
Технології графічного процесінгу

(Масивно-паралельні обчислення на
графічних прискорювачах

...
Massively Parallel Computing on Graphic

Processing Units – GPUs)

Lecture 4. CUDA – Parallel Patterns

Yuri G. Gordienko
(NTUU-KPI, 2021)

(on the basis of materials by NVIDIA, R.Franklin, S.Sengupta, J.Dean,
W.Hwu, D.Kirk)

What is Beyond these Trees? Forest!

• Before, we’ve concerned ourselves with low-level details
of kernel programming
– Cores

– Threads

– Grids

– __shared__ memory management

– Resource allocation

• The huge number of details and small parts

• Hard to see the forest for the trees

Compute Capability
• The compute capability of a device describes its architecture, e.g.

– Number of registers

– Sizes of memories

– Features & capabilities

Compute
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

GPU models

1.0 Fundamental CUDA support Tesla C870

1.3 Double precision, improved memory accesses,
atomics

Tesla 10-
series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC,
P2P, concurrent kernels/copies, function pointers,
recursion

Tesla 20-
series

2.1 - GTX 560

3.5 Warp shuffle functions, funnel shift, dynamic
parallelism

Tesla K40

Current trends in GPU programming

Parallel Patterns:
Introduction

Parallel Patterns

• Think at a higher level than individual CUDA kernels

• Specify what to compute, not how to compute it

• Let programmer worry about algorithm

• Defer pattern implementation to someone else

Parallel Computing Scenarios

• Many parallel threads need to generate a single result

 Reduce

• Many parallel threads need to partition data

 Split

• Many parallel threads produce variable output /
thread

 Compact / Expand

Parallel Patterns:
CUDA Memory Pattern

CUDA Memory Pattern: Blocking

• Partition data to operate in well-sized blocks
– Small enough to be staged in shared memory

– Assign each data partition to a thread block

– No different from cache blocking!

• Provides several performance benefits
– Have enough blocks to keep processors busy

– Working in shared memory cuts memory latency
dramatically

– Likely to have coherent access patterns on
load/store to shared memory

Globally Shared Pattern: Blocking

• Partition data into subsets that fit into shared
memory

Locally Shared Pattern : Blocking

• Handle each data subset with one thread block

• Load the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism

Locally Shared Pattern : Blocking

• Perform the computation on the subset from
shared memory

Locally Shared Pattern : Blocking

• Copy the result from shared memory back to
global memory

Locally Shared Pattern : Blocking

• All CUDA kernels are built this way
– Blocking may not matter for a particular problem,

but you’re still forced to think about it

– Not all kernels require __shared__ memory

– All kernels do require registers

• All of the parallel patterns we’ll discuss have
CUDA implementations that exploit blocking in
some fashion

Locally Shared Pattern : Blocking

Parallel Computing Scenarios:
Reduction

Reduction

• Reduce vector to a single value
– Via an associative operator (+, *, min/max,

AND/OR, …)

– CPU: sequential implementation
for(int i = 0, i < n, ++i) ...

– GPU: “tree”-based implementation

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Serial Reduction
// reduction via serial iteration
float sum(float *data, int n)
{
 float result = 0;
 for(int i = 0; i < n; ++i)
 {
 result += data[i];
 }

 return result;
}

Parallel Reduction – Interleaved
Values (in shared memory)

Values

Values

Values

2011072-3-253-20-18110

0 1 2 3 4 5 6 7

22111179-3-558-2-2-17111

0 1 2 3

22111379-3458-26-17118

0 1

22111379-31758-26-17124

0

22111379-31758-26-17141Values

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Thread
IDs

Thread
IDs

Parallel Reduction – Contiguous
2011072-3-253-20-18110Values (in shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

CUDA Reduction
__global__ void block_sum(float *input,
 float *results,
 size_t n)
{
 extern __shared__ float sdata[];
 int i = ..., int tx = threadIdx.x;

 // load input into __shared__ memory
 float x = 0;
 if(i < n)
 x = input[i];
 sdata[tx] = x;
 __syncthreads();

CUDA Reduction
// block-wide reduction in __shared__ mem
for(int offset = blockDim.x / 2;
 offset > 0;
 offset >>= 1)
{
 if(tx < offset)
 {
 // add a partial sum upstream to our own
 sdata[tx] += sdata[tx + offset];
 }
 __syncthreads();
}

CUDA Reduction
 // finally, thread 0 writes the result
 if(threadIdx.x == 0)
 {
 // note that the result is per-block
 // not per-thread
 results[blockIdx.x] = sdata[0];
 }
}

CUDA Reduction
// global sum via per-block reductions
float sum(float *d_input, size_t n)
{
 size_t block_size = ..., num_blocks = ...;

 // allocate per-block partial sums
 // plus a final total sum
 float *d_sums = 0;
 cudaMalloc((void**)&d_sums,
 sizeof(float) * (num_blocks + 1));
 ...

