
Технології графічного процесінгу

(Масивно-паралельні обчислення на
графічних прискорювачах

...
Massively Parallel Computing on Graphic

Processing Units - GPUs)

Lecture 3. CUDA –
Review + Current Trends

Yuri G. Gordienko
(NTUU-KPI, 2021)

(on the basis of materials by NVIDIA, T.Lanfear, P.Pomorski, W.Hwu,
D.Kirk)

From the last lectures (01):
Distributed Computing – Architectural

Models
Flynn’s Taxonomy:

• SISD: traditional uniprocessor
computers

• MISD: Space Shuttle flight
control computer

• SIMD: array processor, GPU.

• MIMD: parallel systems,
distributed systems, multi-GPU.

From the last lectures (01):
GPU Computing - Definition

What is GPU Computing?

General-purpose computing on graphics
processing units (GPGPU or GPU)

Work: vector instructions (SIMD), only effective
for problems that can be solved using stream
processing (data for similar computation)
SIMD - why it is distributed? – independent
from CPU, several graphic cards can be
integrated in PC, clusters, etc.

Applications: calculations, gaming, multimedia.

From the last lectures (01):
GPU Computing - Scheme

CPU versus GPU

NVIDIA “Tesla K40” card: 2880 parallel processing
cores. Compare: 1.3 TFLOPs <-> 2-8 GFLOPs in PC!

(C) NVIDIA

From the last lectures (01):
GPU Computing - Examples

Science (above), gaming, multimedia

(C) Srinivasan

From the last lectures (01):
GPU Computing - Examples

Again: SIMD - why it is distributed? – independent from CPU, several
graphic cards can be integrated in PC, clusters, etc.

(C) Srinivasan

From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA
conference (2008)

From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA
conference (2008)

GPU

GPU computing –
why we need it?

From the last lectures (01):
State of the Art – CPU

Moore’ Law:
CPU transistors
versus dates of
introduction.

The line
corresponds to

exponential
growth with

transistor count
doubling every

two years.

Serial Performance Scaling is Over

• Cannot continue to scale processor
frequencies

no 10 GHz chips

• Cannot continue to increase power
consumption

can’t melt chip

• Can continue to increase transistor density

as per Moore’s Law

How to Use Transistors?

Instruction-level parallelism:

out-of-order execution, speculation, …

Data-level parallelism:

vector units, SIMD execution, …

SSE, AVX (Advanced Vector Extensions), GPU

Thread-level parallelism:

multithreading, multicore, manycore…

Intel Core2, AMD Phenom, NVIDIA Fermi, …

A quiet revolution and potential build-up

Computation: TFLOPs vs. GFLOPs

GPU in every PC – massive volume & potential
impact

Why Massively Parallel Processing?

T12

Westmere

NV30 NV40

G70

G80

GT200

3GHz Dual
Core P4

3GHz Core2
Duo

3GHz Xeon
Quad

Why Massively Parallel Processing?
A quiet revolution and potential build-up

Bandwidth: ~10x

GPU in every PC – massive volume & potential
impact

NV30

NV40 G70

G80

GT200

T12

3GHz Dual
Core P4

3GHz Core2
Duo

3GHz Xeon
Quad

Westmere

The “New” Moore’s Law?

Computers no longer get faster, just wider!

We must re-write algorithms to be parallel !

Data-parallel computing is most scalable solution

We always have more data than cores –
then let’s build the computation around the data

Progress for: 1st and top 500 (N=500)

The champion

The champion

#2

The champion: Tianhe-2 (China) 33 PFs

#2

The most important applications

ProcessorProcessor MemoryMemoryProcessorProcessor MemoryMemory

Global MemoryGlobal Memory

Generic Multicore Chip

Handful of processors each supporting ~1 hardware thread

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

• • •
ProcessorProcessor MemoryMemoryProcessorProcessor MemoryMemory

Global MemoryGlobal Memory

Generic Manycore Chip

Many processors each supporting many hardware threads

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

How many cores in GPU?

