Технології графічного процесінгу

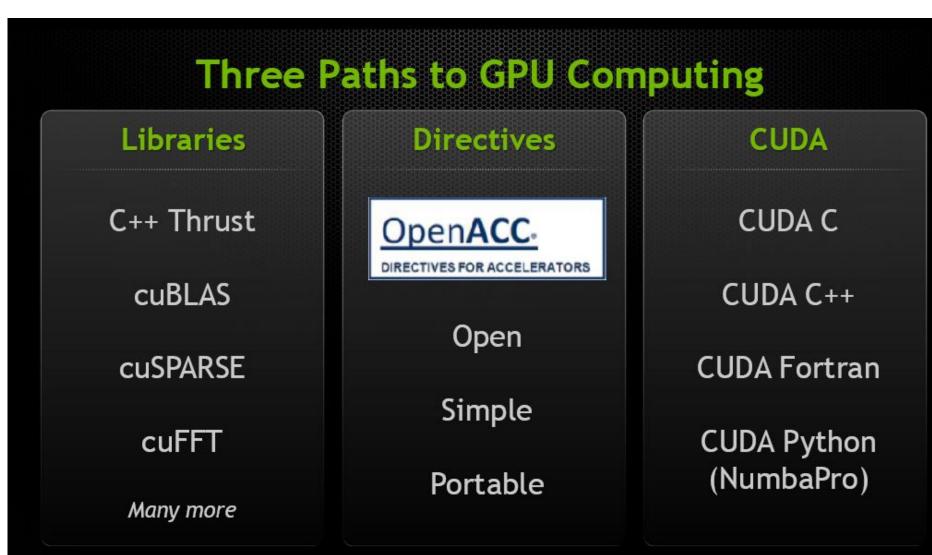
(Масивно-паралельні обчислення на графічних прискорювачах

Massively Parallel Computing on Graphic Processing Units - GPUs)

Lecture 7. CUDA Specialized Libraries and Development Tools Yuri G. Gordienko (NTUU-KPI, 2021)

(on the basis of materials by NVIDIA, W.Hwu, D.Kirk, S.Tomow, A.Klockner)

From the previous lecture: Parallel Patterns


- Think at a higher level than individual CUDA kernels
- Specify what to compute, not how to compute it
- Let programmer worry about algorithm
- Defer pattern implementation to someone else

From the previous lecture: Parallel Computing Scenarios

- Many parallel threads need to generate a single result

 Reduce
- Many parallel threads need to partition data
 Split
- Many parallel threads produce variable output / thread
 - **Compact / Expand**

From the previous lecture: Current trends in GPU programming

Parallel Computing Algorithms: CUDA Libraries -> Thrust

What is Thrust?

• High-Level Parallel Algorithms Library

 Parallel Analog of the C++ Standard Template Library (STL)

Performance-Portable Abstraction Layer

• Productive way to program CUDA

Code Example: Magically Simple!

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

```
int main(void)
```

{

}

// generate 16M random numbers on the host thrust::host_vector<int> h_vec(1 << 24); thrust::generate(h_vec.begin(), h_vec.end(), rand); // transfer data to the device thrust::device_vector<int> d_vec = h_vec; // sort data on the device thrust::sort(d_vec.begin(), d_vec.end()); // transfer data back to host thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin()); return 0; Other CUDA Specialized Libraries

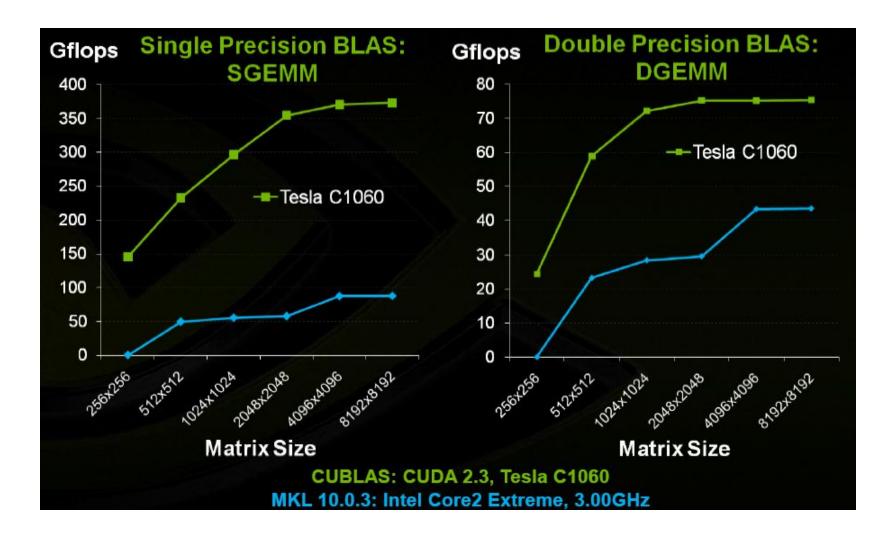
CUDA Specialized Libraries: CUBLAS

CUDA Specialized Libraries: CUBLAS

- Cuda Based Linear Algebra Subroutines
- SAXPY, conjugate gradient, linear solvers.
- 3D reconstruction of planetary nebulae example

CUBLAS

CUDA accelerated BLAS (Basic Linear Algebra Subprograms)


- Create matrix and vector objects in GPU memory space
- Fill objects with data
- Call sequence of CUBLAS functions
- Retrieve data from GPU (optionally)

```
while( i++ < max_iter && deltanew > stop_tol )
{
    cublasSgemv ('n', N, N, 1.0, d_A, N, d_d, 1, 0, d_y, 1);
    float alpha = deltanew / cublasSdot(N,d_d,1,d_y,1);
    cublasSaxpy(N, alpha,d_d,1,d_x,1);
    // every 50 iterations, restart residual
    if (i % 50 == 0) {
        cublasSgemv('n', N, N, 1.0, d_A, N, d_x, 1, 0, d_y, 1);
        cublasScopy(N, d_b, 1, d_r, 1);
        cublasSaxpy(N, -1.0, d_y, 1, d_r, 1);
    }
    else
        cublasSaxpy(N,-alpha,d_y,1,d_r,1);
```

CUBLAS Features

Single precision data: Level 1 (vector-vector O(N)) Level 2 (matrix-vector O(N²)) Level 3 (matrix-matrix O(N³)) Complex single precision data: Level 1 CGEMM Double precision data: Level 1: DASUM, DAXPY, DCOPY, DDOT, DNRM2, DROT, DROTM, DSCAL, DSWAP, ISAMAX, IDAMIN Level 2: DGEMV, DGER, DSYR, DTRSV Level 3: ZGEMM, DGEMM, DTRSM, DTRMM, DSYMM, DSYRK, DSYR2K

CUBLAS: Performance – CPU vs GPU

CUBLAS

- GPU variant **100 times faster** than CPU version
- Matrix size is unlimited (limited by graphics card memory and texture size)
- Although taking advantage of sparce matrices will help reduce memory consumption, sparse matrix storage is not implemented by CUBLAS.

