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From the last lectures (01):
Distributed Computing – Architectural 

Models
Flynn’s Taxonomy:

• SISD: traditional uniprocessor 
computers

• MISD:  Space Shuttle flight 
control computer

• SIMD:  array processor, GPU.

• MIMD: parallel systems, 
distributed systems, multi-GPU.



From the last lectures (01):
GPU Computing - Definition

What is GPU Computing?

General-purpose computing on graphics 
processing units (GPGPU or GPU)

Work: vector instructions (SIMD), only effective 
for problems that can be solved using stream 
processing (data for similar computation) 
SIMD - why it is distributed? – independent 
from CPU, several graphic cards can be 
integrated in PC, clusters, etc.

Applications: calculations, gaming, multimedia.



From the last lectures (01):
GPU Computing - Scheme

CPU versus GPU 

NVIDIA “Tesla K40” card: 2880 parallel processing 
cores. Compare: 1.3 TFLOPs <-> 2-8 GFLOPs in PC!

(C) NVIDIA



From the last lectures (01):
GPU Computing - Examples

Science (above), gaming, multimedia

(C) Srinivasan



From the last lectures (01):
GPU Computing - Examples

Again: SIMD - why it is distributed? – independent from CPU, several 
graphic cards can be integrated in PC, clusters, etc.

(C) Srinivasan



From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA 
conference (2008)



From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA 
conference (2008)

GPU



GPU computing – 
why we need it?



From the last lectures (01):
State of the Art – CPU

Moore’ Law:
CPU transistors 
versus dates of 
introduction. 

The line 
corresponds to 

exponential 
growth with 

transistor count 
doubling every 

two years.



Serial Performance Scaling is Over

• Cannot continue to scale processor 
frequencies

no 10 GHz chips

• Cannot continue to increase power 
consumption

can’t melt chip

• Can continue to increase transistor density

as per Moore’s Law



How to Use Transistors?

Instruction-level parallelism:

out-of-order execution, speculation, …

Data-level parallelism:

vector units, SIMD execution, …

SSE, AVX (Advanced Vector Extensions), GPU

Thread-level parallelism:

multithreading, multicore, manycore…

Intel Core2, AMD Phenom, NVIDIA Fermi, …



A quiet revolution and potential build-up

Computation: TFLOPs  vs. GFLOPs

GPU in every PC – massive volume & potential 
impact

Why Massively Parallel Processing?
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Why Massively Parallel Processing?
A quiet revolution and potential build-up

Bandwidth: ~10x

GPU in every PC – massive volume & potential 
impact

NV30

NV40 G70

G80

GT200

T12

3GHz Dual 
Core P4

3GHz Core2 
Duo

3GHz Xeon 
Quad

Westmere



The “New” Moore’s Law?

Computers no longer get faster, just wider!

We must re-write algorithms to be parallel !

Data-parallel computing is most scalable solution

We always have more data than cores – 
then let’s build the computation around the data



Progress for: 1st and top 500 (N=500)



The champion



The champion

#2



The champion: Tianhe-2 (China) 33 PFs

#2



The most important applications



ProcessorProcessor MemoryMemoryProcessorProcessor MemoryMemory

Global MemoryGlobal Memory

Generic Multicore Chip

Handful of processors each supporting ~1 hardware thread

On-chip memory near processors  (cache, RAM, or both)

Shared global memory space  (external DRAM)



• • •
ProcessorProcessor MemoryMemoryProcessorProcessor MemoryMemory

Global MemoryGlobal Memory

Generic Manycore Chip

Many processors each supporting many hardware threads

On-chip memory near processors  (cache, RAM, or both)

Shared global memory space  (external DRAM)



How many cores in GPU?

GeForce 8800 Ultra (2007) - 128

GeForce GTX 260 (2008) - 192

GeForce GTX 295 (2009) - 480*

GeForce GTX 480 (2010) - 480

GeForce GTX 590 (2011) - 1024*

GeForce GTX 690 (2012) - 3072*

GeForce GTX Titan Z (2014) - 5760*

* indicates these are cards shipped with 2 GPUs in them, effectively doubling the cores



Small Changes, Big Speed-up

Application Code

+

GPU CPU

Use GPU to 
Parallelize

Compute-Intensive 
Functions

Rest of Sequential
CPU Code

© NVIDIA 2013



Fastest Performance on Scientific Applications
Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs
*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU
Disclaimer: Non-NVIDIA implementations may not have been fully optimized 

AMBER

SPECFEM3D

Chroma

MATLAB (FFT)*

0,0x 5,0x 10,0x 15,0x 20,0x

Engineering

Earth 
Science

Physics

Molecular
Dynamics

© NVIDIA 2013



GPU – Speedup?