GeForce 8800 Ultra (2007) - 128

GeForce GTX 260 (2008) - 192

GeForce GTX 295 (2009) - 480*

GeForce GTX 480 (2010) - 480

GeForce GTX 590 (2011) - 1024*

GeForce GTX 690 (2012) - 3072*

GeForce GTX Titan Z (2014) - 5760*

* indicates these are cards shipped with 2 GPUs in them, effectively doubling the cores

Small Changes, Big Speed-up

Application Code

+

GPU CPU

Use GPU to
Parallelize

Compute-Intensive
Functions

Rest of Sequential
CPU Code

© NVIDIA 2013

Fastest Performance on Scientific Applications
Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs
*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU
Disclaimer: Non-NVIDIA implementations may not have been fully optimized

AMBER

SPECFEM3D

Chroma

MATLAB (FFT)*

0,0x 5,0x 10,0x 15,0x 20,0x

Engineering

Earth
Science

Physics

Molecular
Dynamics

© NVIDIA 2013

GPU – Speedup?

What kinds of speedups do we get with GPU?

An enlarging peak performance advantage:
Calculation: 1 TFLOPS vs. 100 GFLOPS

Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

GPU in every PC and workstation – massive volume and potential impact

Performance Advantage of GPUs

(C) John Owens

Harvesting Performance Benefit of
Many-core GPU Requires

Massive parallelism in application algorithms

Data parallelism

Regular computation and data accesses

Similar work for parallel threads

Avoidance of conflicts in critical resources

Off-chip DRAM (Global Memory) bandwidth

Conflicting parallel updates to memory locations

CPU vs GPU –
what is the difference?

Why is this different from a CPU?

Different goals produce different designs
GPU assumes work load is highly parallel

CPU must be good at everything, parallel or not

CPU: minimize latency experienced by 1 thread
big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads
threads in flight limited by resources => lots of

resources (registers, bandwidth, etc.)

multithreading can hide latency => skip the big
caches share control logic across many threads

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPU vs. GPU:
fundamentally different design

CPU
– task parallelism (diverse tasks)
– minimize latency
– multithreaded
– some SIMD

GPU
– excel at number crunching
– data parallelism (single task)
– maximize throughput
– super-threaded
– large-scale SIMD

From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA
conference (2008)

GPU

The connection between CPU and GPU has low bandwidth:
• need to minimize data transfers
• important to use asynchronous transfers, if it is possible

(overlap computation and transfer)

Different Memory Bandwidths!

Why “Performance/Watt” is important?

Traditional CPUs are
not economically feasible

Cluster:
2.3 PFlops

It is equal to:
7000 homes

7.0
Megawatts

7.0
Megawatts

CPU
Optimized for

Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

10x performance/socket

> 5x energy efficiency

Era of GPU-accelerated
computing is here

© NVIDIA 2013

World’s Fastest, Most Energy Efficient Accelerator
(GEMM - general matrix multiplication tests)

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4
0,0

1,0

2,0

3,0

DGEMM (TFLOPS)

SG
EM

M
 (

T
FL

O
PS

)

Tesla K20X vs Xeon CPU

8x Faster SGEMM

6x Faster DGEMM

Tesla K20X vs Xeon Phi

90% Faster SGEMM

60% Faster DGEMM

© NVIDIA 2013

GPU – programming?

• CUDA is supported by NVIDIA

• OpenCL is supported by AMD (and NVIDIA)
– more recent and less developed alternative to CUDA
– a vendor-agnostic computing platform
– supports vendor-specific extensions like in OpenGL
– goal is to support a range of hardware architectures including

GPUs, CPUs, Cell processors, Larrabee and DSPs using a
standard low-level API

• OpenACC compiler directive approach is emerging as an
alternative (works somewhat like OpenMP)

APIs for GPUs

• “Supercomputing for the masses”
– significant computational horsepower at an attractive price
point – readily accessible hardware

• Scalability
– programs can execute without modification on a run-of-the-mill
PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

• Bright future – the computational capability of GPUs
doubles each year
– more thread processors, faster clocks, faster DRAM, …
– “GPUs are getting faster, faster”

Motives for GPU programming

• Stream computing – a parallel processing model where a
computational kernel is applied to a set of data (a stream) – the
kernel is applied to stream elements in parallel
• GPUs excel at this thanks to a large number of processing units
and a parallel architecture