CUDA Specialized Libraries: CUFFT

CUDA Specialized Libraries: CUFFT

- Cuda Based Fast Fourier Transform Library.
- The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier transforms of complex or real-valued data sets,
- One of the most important and widely used numerical algorithms, with applications that include computational physics and general signal processing

CUFFT

CUFFT is the CUDA FFT library Computes parallel FFT on an NVIDIA GPU Uses 'Plans' like FFTW Plan contains information about optimal configuration for a given transform. Plans can be persisted to prevent recalculation. Good fit for CUFFT because different kinds of FFTs require different thread/block/grid configurations.

CUFFT

- If number of elements <8192, that it is **slower** than parallel **fftw**
- If >8192, 5x speedup over threaded fftw and 10x speedup over serial fftw.
 - ID, 2D and 3D transforms of complex and realvalued data
 - Batched execution for doing multiple 1D transforms in parallel
 - 1D transform size up to 8M elements
 - 2D and 3D transform sizes in the range [2,16384]
 - In-place and out-of-place transforms for real and complex data.

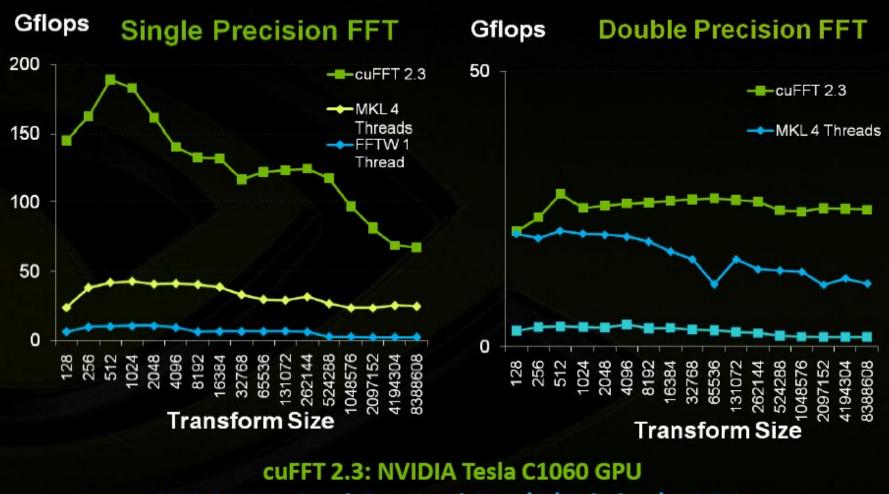
CUFFT: Example

Complex 2D transform

#define NX 256
#define NY 128

cufftHandle plan; cufftComplex *idata, *odata; cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY); cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);

```
/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX,NY, CUFFT_C2C);
```


/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

```
/* Destroy the CUFFT plan. */
cufftDestroy(plan);
```

```
cudaFree(idata);
cudaFree(odata);
```

CUFFT: Performance – CPU vs GPU

MKL 10.1r1: Quad-Core Intel Core i7 (Nehalem) 3.2GHz

CUDA Specialized Libraries: MAGMA

CUDA Specialized Libraries: MAGMA

- Matrix Algebra on GPU and Multicore Architectures
- MAGMA aims to develop a dense linear algebra library similar to LAPACK, but for heterogeneous/hybrid architectures

like the current "Multicore+GPU" systems.

MAGMA: Matrix Algebra on GPU and Multicore Architectures

MAGMA and LAPACK

- MAGMA based on LAPACK, extended for heterogeneous systems
- MAGMA similar to LAPACK in functionality, data storage, interface

Features

- Goal: easy porting from LAPACK to take advantage of the new GPU + multicore architectures
- Leverage: experience developing open source Linear Algebra software (LAPACK, ScaLAPACK, BLAS, ATLAS)
- Incorporate: newest numerical developments (e.g. communication avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

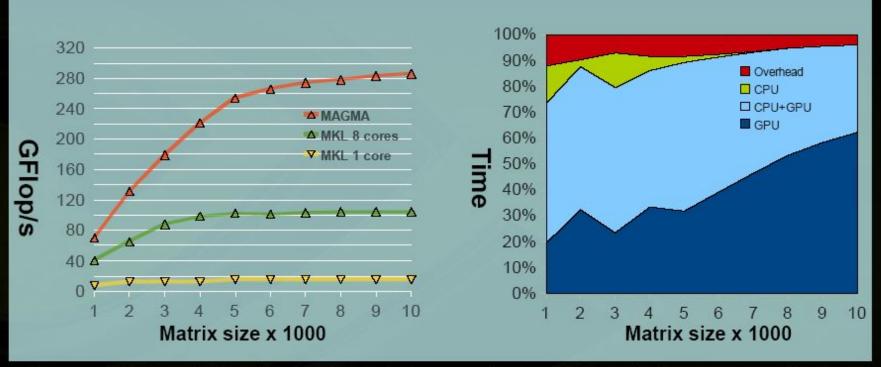
MAGMA Developers

- University of Tennessee, Knoxville
- University of California, Berkeley
- University of Colorado, Denver
- Number of contributors from the LA community

MAGMA Release

MAGMA version 0.1 (08/04/09)

- One-sided factorizations [for linear solvers] in single and double precision arithmetic
- Hardware target: 1 core + 1 GPU (CUDA enabled)


MAGMA version 0.2 (11/14/09)