CUDA Reduction
// reduce per-block partial sums
int smem_sz = block_size*sizeof(float);
block_sum<<<num_blocks,block_size,smem_sz>>>
 (d_input, d_sums, n);

// reduce partial sums to a total sum
block_sum<<<1,block_size,smem_sz>>>
 d_sums, d_sums + num_blocks, num_blocks);

// copy result to host
float result = 0;
cudaMemcpy(&result, d_sums+num_blocks, ...);
return result;

}

Pitfalls!

• What happens if there are too many partial sums to fit into
__shared__ memory in the second stage?

• What happens if the temporary storage is too big?

• Give each thread more work in the first stage
– Sum is associative & commutative

– Order doesn’t matter to the result

– We can schedule the sum any way we want

 serial accumulation before block-wide reduction

• Let’s left these exercises for the self-guided work…

Parallel Reduction Complexity

• Log(N) parallel steps, each step S does N/2S independent ops
– Step Complexity is O(log N)

• For N=2D, performs S[1..D]2D-S = N-1 operations

– Work Complexity is O(N) – It is work-efficient

– i.e. does not perform more operations than a sequential algorithm

• With P threads physically in parallel (P processors),
time complexity is O(N/P + log N)
– Compare to O(N) for sequential reduction

Parallel Computing Scenarios:
Split, Compact, Expand

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Split Operation

• Given:array of true and false elements (and payloads)

• Return an array with all true elements at the beginning

•

Variable Output Per Thread: Compact

• Remove null elements

•

3 7 4 1 3

3 0 7 0 4 1 0 3

Variable Output Per Thread:
General Case

• Reserve Variable Storage Per Thread

•

A

B

C D

E

F

G

2 1 0 3 2

H

Split, Compact, Expand

• Each thread must answer a simple question:

“Where do I write my output?”

• The answer depends on what other threads
write!

• Scan provides an efficient parallel answer

Parallel Computing Scenarios:
Algorithm Example -> Scan

Scan (or Parallel Prefix Sum)
• Given an array A = [a0, a1, …, an-1]

and a binary associative operator  with identity I,

scan(A) = [I, a0, (a0  a1), …, (a0  a1  …  an-2)]

• Prefix sum: if  is addition, then scan on the series

returns the series

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Applications of Scan
• Scan is a simple and useful parallel building block for many

parallel algorithms:

• Fascinating, since scan is unnecessary in sequential
computing!

Radix sort

Quicksort (seg. scan)

String comparison

Lexical analysis

Stream compaction

Run-length encoding

Polynomial evaluation

Solving recurrences

Tree operations

Histograms

Allocation

Etc.

Serial Scan

int input[8] = {3, 1, 7, 0, 4, 1, 6, 3};
int result[8];
int running_sum = 0;
for(int i = 0; i < 8; ++i)
{
 result[i] = running_sum;
 running_sum += input[i];
}

// result = {0, 3, 4, 11, 11, 15, 16, 22}

3 1 7 0 4 1 6 3

A Scan Algorithm – Preview

Assume array is already in shared memory

See Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”, GPU Gems 3

A Scan Algorithm – Preview

Iteration 0, n-1 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

Iterate log(n) times. Each thread adds value offset elements away to its own value

Each corresponds
to a single thread.

3 4 11 11 12 12 11 14

Iteration 1, n-2 threads

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Each corresponds
to a single thread.

3 4 11 11 15 16 22 25

Iteration i, n-2i threads

3 4 11 11 12 12 11 14

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

A Scan Algorithm – Preview

• We have an inclusive scan result

3 4 11 11 15 16 22 25

A Scan Algorithm – Preview

• For an exclusive scan, right-shift through __shared__
memory

• Note that the unused final element is also the sum of the
entire array
– Often called the “carry”

– Scan & reduce in one pass

3 4 11 11 15 16 22 25

0 3 4 11 11 15 16 220

?

CUDA Block-wise Inclusive Scan

__global__ void inclusive_scan(int *data)
{
 extern __shared__ int sdata[];

 unsigned int i = ...

 // load input into __shared__ memory
 int sum = input[i];
 sdata[threadIdx.x] = sum;
 __syncthreads();
 ...

CUDA Block-wise Inclusive Scan
for(int o = 1; o < blockDim.x; o <<= 1)
{
 if(threadIdx.x >= o)
 sum += sdata[threadIdx.x - o];

 // wait on reads
 __syncthreads();

 // write my partial sum
 sdata[threadIdx.x] = sum;

 // wait on writes
 __syncthreads();
}

CUDA Block-wise Inclusive Scan

 // we're done!
 // each thread writes out its result
 result[i] = sdata[threadIdx.x];
}

Results are Local to Each Block

Block 0

Input:
 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5
Result:
 5 10 14 18 23 27 27 27 31 33 38 43 44 47 48 53

Block 1

Input:
 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0
Result:
 1 3 6 6 9 9 11 14 18 22 25 27 29 34 39 39

Results are Local to Each Block

• Need to propagate results from each block to all
subsequent blocks

• 2-phase scan
1. Per-block scan & reduce

2. Scan per-block sums

• Final update propagates phase 2 data and
transforms to exclusive scan result

Resume

• Patterns like reduce, split, compact, scan, and others
let us reason about data parallel problems abstractly

• Higher level patterns are built from more fundamental
patterns

• Scan in particular is fundamental to parallel
processing, but unnecessary in a serial world

• Get others to implement these for you!