GPUs offer functionality that goes beyond mere stream computing:
• Shared memory and thread synchronization primitives eliminate
the need for data independence
• Gather and scatter operations allow kernels to read and write
data at arbitrary locations

Standard parallel programming

GPU programming –
CUDA

What is CUDA?
“Compute Unified Device Architecture”

• A platform that exposes NVIDIA GPUs as general purpose
compute devices

• Is CUDA considered GPGPU? – yes and no

• CUDA can execute on devices with no graphics output
capabilities (the NVIDIA Tesla product line) – these are
not “GPUs”, per se

• however, if you are using CUDA to run some generic
algorithms on your graphics card, you are indeed
performing some General Purpose computation on your
Graphics Processing Unit…

What is CUDA?

CUDA Architecture
• Provide GPU parallelism for general-purpose computing

• Propose potentially high performance

CUDA C/C++
• Based on industry-standard C/C++

• Small set of extensions to enable heterogeneous
programming

• Straightforward APIs to manage devices, memory etc.

CUDA basics

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Concepts

Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory
• May be passed to/from host code

• May not be dereferenced in host code

Host pointers point to CPU memory
• May be passed to/from device code

• May not be dereferenced in device code

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents: malloc(), free(), memcpy()

© NVIDIA 2013

Heterogeneous Computing
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex -
RADIUS];

temp[lindex + BLOCK_SIZE] =
in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size,

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size,

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in +

RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size,

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex -
RADIUS];

temp[lindex + BLOCK_SIZE] =
in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size,

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size,

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in +

RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size,

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

CUDA programming model
• The main CPU is referred to as the host
• The compute device is viewed as a coprocessor capable
of executing a large number of light threads in parallel
• Computation on the device is performed by kernels,
functions executed in parallel on each data element
• Both the host and the device have their own memory:
host and device cannot directly access each other’s
memory, but data can be transferred
• The host manages all memory allocations on the device,
data transfers, and the invocation of kernels on the device

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

© NVIDIA 2013

PCI Bus

Language and compiler

CUDA provides a set of extensions to the C programming
language – new storage quantifiers, kernel invocation syntax,
intrinsics, vector types, etc.

• CUDA source code saved in .cu files
– host and device code and coexist in the same file
– storage qualifiers determine type of code

• Compiled to object files using nvcc compiler
– object files contain executable host and device code

• Can be linked with object files generated by other C/C++
compilers

GPU programming –
CUDA –

trivial example (“Hello World”)

Hello World!

int main(void) {
printf("Hello World!\n");
return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to
compile programs with no device code

Output:

$ nvcc
hello_world.
cu
$ a.out
Hello World!
$

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

 Two new syntactic elements…

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void) {

}

CUDA C/C++ keyword __global__ indicates a function that:
• runs on the device

• is called from host code

nvcc separates source code into host and device components
• device functions (e.g. mykernel()) processed by NVIDIA compiler

• host functions (e.g. main()) processed by standard host compiler
• gcc, cl.exe

© NVIDIA 2013

Hello World! with Device COde

mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code
to device code
• also called a “kernel launch”

• we’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function
on the GPU!

© NVIDIA 2013

Hello World! with Device Code

__global__ void mykernel(void){
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

• mykernel() does nothing, somewhat
disappointing!

Output:

$ nvcc
hello.cu
$ a.out
Hello World!
$

© NVIDIA 2013

Parallel Programming in CUDA C/C++

• But wait… GPU computing is about
massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and
build up to vector addition

a b c

© NVIDIA 2013

GPU programming –
CUDA –

simple example (addition)

Addition on the Device

A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

As before __global__ is a CUDA C/C++ keyword meaning

add() will execute on the device

add() will be called from the host

© NVIDIA 2013

Addition on the Device

Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

add() runs on the device, so a, b and c must point to
device memory

We need to allocate memory on the GPU

© NVIDIA 2013

Addition on the Device: add()

Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

Let’s take a look at main()…

© NVIDIA 2013

Addition on the Device: main()

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

© NVIDIA 2013

Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Blocks

© NVIDIA 2013

CUDA basics

Moving to Parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N
times in parallel