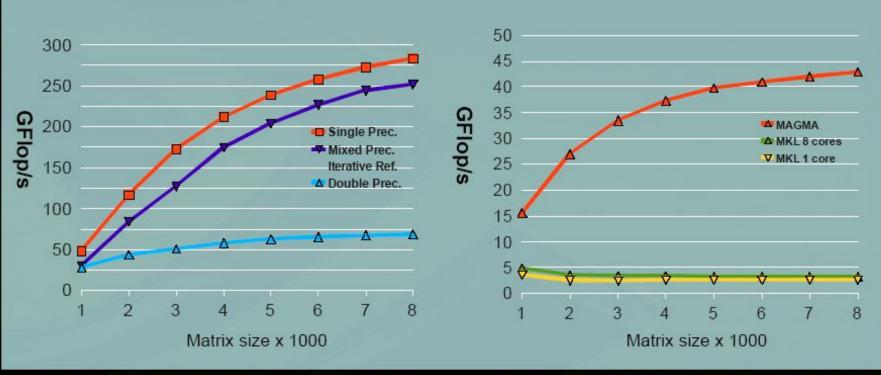
- One-sided factorizations in complex arithmetic
- Two-sided factorizations for eigenvalue solvers
- Linear solvers, including least squares and mixed precision iterative solvers
- MAGMA BLAS (gemm optimized for rectangular matrices, triangular solvers, gemv, etc)
- Hardware target:
 - 1 core + 1 GPU (all)
 - multicore + multi-GPU (one-sided factorizations)

MAGMA Version 0.1 Performance

QR factorization in single precision arithmetic, CPU interface Performance of MAGMA vs MKL MAGMA QR time breakdown

GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) GPU BLAS : CUBLAS 2.2, sgemm peak: 375 GFlop/s CPU BLAS : MKL 10.0 , sgemm peak: 128 GFlop/s

For more performance data, see http://icl.cs.utk.edu/magma

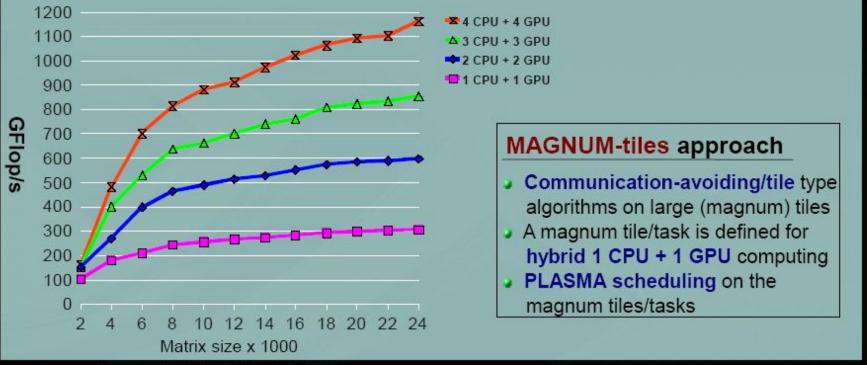

© NVIDIA Corporation 2009

MAGMA Version 0.2 Performance

Linear Solvers [e.g. A x = b using LU Factorization]

Hessenberg factorization [e.g. double precision, CPU interface]

GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) GPU BLAS : CUBLAS 2.2, dgemm peak: 75 GFlop/s CPU BLAS : MKL 10.0 , dgemm peak: 65 GFlop/s


For more performance data, see http://icl.cs.utk.edu/magma

© NVIDIA Corporation 2009

MAGMA Multi-GPU Performance

Cholesky factorization in single precision arithmetic Performance and scalability on 4 GPUs

GPU : NVIDIA Tesla C1070 (4 GPUs @1.44GHz) CPU : AMD Opteron dual socket dual-core (4 cores @1.8 GHz)

For more performance data, see http://icl.cs.utk.edu/magma

NVIDIA Corporation 2009

CUDA Specialized Libraries: CULA

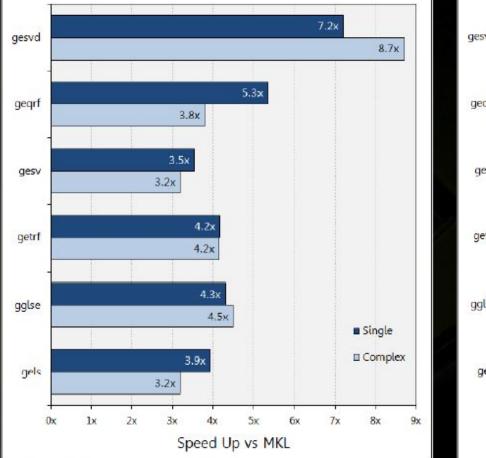
CUDA Specialized Libraries: CULA

- CULA is EM Photonics' GPU-accelerated numerical linear algebra library that contains a growing list of LAPACK functions.
- LAPACK stands for Linear Algebra PACKage. It is an industry standard computational library that has been in development for over 20 years and provides a large number of routines for factorization, decomposition, system solvers, and eigenvalue problems.

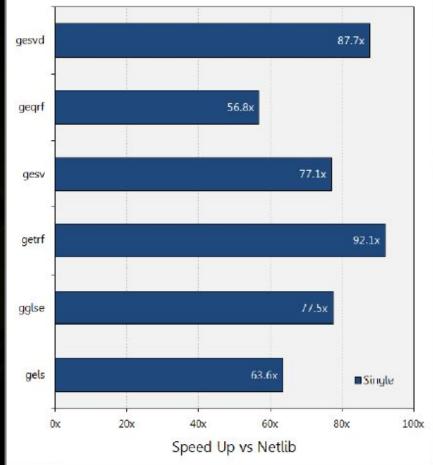
3rd Party Implementation of LAPACK interface from EM Photonics (www.culatools.com)

- Six popular single/complex-single LAPACK functions
- Free!

Description
LU decomposition
System solve
QR factorization
Singular value decomposition
Least squares
Constrained least squares


- Available for purchase
- Adds 18 more routines (and growing)
- Adds Double (D) / Double Complex (Z) •

Function Name	Description
potrf	Cholesky factorization
gebrd	Bidiagonalization
getri	Matrix inversion
getrs	LU Backsolve
trtrs	Triangular solve
gelqf	LQ factorization
posv	Positive-definite system solve


