
Технології графічного процесінгу

(Масивно-паралельні обчислення на
графічних прискорювачах

...
Massively Parallel Computing on Graphic

Processing Units - GPUs)

Lecture 6. CUDA Advanced Capabilities:
Kepler vs. Fermi

Yuri G. Gordienko
(NTUU-KPI, 2021)

(on the basis of materials by NVIDIA, M.Ujaldon, etc.)

Kepler –> Overview

Kepler Architecture

Three Main Benefits
of Kepler Architecture

Three Main Benefits and their
Tech-Basics of Kepler Architecture

Summary of Improvements:
Kepler (K40) versus Fermi (700, not 560!)

Summary on Commercial Implementations
of Kepler: GTX Titan versus K40

Kepler –> Memory

Summary of Memory Improvements:
Kepler (K20-K40) vs. Fermi (M2075,M2090)

Difference in Memory Organization:
Fermi versus Kepler

Difference in Memory Organization:
Fermi versus Kepler

ECC – Error Correction Code:
Problem

Electrical or magnetic interference inside
computers can cause a single bit of

dynamic random-access memory (DRAM)
to flip to the opposite state.

Background radiation, chiefly neutrons
from cosmic showers (secondary

irradiation from high-energy cosmic
particles) may change the contents of one
or more memory cells or interfere with the

circuitry used to read or write to them.

The error rates increase rapidly with
altitude: for example, compared to the sea
level, the rate of neutron flux is 3.5 times
higher at 1.5 km and 300 times higher at

10–12 km (the cruising altitude of
commercial airplanes).

ECC – Error Correction Code:
Problem

Electrical or magnetic interference inside
computers can cause a single bit of

dynamic random-access memory (DRAM)
to flip to the opposite state.

Background radiation, chiefly neutrons
from cosmic showers (secondary

irradiation from high-energy cosmic
particles) may change the contents of one
or more memory cells or interfere with the

circuitry used to read or write to them.

The error rates increase rapidly with
altitude: for example, compared to the sea
level, the rate of neutron flux is 3.5 times
higher at 1.5 km and 300 times higher at

10–12 km (the cruising altitude of
commercial airplanes).

ECC – Error Correction Code:
Counter-Measures

Error-correcting code memory (ECC memory) is a type of computer data storage
that can detect and correct the most common kinds of internal data corruption.

ECC memory is used in most computers, where data corruption cannot be
tolerated: for example, for avionics, financial, scientific, military, etc. purposes).
Typically, ECC memory maintains a memory system immune to single-bit errors:
the data that is read from each word is always the same as the data that had

been written to it, even if one or more bits actually stored have been flipped to
the wrong state. Most non-ECC memory cannot detect errors although some non-

ECC memory with parity support allows detection but not correction

With ECC, some portion of the
memory is used for ECC bits, so
the available user memory is

reduced by 12.5%
(e.g. from 4 GB of total memory

user can use ~3.5 GB of
available memory only!)

ECC – Error Correction Code:
Example

Cassini–Huygens (launched in 1997), contains two identical flight recorders, each
with 2.5 gigabits of memory in the form of arrays of commercial DRAM chips.

Spacecraft's engineering telemetry reports the number of (correctable) single-bit-
per-word errors and (uncorrectable) double-bit-per-word errors. During the first

2.5 years of flight, the spacecraft reported a nearly constant single-bit error rate of
about 280 errors per day. However, on November 6, 1997, the number of errors
increased by more >4 times for a day. This was attributed to a solar particle event

that had been detected by the satellite GOES 9

Kepler –> SMX
(Streaming Multiprocessor Architecture)

General Organization

Difference in Organization:
From Tesla, and Fermi to Kepler

Difference in Organization and Performance

What is Titan X?
It’s TWO K40

Kepler –> SMX
(Streaming Multiprocessor Architecture)

at Work

Kepler GK110: Physical layout of functional
of Tesla K40 (with 15 SMX)

SMX in Kepler GK110

Difference in SMX Organization:
Fermi versus Kepler

Difference in SMX Organization:
Fermi versus Kepler

Difference in Parallelism Width per SMX:
G80 versus Fermi versus Kepler

How warps are Scheduled:
Fermi versus Kepler

How warps are Issued:
Fermi versus Kepler

How warps are Executed:
Fermi versus Kepler

Comments as to this “Tetris” analogy:
Fermi versus Kepler

Overheads (latency) as to Warps

Kepler –>
New Feature: GPU Boost

New Feature: GPU Boost

GPU Boost
Why it is important?

GPU Boost
How it is organized?

Comparison with Competitors

AMD OverDrive™ Technology for
Overclocking CPU and Fan Control

Commands to Control Boost

New Advance: GPU Boost - Example

Kepler –>
New Feature: Dynamic Parallelism

What is Dynamic Parallelism?

How GPU Worked before Kepler?

Difference in Parallelization:
Fermi versus Kepler

Fermi: data transits CPU->GPU across the PCIe bus, a single CUDA kernel executes on the
GPU, and then data returns across the bus back to the CPU. This round-robin data traffic
occurs for each and every kernel launch. Unfortunately the PCIe bus is slow, much slower

than CPU and GPU speeds, and so we try to avoid CPU->GPU data transfers whenever
possible. PCIe bus can become a severe bottleneck for many types of algorithms.

Kepler: data transits CPU->GPU through the PCIe bus, but then with Dynamic Parallelism
one kernel can spawn one to several additional kernels without the need for data transfers

back to the CPU. All of the kernels and their associated datasets remain on the GPU, thus
avoiding the need for PCIe bus traffic. When some required synchronization point is reached,

the GPU kernels finally terminate and data transfers to the CPU take place.

Dynamic Parallelism: How it Works?

Dynamic Parallelism - Speedup

Why Dynamic Parallelism is Important?
Example 1: Finite Element Method

Why Dynamic Parallelism is Important?
Example 2: Fractal Simulation

Dynamic Parallelism: Speedup

Kepler –>
New Feature: Hyper-Q

Hyper-Q: What is it?

Hyper-Q thus increases the utilization and efficiency of GPU
workloads, which in turn decreases CPU idle time.

For well-designed algorithms Hyper-Q could result in a 32X increase
in software application performance.

Hyper-Q: Higher GPU Utilization

Hyper-Q: Speedup

Hyper-Q: How it Works?

Hyper-Q: How it Works?

Hyper-Q:
Software and Hardware Queues

Hyper-Q:
Software and Hardware Queues

Hyper-Q: How it Works?

From Kepler –>
to New Generations:

Maxwell,
Pascal,

…

… to New Generations:
Maxwell, Pascal, …

Pascal: What is New in it?

Pascal: to Stacked (3D) RAM …

Pascal: to Stacked (3D) RAM …

Pascal: to Stacked (3D) RAM …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