© NVIDIA 2013

Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a
different index

© NVIDIA 2013

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

On the device, each block can execute in parallel:

c[0] = a[0] + b[0];c[0] = a[0] + b[0]; c[1] = a[1] + b[1];c[1] = a[1] + b[1]; c[2] = a[2] + b[2];c[2] = a[2] + b[2]; c[3] = a[3] + b[3];c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

© NVIDIA 2013

Vector Addition on the Device: add()

Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Let’s take a look at main()…

© NVIDIA 2013

Vector Addition on the Device: main()
 #define N 512
 int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition on the Device: main()
 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Threads

© NVIDIA 2013

CUDA basics

CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead
of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

© NVIDIA 2013

Vector Addition Using Threads: main()
 #define N 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© NVIDIA 2013

Vector Addition Using Threads: main()
 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads
 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Indexing

© NVIDIA 2013

CUDA basics

Combining Blocks and Threads

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

© NVIDIA 2013

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is
given by:
int index = threadIdx.x + blockIdx.x * M;

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

© NVIDIA 2013

Indexing Arrays: Example

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
 = 5 + 2 * 8;
 = 21;

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

threadIdx.x = 5

blockIdx.x = 2

00 11
3
1
3
122 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030

M = 8

© NVIDIA 2013

Vector Addition with Blocks and Threads

What changes need to be made in main()?

Use the built-in variable blockDim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

Combined version of add() to use parallel threads
and parallel blocks

__global__ void add(int *a, int *b, int *c) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
}

© NVIDIA 2013

Addition with Blocks and Threads:
main()

 #define N (2048*2048)
 #define THREADS_PER_BLOCK 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

© NVIDIA 2013

Addition with Blocks and Threads:
main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

© NVIDIA 2013

Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of
blockDim.x

Avoid accessing beyond the end of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < n)
 c[index] = a[index] + b[index];
}

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Memory

© NVIDIA 2013

CUDA basics

Sharing Data Between Threads

• Terminology: within a block, threads share data via
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

© NVIDIA 2013

__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block
– Used to prevent some hazards

• All threads must reach the barrier
– In conditional code, the condition must be

uniform across the block

© NVIDIA 2013

Review (1 of 2)

Launching parallel threads

Launch N blocks with M threads per block with
kernel<<<N,M>>>(…);

Use blockIdx.x to access block index within grid

Use threadIdx.x to access thread index within block

Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

© NVIDIA 2013

Review (2 of 2)

Use __shared__ to declare a variable/array in
shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Use __syncthreads() as a barrier

Use to prevent data hazards

© NVIDIA 2013

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Management

© NVIDIA 2013

CUDA basics

Coordinating Host & Device

Kernel launches are asynchronous

Control returns to the CPU immediately

CPU needs to synchronize before consuming the
results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have
completed

© NVIDIA 2013

Handling Errors

All CUDA API calls return an error code (cudaError_t)

Error in the API call itself

OR

Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:
cudaError_t cudaGetLastError(void)

Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

© NVIDIA 2013

Managing Devices

Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support
© NVIDIA 2013

Resume

What have we learned?

Write and launch CUDA C/C++ kernels

__global__, blockIdx.x, threadIdx.x, <<<>>>

Manage GPU memory

cudaMalloc(), cudaMemcpy(), cudaFree()

Manage communication and synchronization

__shared__, __syncthreads()

cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()

© NVIDIA 2013

Compute Capability
The compute capability of a device describes its architecture, e.g.

Number of registers

Sizes of memories

Features & capabilities

Compute
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

GPU models

1.0 Fundamental CUDA support Tesla C870

1.3 Double precision, improved memory accesses,
atomics

Tesla 10-
series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC,
P2P, concurrent kernels/copies, function pointers,
recursion

Tesla 20-
series

2.1 - GTX 560

3.5 Warp shuffle functions, funnel shift, dynamic
parallelism

Tesla K40

IDs and Dimensions

A kernel is launched as a grid of
blocks of threads

blockIdx and threadIdx
are 3D

We showed only one dimension
(x)