CULA Performance

CULA 1.0 vs Intel MKL 10.2

CULA 1.0 vs Netlib Reference LAPACK

Tesla C1060 vs Intel Core i7, matrix size ~10,000x10,000

Courtesy EM Photonics

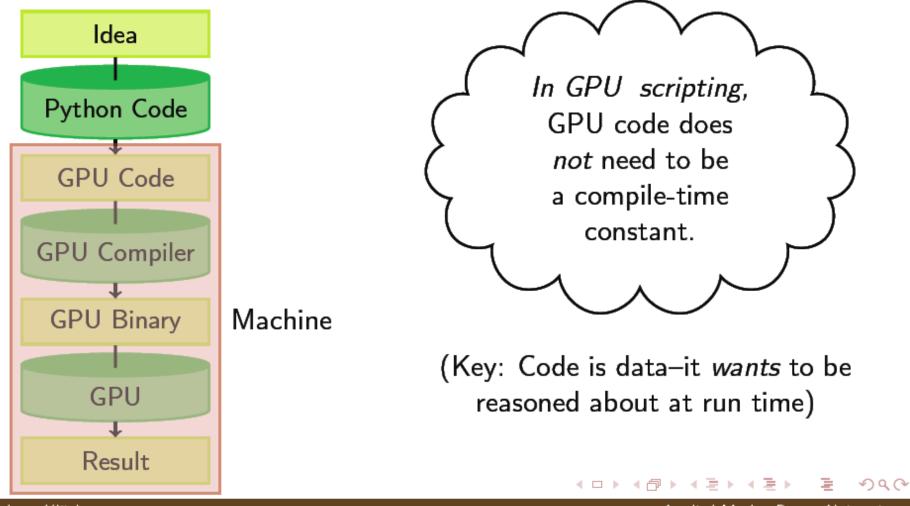
CUDA Specialized Libraries: PyCUDA

CUDA Specialized Libraries: PyCUDA

- PyCUDA Python CUDA
- It lets you access Nvidia CUDA parallel computation API from Python

PyCUDA

3rd party open source, written by Andreas Klöckner Exposes all of CUDA via Python bindings Compiles CUDA on the fly presents CUDA as an interpreted language Integration with numpy Handles memory management, resource allocation CUDA programs are Python strings Metaprogramming - modify source code on-the-fly Like a really complex pre-processor http://mathema.tician.de/software/pycuda


PyCUDA - Differences

- Object cleanup tied to lifetime of objects. This idiom, often called <u>RAII</u> in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won't detach from a context before all memory allocated in it is also freed.
- Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia's C-based runtime.
- Completeness. PyCUDA puts the full power of CUDA's driver API at your disposal, if you wish.
- Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions.
- Speed. PyCUDA's base layer is written in C++, so all the niceties above are virtually free.

PyCUDA - Example

```
import pycuda.driver as cuda
  import pycuda.autoinit
3
  import numpy
4
5
  a = numpy.random.randn(4,4). astype(numpy.oat32)
6
 a_gpu = cuda.mem_alloc(a.size, a.dtype.itemsize)
7
  cuda.memcpy_htod(a_gpu, a)
8
9
  mod = cuda.SourceModule("""
    ___global___ void doublify(float *a)
10
11
   -{
12 int idx = threadIdx.x + threadIdx.y*4;
13 a[ idx ] *= 2.0f;
14
   }
15 """)
16 func = mod.get_function("doublify")
17 func(a_gpu, block=(4,4,1))
18
19 a_doubled = numpy.empty_like(a)
20 cuda.memcpy_dtoh(a_doubled, a_gpu)
21 print a_doubled
22 print a
```

Metaprogramming

Andreas Klöckner

CUDA Specialized Libraries: CUDPP

CUDA Specialized Libraries: CUDPP

- CUDPP: CUDA Data Parallel Primitives Library
- CUDPP is a library of data-parallel algorithm primitives such as
 - parallel prefix-sum ("scan")
 - parallel sort
 - parallel reduction

CUDPP – Design Goals

- **Performance**: aims to provide best-of-class performance for simple primitives.
- **Modularity**: primitives easily included in other applications.
 - CUDPP is provided as a library that can link against other applications.

 CUDPP calls run on the GPU on GPU data. Thus they can be used as standalone calls on the GPU (on GPU data initialized by the calling application) and, more importantly, as GPU components in larger CPU/GPU applications

CUDPP – Layers

CUDPP is implemented as 4 layers:

• **Public Interface** is the external library interface, which is the entry point for most applications. It calls into the **Application-Level API**.

• Application-Level API comprises functions callable from CPU code. These functions execute code jointly on the CPU (host) and the GPU by calling into the Kernel-Level API below them.

- **Kernel-Level API** comprises functions that run entirely on the GPU across an entire grid of thread blocks. They may call the CTA-Level API.
- CTA (Cooperative Thread Array)-Level API comprises functions that run entirely on the GPU within a single CTA (thread) block. They are low-level functions that implement core data-parallel algorithms, typically by processing data within CUDA shared memory.

CUDPP

CUDPP_DLL CUDPPResult

cudppSparseMatrixVectorMultiply(CUDPPHandle *sparseMatrixHandle*, void * *d_y*,const void * *d_x*)

Perform matrix-vector multiply y = A*x for arbitrary sparse matrix A and vector x.

CUDPP - Example

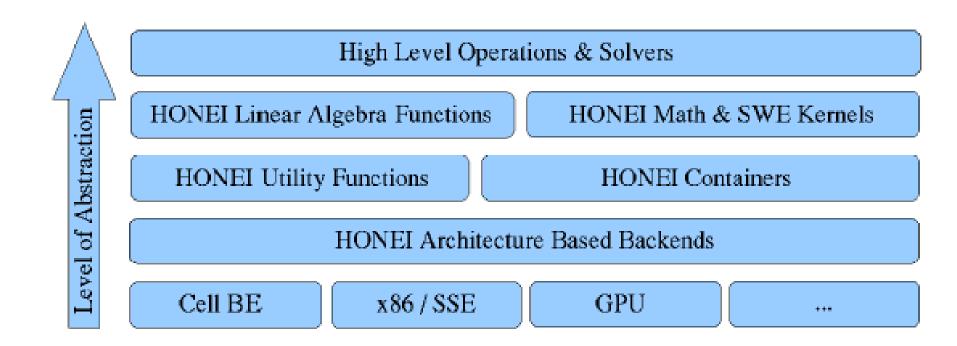
```
CUDPPScanConfig config;
```

```
config.direction = CUDPP_SCAN_FORWARD; config.exclusivity =
```

```
CUDPP_SCAN_EXCLUSIVE; config.op = CUDPP_ADD;
```

```
config.datatype = CUDPP_FLOAT; config.maxNumElements = numElements;
config.maxNumRows = 1;
```

```
config.rowPitch = 0;
```


```
cudppInitializeScan(&config);
```

