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Kepler –> Overview



Kepler Architecture



Three Main Benefits 
of Kepler Architecture



Three Main Benefits and their 
Tech-Basics of Kepler Architecture



Summary of Improvements: 
Kepler (K40) versus Fermi (700, not 560!) 



Summary on Commercial Implementations 
of Kepler: GTX Titan versus K40 



Kepler –> Memory



Summary of Memory Improvements: 
Kepler (K20-K40) vs. Fermi (M2075,M2090) 



Difference in Memory Organization: 
Fermi versus Kepler



Difference in Memory Organization: 
Fermi versus Kepler



ECC – Error Correction Code:
Problem

Electrical or magnetic interference inside 
computers can cause a single bit of 

dynamic random-access memory (DRAM) 
to flip to the opposite state. 

Background radiation, chiefly neutrons 
from cosmic showers (secondary 

irradiation from high-energy cosmic 
particles) may change the contents of one 
or more memory cells or interfere with the 

circuitry used to read or write to them. 

The error rates increase rapidly with 
altitude: for example, compared to the sea 
level, the rate of neutron flux is 3.5 times 
higher at 1.5 km and 300 times higher at 

10–12 km (the cruising altitude of 
commercial airplanes).
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ECC – Error Correction Code: 
Counter-Measures

Error-correcting code memory (ECC memory) is a type of computer data storage 
that can detect and correct the most common kinds of internal data corruption. 

ECC memory is used in most computers, where data corruption cannot be 
tolerated: for example, for avionics, financial, scientific, military, etc. purposes).
Typically, ECC memory maintains a memory system immune to single-bit errors: 
the data that is read from each word is always the same as the data that had 

been written to it, even if one or more bits actually stored have been flipped to 
the wrong state. Most non-ECC memory cannot detect errors although some non-

ECC memory with parity support allows detection but not correction

With ECC, some portion of the 
memory is used for ECC bits, so 
the available user memory is 

reduced by 12.5% 
(e.g. from 4 GB of total memory 

user can use ~3.5 GB of 
available memory only!)



ECC – Error Correction Code: 
Example 

Cassini–Huygens (launched in 1997), contains two identical flight recorders, each 
with 2.5 gigabits of memory in the form of arrays of commercial DRAM chips. 

Spacecraft's engineering telemetry reports the number of (correctable) single-bit-
per-word errors and (uncorrectable) double-bit-per-word errors. During the first 

2.5 years of flight, the spacecraft reported a nearly constant single-bit error rate of 
about 280 errors per day. However, on November 6, 1997, the number of errors 
increased by more >4 times for a day. This was attributed to a solar particle event 

that had been detected by the satellite GOES 9



Kepler –> SMX 
(Streaming Multiprocessor Architecture)



General Organization 



Difference in Organization: 
From Tesla, and Fermi to Kepler



Difference in Organization and Performance



What is Titan X?
It’s TWO K40



Kepler –> SMX
(Streaming Multiprocessor Architecture)

at Work



Kepler GK110: Physical layout of functional 
of Tesla K40 (with 15 SMX)



SMX in Kepler GK110



Difference in SMX Organization: 
Fermi versus Kepler



Difference in SMX Organization: 
Fermi versus Kepler



Difference in Parallelism Width per SMX: 
G80 versus Fermi versus Kepler



How warps are Scheduled: 
Fermi versus Kepler



How warps are Issued: 
Fermi versus Kepler



How warps are Executed: 
Fermi versus Kepler



Comments as to this “Tetris” analogy: 
Fermi versus Kepler



Overheads (latency) as to Warps



Kepler –> 
New Feature: GPU Boost



New Feature: GPU Boost



GPU Boost
Why it is important?



GPU Boost
How it is organized?



Comparison with Competitors

AMD OverDrive™ Technology for 
Overclocking CPU and Fan Control



Commands to Control Boost



New Advance: GPU Boost - Example



Kepler –> 
New Feature: Dynamic Parallelism



What is Dynamic Parallelism?



How GPU Worked before Kepler?



Difference in Parallelization: 
Fermi versus Kepler



Fermi: data transits CPU->GPU across the PCIe bus, a single CUDA kernel executes on the 
GPU, and then data returns across the bus back to the CPU.  This round-robin data traffic 
occurs for each and every kernel launch.  Unfortunately the PCIe bus is slow, much slower 

than CPU and GPU speeds, and so we try to avoid CPU->GPU data transfers whenever 
possible.  PCIe bus can become a severe bottleneck for many types of algorithms.

Kepler: data transits CPU->GPU through the PCIe bus, but then with Dynamic Parallelism 
one kernel can spawn one to several additional kernels without the need for data transfers 

back to the CPU.  All of the kernels and their associated datasets remain on the GPU, thus 
avoiding the need for PCIe bus traffic.  When some required synchronization point is reached, 

the GPU kernels finally terminate and data transfers to the CPU take place. 

Dynamic Parallelism: How it Works?



Dynamic Parallelism - Speedup



Why Dynamic Parallelism is Important?
Example 1: Finite Element Method



Why Dynamic Parallelism is Important?
Example 2: Fractal Simulation



Dynamic Parallelism: Speedup



Kepler –> 
New Feature: Hyper-Q



Hyper-Q: What is it?



Hyper-Q thus increases the utilization and efficiency of GPU 
workloads, which in turn decreases CPU idle time. 

For well-designed algorithms Hyper-Q could result in a 32X increase 
in software application performance.

Hyper-Q: Higher GPU Utilization



Hyper-Q: Speedup



Hyper-Q: How it Works?
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Hyper-Q: 
Software and Hardware Queues



Hyper-Q: 
Software and Hardware Queues



Hyper-Q: How it Works?



From Kepler –> 
to New Generations:

Maxwell,
Pascal,

…



… to New Generations:
Maxwell, Pascal, …



Pascal: What is New in it?



Pascal: to Stacked (3D) RAM …



Pascal: to Stacked (3D) RAM …



Pascal: to Stacked (3D) RAM …
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