Built-in variables:
threadIdx

blockIdx

blockDim

gridDim

DeviceDevice

Grid 1Grid 1
Bloc

k
(0,0,

0)

Bloc
k

(0,0,
0)

Bloc
k

(1,0,
0)

Bloc
k

(1,0,
0)

Bloc
k

(2,0,
0)

Bloc
k

(2,0,
0)

Bloc
k

(1,1,
0)

Bloc
k

(1,1,
0)

Bloc
k

(2,1,
0)

Bloc
k

(2,1,
0)

Bloc
k

(0,1,
0)

Bloc
k

(0,1,
0)

Block (1,1,0)Block (1,1,0)

Thre
ad

(0,0,
0)

Thre
ad

(1,0,
0)

Thre
ad

(2,0,
0)

Thre
ad

(3,0,
0)

Thre
ad

(4,0,
0)

Thre
ad

(0,1,
0)

Thre
ad

(1,1,
0)

Thre
ad

(2,1,
0)

Thre
ad

(3,1,
0)

Thre
ad

(4,1,
0)

Thre
ad

(0,2,
0)

Thre
ad

(1,2,
0)

Thre
ad

(2,2,
0)

Thre
ad

(3,2,
0)

Thre
ad

(4,2,
0)

© NVIDIA 2013

Textures

• Read-only object

Dedicated cache

• Dedicated filtering hardware

(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

© NVIDIA 2013

Current trends in GPU programming

Contacts

Any course-related information
(notifications, reports) from you:

send your message to my e-mail
yuri.gordienko@gmail.com

with the word GPU2021 in the “Subject” field
(if not, your message will be filtered out to

Spam).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	GPU computing – why we need it?
	Slide 10
	Serial Performance Scaling is Over
	How to Use Transistors?
	Why Massively Parallel Processing?
	Why Massively Parallel Processing?
	The “New” Moore’s Law?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Generic Multicore Chip
	Generic Manycore Chip
	How many cores in GPU?
	Small Changes, Big Speed-up
	Fastest Performance on Scientific Applications
	GPU – Speedup?
	What kinds of speedups do we get with GPU?
	Performance Advantage of GPUs
	Harvesting Performance Benefit of Many-core GPU Requires
	CPU vs GPU – what is the difference?
	Why is this different from a CPU?
	CPU vs. GPU: fundamentally different design
	Slide 33
	Slide 34
	Why “Performance/Watt” is important?
	Slide 36
	GPU – programming?
	Slide 38
	Slide 39
	Slide 40
	GPU programming – CUDA
	What is CUDA?
	What is CUDA?
	Slide 44
	Heterogeneous Computing
	Memory Management
	Heterogeneous Computing
	CUDA programming model
	Simple Processing Flow
	Simple Processing Flow
	Simple Processing Flow
	Language and compiler
	GPU programming – CUDA – trivial example (“Hello World”)
	Hello World!
	Hello World! with Device Code
	Hello World! with Device Code
	Hello World! with Device COde
	Hello World! with Device Code
	Parallel Programming in CUDA C/C++
	GPU programming – CUDA – simple example (addition)
	Addition on the Device
	Addition on the Device
	Addition on the Device: add()
	Addition on the Device: main()
	Addition on the Device: main()
	Slide 66
	Moving to Parallel
	Vector Addition on the Device
	Vector Addition on the Device
	Vector Addition on the Device: add()
	Vector Addition on the Device: main()
	Vector Addition on the Device: main()
	Slide 73
	CUDA Threads
	Vector Addition Using Threads: main()
	Vector Addition Using Threads: main()
	Slide 77
	Combining Blocks and Threads
	Indexing Arrays with Blocks and Threads
	Indexing Arrays: Example
	Vector Addition with Blocks and Threads
	Addition with Blocks and Threads: main()
	Addition with Blocks and Threads: main()
	Handling Arbitrary Vector Sizes
	Slide 86
	Sharing Data Between Threads
	__syncthreads()
	Review (1 of 2)
	Review (2 of 2)
	Slide 91
	Coordinating Host & Device
	Handling Errors
	Managing Devices
	Resume
	Compute Capability
	IDs and Dimensions
	Textures
	Current trends in GPU programming
	Slide 100