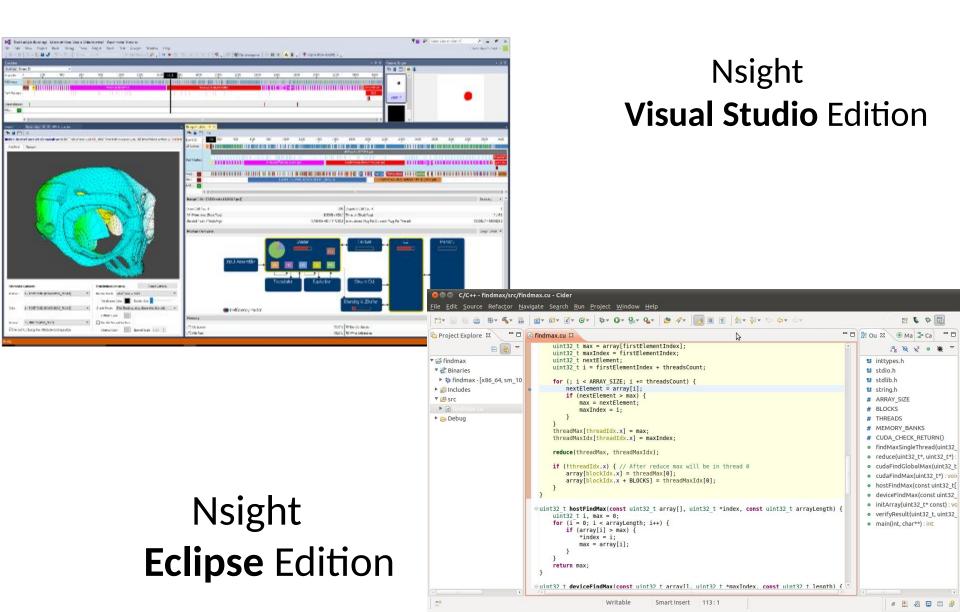
```
cudppScan(d_odata, d_idata, numElements, &config);
```

CUDA Specialized Libraries: HONEI

CUDA Specialized Libraries: HONEI

A collection of libraries for numerical computations targeting multiple processor architectures

HONEI


- HONEI, an open-source collection of libraries offering a hardware oriented approach to numerical calculations.
- HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor.
 - The most important frontend library is **libhoneila**, HONEI's linear algebra library. It provides templated container classes for different matrix and vector types.
 - The numerics and math library libhoneimath contains high performance kernels for iterative linear system solvers as well as other useful components like interpolation and approximation.

CUDA Development Tools

CUDA Development Tools: NVIDIA Nsight

Nsight in Various Integrated Development Environment

Nsight

 New project templates and integration with CUDA SDK samples make getting started quick and easy

• CUDA code highlighting makes it easy to navigate heterogeneous CUDA code

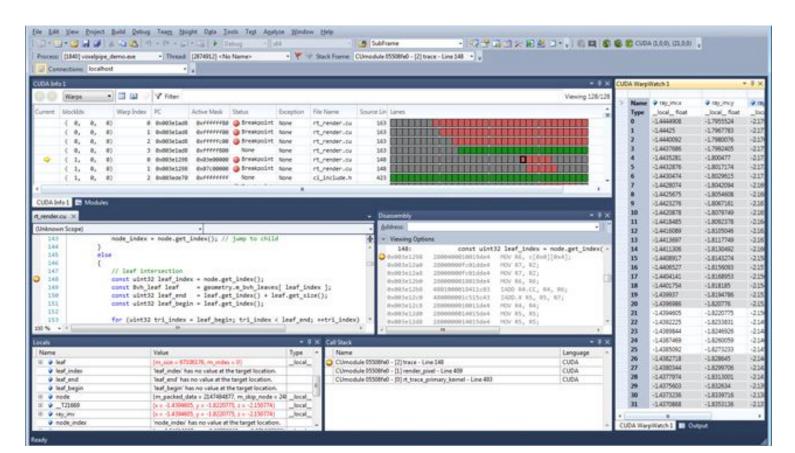
• Dynamic HLSL shader editing

CUDA Development Tools: CUDA-gdb Vs. Nsight Debug tools

CUDA-gdb

Simple Debugger integrated into gdb

Integrated into gdb Supports CUDA C Seamless CPU+GPU development experience Enabled on all CUDA supported 32/64bit Linux distros Set breakpoint and single step any source line Access and print all CUDA memory allocs, local, global, constant and shared vars.

