicore
Architectures

• MAGMA aims to develop a dense linear
algebra library similar to LAPACK, but for
heterogeneous/hybrid architectures

like the current "Multicore+GPU" systems.

CUDA Specialized Libraries: CULA

CUDA Specialized Libraries: CULA

• CULA is EM Photonics' GPU-accelerated
numerical linear algebra library that contains a
growing list of LAPACK functions.

• LAPACK stands for Linear Algebra PACKage. It
is an industry standard computational library
that has been in development for over 20
years and provides a large number of routines
for factorization, decomposition, system
solvers, and eigenvalue problems.

CUDA Specialized Libraries: PyCUDA

CUDA Specialized Libraries: PyCUDA

• PyCUDA – Python CUDA

• It lets you access Nvidia CUDA parallel
computation API from Python

PyCUDA

PyCUDA - Differences

• Object cleanup tied to lifetime of objects. This idiom, often called RAII
in C++, makes it much easier to write correct, leak- and crash-free
code. PyCUDA knows about dependencies, too, so (for example) it
won’t detach from a context before all memory allocated in it is also
freed.

• Convenience. Abstractions like pycuda.driver.SourceModule and
pycuda.gpuarray.GPUArray make CUDA programming even more
convenient than with Nvidia’s C-based runtime.

• Completeness. PyCUDA puts the full power of CUDA’s driver API at
your disposal, if you wish.

• Automatic Error Checking. All CUDA errors are automatically translated
into Python exceptions.

• Speed. PyCUDA’s base layer is written in C++, so all the niceties above
are virtually free.

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

PyCUDA - Example

CUDA Specialized Libraries: CUDPP

CUDA Specialized Libraries: CUDPP

• CUDPP: CUDA Data Parallel Primitives Library

• CUDPP is a library of data-parallel algorithm
primitives such as
– parallel prefix-sum (”scan”)

– parallel sort

– parallel reduction

CUDPP – Design Goals

• Performance: aims to provide best-of-class
performance for simple primitives.

• Modularity: primitives easily included in other
applications.
– CUDPP is provided as a library that can link

against other applications.

– CUDPP calls run on the GPU on GPU data.
Thus they can be used as standalone calls
on the GPU (on GPU data initialized by the
calling application) and, more importantly,
as GPU components in larger CPU/GPU
applications

CUDPP – Layers

CUDPP is implemented as 4 layers:
• Public Interface is the external library interface,
which is the entry point for most applications.
It calls into the Application-Level API.
• Application-Level API comprises functions callable
from CPU code. These functions execute code jointly
on the CPU (host) and the GPU by calling into the
Kernel-Level API below them.
• Kernel-Level API comprises functions that run
entirely on the GPU across an entire grid of thread
blocks. They may call the CTA-Level API.
• CTA (Cooperative Thread Array)-Level API comprises
functions that run entirely on the GPU within a single
CTA (thread) block. They are low-level functions that
implement core data-parallel algorithms, typically by
processing data within CUDA shared memory.

CUDPP

CUDPP_DLL CUDPPResult
 cudppSparseMatrixVectorMultiply(CUDPPHandle sparseMatrixHandle,
void * d_y,const void * d_x)

Perform matrix-vector multiply y = A*x for arbitrary sparse matrix A and
vector x.

http://www.gpgpu.org/static/developer/cudpp/rel/cudpp_1.0a/html/cudpp_8h.html

CUDPP - Example

CUDPPScanConfig config;

config.direction = CUDPP_SCAN_FORWARD; config.exclusivity =
CUDPP_SCAN_EXCLUSIVE; config.op = CUDPP_ADD;

config.datatype = CUDPP_FLOAT; config.maxNumElements = numElements;
config.maxNumRows = 1;

config.rowPitch = 0;

cudppInitializeScan(&config);

cudppScan(d_odata, d_idata, numElements, &config);

CUDA Specialized Libraries: HONEI

CUDA Specialized Libraries: HONEI

A collection of libraries for numerical
computations targeting multiple processor

architectures

HONEI

• HONEI, an open-source collection of libraries offering a
hardware oriented approach to numerical calculations.

• HONEI abstracts the hardware, and applications written
on top of HONEI can be executed on a wide range of
computer architectures such as CPUs, GPUs and the Cell
processor.
– The most important frontend library is libhoneila, HONEI's

linear algebra library. It provides templated container classes
for different matrix and vector types.