Parallel Computing Scenarios:
Algorithm Example ->

Segmented Scan

Segmented Scan

• What it is:
– Scan + Barriers/Flags associated with certain

positions in the input arrays

– Operations don’t propagate beyond barriers

• Do many scans at once, no matter their size

(C) Sengupta

Segmented Scan

__global__ void segscan(int * data, int * flags)
{

 __shared__ int s_data[BL_SIZE];
 __shared__ int s_flags[BL_SIZE];

 int idx = threadIdx.x + blockDim.x * blockIdx.x;
// copy block of data into shared
// memory

 s_data[idx] = …; s_flags[idx] = …;
__syncthreads();

Segmented Scan
…

 // choose whether to propagate
 s_data[idx] = s_flags[idx] ?

s_data[idx] : s_data[idx -
1] + s_data[idx];

// create merged flag
s_flags[idx] =

s_flags[idx - 1] | s_flags[idx];
 // repeat for different strides
}

Segmented Scan

• Doing lots of reductions of unpredictable size
at the same time is the most common use

• Think of doing sums/max/count/any over
arbitrary sub-domains of your data

Segmented Scan

• Common Usage Scenarios:
– Determine which region/tree/group/object class

an element belongs to and assign that as its new
ID

– Sort based on that ID

– Operate on all of the regions/trees/groups/objects
in parallel, no matter what their size or number

Segmented Scan

• Also useful for implementing divide-and-
conquer type algorithms
– Quicksort and similar algorithms

Parallel Computing Scenarios:
Algorithm Example ->

Sort

Sort

• Useful for almost everything

• Optimized versions for the GPU already exist

• Sorted lists can be processed by segmented scan

• Sort data to restore memory and execution
coherence

Sort

• binning and sorting can often be used
interchangeably

• Sort is standard, but can be suboptimal

• Binning is usually custom, has to be optimized,
can be faster

Sort

• Radixsort is faster than comparison-based
sorts

• If you can generate a fixed-size key for the
attribute you want to sort on, you get better
performance

Parallel Computing Scenarios:
Algorithm Example ->

Map/Reduce

Map/Reduce

• Old concept from functional progamming

• Repopularized by Google as parallel
computing pattern

• Combination of sort and reduction (scan)

(C) Jeff Dean

Map/Reduce

Map/Reduce: Map

• Map a function over a domain

• Function is provided by the user

• Function can be anything which produces a
(key, value) pair
– Value can just be a pointer to arbitrary

datastructure

Map/Reduce: Sort

• All the (key,value) pairs are sorted based on
their keys

• Happens implicitly

• Creates runs of (k,v) pairs with same key

• User usually has no control over sort function

Map/Reduce: Reduce

• Reduce function is provided by the user
– Can be simple plus, product, max,…

• Library makes sure that values from one key
don’t propagate to another (segscan)

• Final result is a list of keys and final values (or
arbitrary datastructures)

Parallel Computing Scenarios:
Algorithm Example ->

Kernel Fusion

Kernel Fusion

• Combine kernels with simple
producer->consumer dataflow

• Combine generic data movement kernel with
specific operator function

• Save memory bandwidth by not writing out
intermediate results to global memory

Separate Kernels
__global__ void is_even(int * in, int * out)
{
 int i = …

out[i] = ((in[i] % 2) == 0) ? 1: 0;
}

// separate scan-function
__global__ void scan(…)
{

…
}

Fused Kernel
__global__ void fused_even_scan(int * in, int * out, …)
{
 int i = …

int flag = ((in[i] % 2) == 0) ? 1: 0;
 // your scan code here, using the flag directly
}

Kernel Fusion

• Best when the pattern looks like

• Any simple one-to-one mapping will work

output[i] = g(f(input[i]));

Fused Kernel

template <class F>
__global__ void opt_stencil(float * in, float * out, F f)
{ // your 2D stencil code here

for(i,j)
{

partial = f(partial,in[…],i,j);
}
float result = partial;

}

Fused Kernel
class boxfilter
{ private:

table[3][3];
boxfilter(float input[3][3])
public:
float operator()(float a, float b, int i, int j)
{

return a + b*table[i][j];
 }
}

Fused Kernel
class maxfilter
{ public:

float operator()(float a, float b, int i, int j)
{

return max(a,b);
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