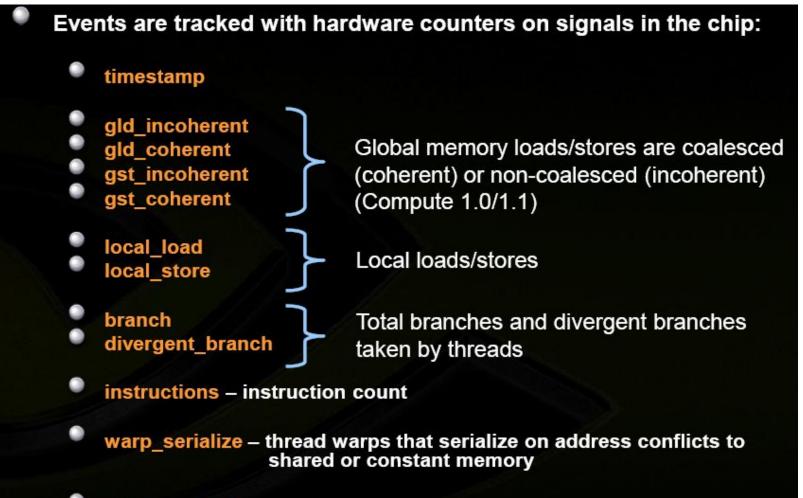

🛞 🕒 🗈 Debug - vectorAdd/src/vectorAdd.cu - Nsight								
File Edit <u>S</u> ource Refac <u>t</u> or Navigate Search Project Run Window	Help							
] ◘ ▾ 🗑 @ △ ⋒] 券 ▾ ⊘ ▾ 🚱 ▾ 🂁 ▾] × № ∞	P4	3. 10 .10	i→ ≂, zt	e 🏇 🖻				
🏂 Debug 🏼 🥜 🖓 🙀 👔 😨 🖓	(×)= Varia	bles 💊 Brea	kpoints 💽 CUDA	🛱 🛋 Modules				
🔻 📅 vectorAdd {0} [device: gk110 (0)] (Breakpoint)				* 🗉				
CUDA Thread (0,0,0) Block (0,0,0)								
CUDA Thread (1,0,0) Block (0,0,0)		Q Search	CUDA Information	1				
All CUDA Threads	▼ 🍪 (0	,0,0)	SM 11	256 threads of 256 ar				
▼ 🍓 Block (0,0,0) [sm: 11]	ø ((0,0,0)	Warp 0 Lane 0	vectorAdd.cu:36 (0x9				
CUDA Thread (0,0,0) [warp: 0 lane: 0] (vectorAdd.cu:36)	Ø ((1,0,0)	Warp 0 Lane 1	c vectorAdd.cu:36 (0x9				
<pre> vectorAdd.cu % vectorAdd.cu % int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < numElements) f { C[i] = A[i] + B[i]; } } } } </pre>		Bit Outline Name Nill NS NS </th <th>III Registers S3 T(0,0,0)B(0,0,0 4 3149824 4 0 0 0 1060608 0</th> <th> ★ ★ □ ★ ▼ □ ★ ↑ □ ★ ↑ □ ★ ↑ □ ★ ↑ □ ↓ ↑ □</th>	III Registers S3 T(0,0,0)B(0,0,0 4 3149824 4 0 0 0 1060608 0	 ★ ★ □ ★ ▼ □ ★ ↑ □ ★ ↑ □ ★ ↑ □ ★ ↑ □ ↓ ↑ □				
<pre> Console ☎ Tasks Problems Sexecutables Memory vectorAdd [C/C++ Application] gdb traces 0x400300800"}, {name="C", value="0x400301000"}, {name="numElements d.cu", fullname="/home/eostroukhov/cuda-workspace/vectorAdd/src, 470,340 (gdb) 470,340 157^done, register-values=[{number="15", value="0x0"}] 470,340 (gdb) 470,340 158^done, register-values=[{number="15", value="0"}] 470,340 (gdb) 470,340 (gdb) 470,340 (gdb) 470,340 158^done, register-values=[{number="15", value="0"}] 470,340 (gdb) 470,340 (gdb</pre>								

1 ---

MX - ssalian@172.16.175.110:1022 - ssalian-linux		
🖏 Applications Places System 🥹 🔄 🕢 🔤	🚽 🕸 Wed Sep 2	2, 2:43 PM Ü
م DDD: /ssalian-local/src/gpgpu/cuda/apps/acos_dbg/acos.cu		_ • X
<u>File Edit View Program Commands Status Source D</u> ata		<u>H</u> elp
(): threadIdx	Display Plot Hide R	🚱 🥳 👸 💭
$\begin{array}{c c} 1: \text{ total Threads} \\\hline 30720 \\\hline x = 128 \\g = 1 \\z = 1 \\\hline \end{array} \begin{array}{c} 3: \text{ thread Idx} \\\hline x = 0 \\g = 0 \\z = 0 \\\hline \end{array} \end{array}$		
<pre>} /* target code*/global void acos_main (struct acosParams parms) int i; int totalThreads = gridDim.x * blockDim.x; int ctaStart = blockDim.x * blockIdx.x; for (i = ctaStart + threadIdx.x; i < parms.n; i += totalThreads) { parms.res[i] = acosf(parms.arg[i]); </pre>	X DDD X	
<pre>Breakpoint 2 at 0x8073b40: file acos.cu, line 390. [Switching to Thread -1211672896 (LWP 28236)] [Current CUDA Thread <<<(0,0),(0,0,0)>>>] Breakpoint 1, acos_main () at acos.cu:389 (gdb) step [Current CUDA Thread <<<(0,0),(0,0,0)>>>] Breakpoint 2, acos_main () at acos.cu:390 (gdb) graph display totalThreads (gdb) graph display blockDim (gdb) graph display threadIdx (gdb)</pre>	InterruptStepStepiNextNextiUntilFinishContKillUpDownUndoRedoEditMake	
△ Display 3: threadIdx (enabled, scope acos_main, address 0xfffffffa)		
🗐 🛛 🔤 Terminal 🛛 🗍 🔚 ssalian - File Browser 🖉 🔛 i686_Linux_debug - F 🛛 🔌 DDD: acos.cu		🔌 👸

Nsight - Debug

- Debug CPU and GPU code simultaneously and seamlessly
- Debug shaders as they are being executed on the GPU
- Real-time inspection of Direct3D 9/10/11 API calls



CUDA Development Tools: Visual Profiler

CUDA Visual Profiler

										82	1.08				
	Prof	fier output C	olumn plot								110				
_81		Timestamp	Method	GPU 1	îme CPU	Time Occupancy	gkl_incoherent	gld_coherent	gat_incoherent	gst_coherent	-				
	1 9	8401	тетсору	3,296											
2	2 9	98615	memcopy	2.752											
	3 9	8637	memcopy	2.88											
a	9	99132	c2c mradix r2	6.88	238	0.333	28	2	56	16					
		19721	memcopy	2.RR					~						
4		0000	e3e_mesdis_17	35.11	320	A 125	74	4	A ₽	33					
3	, ,	00568	memcopy	2.752			- 10	c	udaProfiler - [sii	mpleCUFFT]	1.1.185		and the second		
2	8 7	00687	c2c_mradis_r2	6.528		Options Window Hel	p								1
10	101256	memcopy	2.752	procession and the second											
	10 1	01376	c2c_mradix_r7	11.320	m atrixMul scalarProd	Profiler output	Column plot		2018 - 83						
	11 1	01904	ComplexPoint	2.816	scanLargeArray				· gld_incoherent			127.28	14.45		
1	12 1	02398	memcopy	2.752	Tanspose		cZc_mracks	0.0	4.00	8.00	12.00	16.00	20.00	24.00	28
1	13 1	02515	c2c_mradix_r2	6.208			c2c_mradix_r c2c_mradix_	2:13							
	1	111165	memrany	1111			c2c_mradix_r	7:15							
							c2c_mradix_ c2c_mradix_r								
						ComplexP	ointwiseMulAndScal	28/3					10		
								b.o	4.00	8.00	12.00	16.00	20.00	24.00	28
								1 calling	- pranto contractor						

CUDA Visual Profiler

cta_launched - executed thread blocks

Nsight - Profile

- Easily identify performance bottlenecks using a unified CPU and GPU trace of application activity
- In-session kernel replay mode for more accurate profiling
- Profile frames and automatically measure GPU bottlenecks
- Visualizing concurrency of execution