– The numerics and math library libhoneimath contains high
performance kernels for iterative linear system solvers as well
as other useful components like interpolation and
approximation.

CUDA Development Tools

CUDA Development Tools:
NVIDIA Nsight

Nsight in Various Integrated Development Environment

Nsight
Visual Studio Edition

Nsight
Eclipse Edition

Nsight

• New project templates and integration with
CUDA SDK samples make getting started quick
and easy

• CUDA code highlighting makes it easy to
navigate heterogeneous CUDA code

• Dynamic HLSL shader editing

CUDA Development Tools:
CUDA-gdb

vs.
Nsight Debug tools

CUDA-gdb

Simple Debugger integrated into gdb

Nsight - Debug

• Debug CPU and GPU code simultaneously and seamlessly

• Debug shaders as they are being executed on the GPU

• Real-time inspection of Direct3D 9/10/11 API calls

CUDA Development Tools:
Visual Profiler

CUDA Visual Profiler

CUDA Visual Profiler

Nsight - Profile

• Easily identify performance bottlenecks using a unified CPU
and GPU trace of application activity

• In-session kernel replay mode for more accurate profiling

• Profile frames and automatically measure GPU bottlenecks

• Visualizing concurrency of execution

CUDA Development Tools: MemCheck

GPU programming –
CUDA –

OpenACC standard for directives

• New standard for parallel computing developed by compiler
makers (2012) - http://www.openacc-standard.org/

• OpenACC works somewhat like OpenMP

• Goal is to provide simple directives to the compiler which
enable it to accelerate the application on the GPU

• The tool is aimed at developers aiming to quickly speed up
their code without extensive recoding in CUDA

• As tool is very new and this course focuses on CUDA, only a
brief demo of OpenACC follows

OpenACC - Overview

http://www.openacc-standard.org/

OpenACC - Principle

OpenACC – Efficiency

OpenACC - Efficiency

OpenACC - Efficiency

LS-DALTON: Benchmark on Oak Ridge Titan Supercomputer, AMD CPU vs Tesla K20X GPU. Test
input: Alanine-3 on CCSD(T) module.

NICAM: Benchmark on TiTech TSUBAME 2.5, Westmere CPU vs. K20X.

OpenACC - Efficiency

	Slide 1
	From the previous lecture: Parallel Patterns
	From the previous lecture: Parallel Computing Scenarios
	From the previous lecture: Current trends in GPU programming
	Parallel Computing Algorithms: CUDA Libraries –> Thrust
	What is Thrust?
	Code Example: Magically Simple!
	Other CUDA Specialized Libraries
	CUDA Specialized Libraries: CUBLAS
	CUDA Specialized Libraries: CUBLAS
	CUBLAS
	CUBLAS Features
	CUBLAS: Performance – CPU vs GPU
	CUBLAS
	CUDA Specialized Libraries: CUFFT
	CUDA Specialized Libraries: CUFFT
	CUFFT
	CUFFT
	CUFFT: Example
	CUFFT: Performance – CPU vs GPU
	CUDA Specialized Libraries: MAGMA
	CUDA Specialized Libraries: MAGMA
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	CUDA Specialized Libraries: CULA
	CUDA Specialized Libraries: CULA
	Slide 30
	Slide 31
	CUDA Specialized Libraries: PyCUDA
	CUDA Specialized Libraries: PyCUDA
	PyCUDA
	PyCUDA - Differences
	PyCUDA - Example
	Slide 37
	CUDA Specialized Libraries: CUDPP
	CUDA Specialized Libraries: CUDPP
	CUDPP – Design Goals
	CUDPP – Layers
	CUDPP
	CUDPP - Example
	CUDA Specialized Libraries: HONEI
	CUDA Specialized Libraries: HONEI
	HONEI
	CUDA Development Tools
	CUDA Development Tools: NVIDIA Nsight
	Nsight in Various Integrated Development Environment
	Nsight
	CUDA Development Tools: CUDA-gdb vs. Nsight Debug tools
	CUDA-gdb
	Slide 53
	Slide 54
	Nsight - Debug
	CUDA Development Tools: Visual Profiler
	CUDA Visual Profiler
	CUDA Visual Profiler
	Nsight - Profile
	CUDA Development Tools: MemCheck
	Slide 61
	Slide 62
	GPU programming – CUDA – OpenACC standard for directives
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