File Edit Navigate Search Project Run	Window Hel	lp						
0*8 8 8 8*5*8 9*4	1 6 1] 0.10 0.11.50 	QT CT				E Viper CC++ & Debug	(
tdiverge.vp 22						- 0	C Properties 13 E Detail Gra	uphs 🗢 🗆
								e *
	0.0	45.1	0.05 s	0.055 s	0.06 1	0.0	VecThen(int*, int*, int*, int)	
III Process: 31954		10.00	0.000			2.2	Name	Value
E Thread: -1314150624							Start	51,274 ms
Runtime API		1.000			cudaHemcpy/aync		End	53.615 ms
Driver API							Duration	2.342 ms
Profiling Overhead							Grid Size	[256.1.1]
E [0] GeForce GTX 480							Block Size	[256,1,1]
E Context 1 (CUDA)		14						11
T MemCpy (HtoD)							Registers/Thread	
W MemCpy (DtoH)				And in case of the local division of the loc			Shared Memory/Block	0 bytes
T 58.5% (4) Vec1of32x(int*, i				cThenti Wec50(ints, i		1ef32x[int*_int 1ef32x[int*_int	 Memory 	
7 10.3% [4] Wec1032kint*, in					-	and a second second	Global Load Efficiency	99.1%
¥ 12.6% [4] Vec50(int*, int*,		1	1.1	Vec500nt*, L.			Global Store Efficiency	100%
7 11.8% [4] We(Then(int*, int		100	I I IVA	CTheoli			 Occupancy 	
7 6.8% [4] Vec32of32(int*, in			1 1 1	2			Theoretical	100%
7 0.0% [4] VecEmpty(void)			10 1 1				 L1 Cache Configuration 	
E Streams		100	Contine Page				Shared Memory Requester	48 KB
Stream 1				CThenit Vec500nt*, i	Ver	clof32x(int, int	Shared Memory Executed	48 KB
	6			1				
Analysis 12 III Details Console								- 0
Scope		Results						
Analyze Entire Application		Low Globa	Memory Load Ef	ficiency [9% avg, for kerr	vels accounting for 75.61	of compute	6	
Analyze Kernel (select in timeline)				a poor access pattern, leading				More
				ficiency [21.3% avg. for i	and the second	- C.		
Stages				a poor access pattern, leading				More
Timeline	0	de la de la della de la della dell		a beer account because because	A se contrare a sec a factor	contract and see	***	S.M.LArm
Multiprocessor	R 0							
Kernel Memory	0							

CUDA Development Tools: MemCheck

CUDA-MemCheck

Coming with CUDA 3.0 Release

Track out of bounds and misaligned accesses

Supports CUDA C

Integrated into the CUDA-GDB debugger

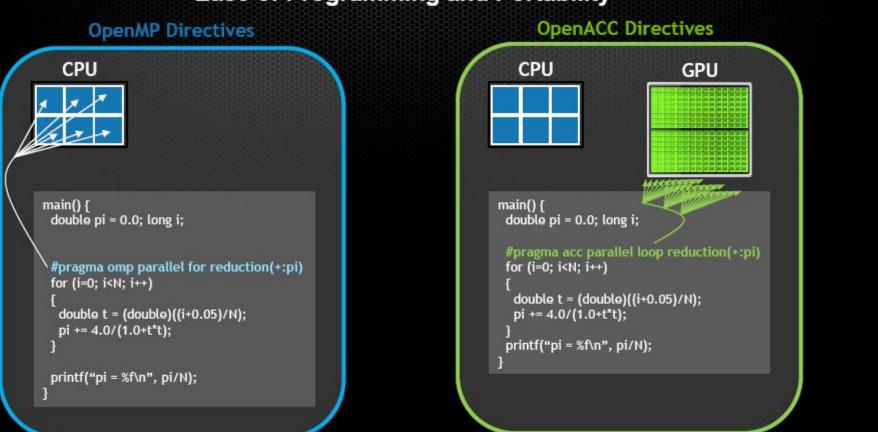
Available as standalone tool on all OS platforms.

```
Σ
                              Terminal
File Edit View Terminal Help
cuda-memcheck memoryexceptions 1
                                                                        ~
======= CUDA-MEMCHECK
sm version: 200
Failed at memoryexceptions.cu:153:cudaFree(d), with 4. I'm out of here.
======== Invalid global write of size 1
            at 0x00000208 in exception kernel
_____
            by thread (0,0,0) in block (0,0,0)
_____
            Address 0x00000000 is out of bounds
_____
_____
======= ERROR SUMMARY: 1 error
bash-4.0$ cuda-memcheck memoryexceptions 2
======= CUDA-MEMCHECK
sm version: 200
Failed at memoryexceptions.cu:153:cudaFree(d), with 4. I'm out of here.
                                                                          ========
======= Out-of-range Shared or Local Address
                                                                           at 0x000001e8 in exception kernel
_____
                                                                          ______
            by thread (0,0,0) in block (0,0,0)
_____
                                                                          _____
======= ERROR SUMMARY: 1 error
bash-4.0$ cuda-memcheck memoryexceptions 6
======= CUDA-MEMCHECK
                                                                          Checking...
sm version: 200
                                                                          Done
Failed at memoryexceptions.cu:153:cudaFree(d), with 4. I'm out of here.
                                                                          Checking...
======= Misaligned Shared or Local Address
                                                                          Error: 3 (0)
            at 0x00000130 in exception kernel
                                                                          Done
_____
            by thread (0,0,0) in block (0,0,0)
                                                                          Checking...
_____
                                                                          Error: 1 (0)
_____
======= ERROR SUMMARY: 1 error
                                                                          Error: 3 (0)
bash-4.0$
                                                                          Error: 5 (0)
                                                                          Error: 7 (0)
                                                                          Done
                                                                           _______
                                                                          ______
                                                                          ______
```

```
😳 Applications Places System 👹 📿 😰 🔚
File Edit View Terminal Help
linux64:~/demo2010$ ./ptrchecktest
unspecified launch failure : 79
linux64:~/demo2010$ cuda-memcheck ./ptrchecktest
======= CUDA-MEMCHECK
unspecified launch failure : 79
======= Invalid global read of size 4
             at 0x00000158 in ptrchecktest.cu:27:kerr
             by thread (0,0,0) in block (0,0)
             Address Oxfd00000001 is misaligned
======= ERROR SUMMARY: 1 error
linux64:~/demo2010$ cuda-memcheck --continue ./ptrched
======= CUDA-MEMCHECK
======= Invalid __global__ read of size 4
             at 0x00000158 in ptrchecktest.cu:27:kerr
             by thread (0,0,0) in block (0,0)
             Address Oxfd00000001 is misaligned
======= Invalid __global__ read of size 4
             at 0x00000198 in ptrchecktest.cu:18:kerr
             by thread (3,0,0) in block (5,0)
             Address Oxfd00000028 is out of bounds
======= Invalid __global__ write of size 8
             at 0x000001d0 in ptrchecktest.cu:38:kerr
             by thread (1,0,0) in block (8,0)
             Address Oxfd00000204 is misaligned
```

GPU programming – CUDA – OpenACC standard for directives

OpenACC - **Overview**


- New standard for parallel computing developed by compiler makers (2012) - <u>http://www.openacc-standard.org/</u>
- OpenACC works somewhat like OpenMP
- Goal is to provide simple directives to the compiler which enable it to accelerate the application on the GPU
- The tool is aimed at developers aiming to quickly speed up their code without extensive recoding in CUDA
- As tool is very new and this course focuses on CUDA, only a brief demo of OpenACC follows

OpenACC - Principle

OpenACC Directives

Ease of Programming and Portability

OpenACC – Efficiency

Serial Code

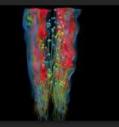
Single CPU Core Performance: **1**x

Parallel Code for GPU Add One OpenACC Directive Tesla K40 Perf: 13.6x

```
.
for(int j=1;j<ny-1;j++) {
  for(int k=i1;k<nz-1;k++) {
    for(int i=1;i<nx-1;i++) {
      Anext[Index3D (nx,ny,i,j,k)] =
      (A0[Index3D (nx,ny,i,j,k-1)] +
        A0[Index3D (nx,ny,i,j,k-1)] +
        A0[Index3D (nx,ny,i,j+1,k)] +
        A0[Index3D (nx,ny,i,j-1,k)] +
        A0[Index3D (nx,ny,i+1,j,k)] +
        A0[Index3D (nx,ny,i-1,j,k)])*c1
        -A0[Index3D (nx,ny,i,j,k)]*c0;
    }
    }
}
```

```
#pragma acc parallel loop collapse(3)
for(int j=1;j<ny-1;j++) {
  for(int k=i1;k<nz-1;k++) {
    for(int i=1;i<nx-1;i++) {
        Anext[Index3D (nx,ny,i,j,k)] =
        (A0[Index3D (nx,ny,i,j,k+1)] +
            A0[Index3D (nx,ny,i,j,k-1)] +
            A0[Index3D (nx,ny,i,j+1,k)] +
            A0[Index3D (nx,ny,i,j-1,k)] +
            A0[Index3D (nx,ny,i+1,j,k)] +
            A0[Index3D (nx,ny,i-1,j,k)])*c1
            -A0[Index3D (nx,ny,i,j,k)]*c0;
        }
    }
}</pre>
```

Dual socket E5-2698 v3 @2.3GHz (Haswell), 16 cores per socket, 256 GB memory, 1x Tesla K40 Benchmark: Parboil Stencil from University of Illinois with 1000 iterations


Source code for Parboil: http://impact.crhc.illinois.edu/Parboil/parboil.aspx

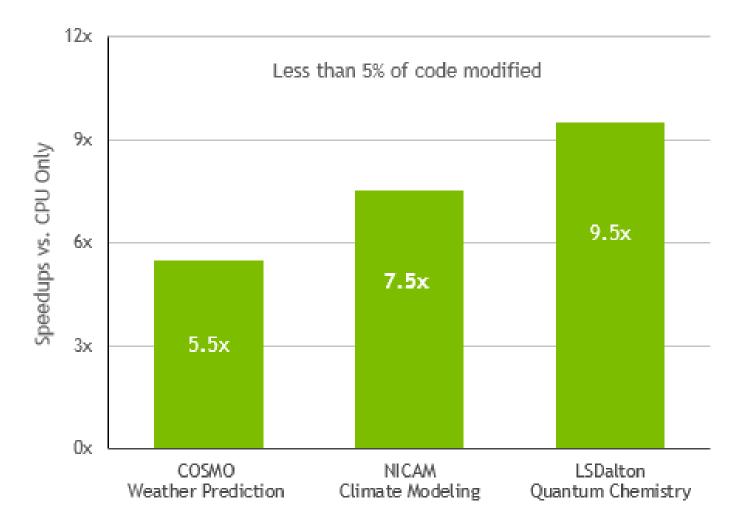
OpenACC - Efficiency

OpenACC: Efficient for the Developer

Using Directives, tuning work focusses on *exposing parallelism*, not on platform-specific optimization.

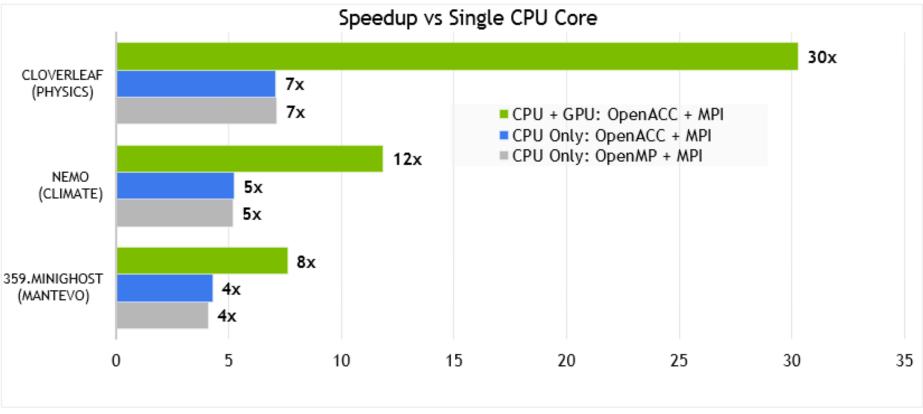
Example: Application tuning work using directives for new Titan system at ORNL (comparing CPU+GPU vs. dual-CPU nodes)

S3D Combustion


- Tuned top 3 kernels for GPUs (90% of runtime)
- End result: 3 to 6x faster on GPU vs. CPU node
- Improved perf of CPU-only version by 50%

CAM-SE Climate

- Tuned top kernel for GPUs (50% of runtime)
- End result: 6.5x faster on GPU vs. CPU node
- Doubled perf of CPU-only version!


OpenACC - Efficiency

LS-DALTON: Benchmark on Oak Ridge Titan Supercomputer, AMD CPU vs Tesla K20X GPU. Test input: Alanine-3 on CCSD(T) module.

NICAM: Benchmark on TiTech TSUBAME 2.5, Westmere CPU vs. K20X.

OpenACC - Efficiency

359.miniGhost: CPU: Intel Xeon E5-2698 v3, 2 sockets, 32-cores total, GPU: Tesla K80 (single GPU) NEMO: Each socket CPU: Intel Xeon E5-2698 v3, 16 cores; GPU: NVIDIA K80 both GPUs CLOVERLEAF: CPU: Dual socket Intel Xeon CPU E5-2690 v2, 20 cores total, GPU: Tesla K80 both GPUs