What kinds of speedups do we get with GPU?



An enlarging peak performance advantage:
Calculation: 1 TFLOPS vs. 100 GFLOPS

Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

GPU in every PC and workstation – massive volume and potential impact

Performance Advantage of GPUs

(C) John Owens



Harvesting Performance Benefit of 
Many-core GPU Requires

Massive parallelism in application algorithms

Data parallelism

Regular computation and data accesses

Similar work for parallel threads

Avoidance of conflicts in critical resources

Off-chip DRAM (Global Memory) bandwidth

Conflicting parallel updates to memory locations



CPU vs GPU – 
what is the difference?



Why is this different from a CPU?

Different goals produce different designs
GPU assumes work load is highly parallel

CPU must be good at everything, parallel or not

CPU: minimize latency experienced by 1 thread
big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads
# threads in flight limited by resources => lots of 

resources (registers, bandwidth, etc.)

multithreading can hide latency => skip the big 
caches share control logic across many threads



DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPU vs. GPU: 
fundamentally different design

CPU
– task parallelism (diverse tasks)
– minimize latency
– multithreaded
– some SIMD

GPU
– excel at number crunching
– data parallelism (single task)
– maximize throughput
– super-threaded
– large-scale SIMD



From the last lectures (01):
Distributed Computing - Illustration
Mythbusters:

• Adam

• Jamie

Vivid presentation on GPU-principle at NVIDIA 
conference (2008)

GPU



The connection between CPU and GPU has low bandwidth:
•  need to minimize data transfers
•  important to use asynchronous transfers, if it is possible 

(overlap computation and transfer)

Different Memory Bandwidths!



Why “Performance/Watt” is important?

Traditional CPUs are
not economically feasible

Cluster:
2.3 PFlops

It is equal to:
7000 homes

7.0 
Megawatts

7.0 
Megawatts

CPU
Optimized for 

Serial Tasks

GPU Accelerator
Optimized for Many 

Parallel Tasks

10x performance/socket

> 5x energy efficiency

Era of GPU-accelerated  
computing is here
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World’s Fastest, Most Energy Efficient Accelerator
(GEMM - general matrix multiplication tests)
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Tesla K20X vs Xeon CPU

8x Faster SGEMM

6x Faster DGEMM

Tesla K20X vs Xeon Phi

90% Faster SGEMM

60% Faster DGEMM
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GPU – programming?



•  CUDA is supported by NVIDIA

•  OpenCL is supported by AMD (and NVIDIA)
– more recent and less developed alternative to CUDA
– a vendor-agnostic computing platform
– supports vendor-specific extensions like in OpenGL
– goal is to support a range of hardware architectures including 

GPUs, CPUs, Cell processors, Larrabee and DSPs using a 
standard low-level API

•  OpenACC compiler directive approach is emerging as an 
alternative (works somewhat like OpenMP)

APIs for GPUs



•  “Supercomputing for the masses”
– significant computational horsepower at an attractive price 
point – readily accessible hardware

•  Scalability
– programs can execute without modification on a run-of-the-mill
PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

•  Bright future – the computational capability of GPUs
doubles each year
– more thread processors, faster clocks, faster DRAM, …
– “GPUs are getting faster, faster”

Motives for GPU programming



• Stream computing – a parallel processing model where a 
computational kernel is applied to a set of data (a stream) – the 
kernel is applied to stream elements in parallel
• GPUs excel at this thanks to a large number of processing units 
and a parallel architecture

GPUs offer functionality that goes beyond mere stream computing:
• Shared memory and thread synchronization primitives eliminate 
the need for data independence
• Gather and scatter operations allow kernels to read and write 
data at arbitrary locations

Standard parallel programming



GPU programming –
CUDA



What is CUDA?
“Compute Unified Device Architecture”

• A platform that exposes NVIDIA GPUs as general purpose 
compute devices

• Is CUDA considered GPGPU? – yes and no

• CUDA can execute on devices with no graphics output 
capabilities (the NVIDIA Tesla product line) – these are 
not “GPUs”, per se 

• however, if you are using CUDA to run some generic 
algorithms on your graphics card, you are indeed 
performing some General Purpose computation on your 
Graphics Processing Unit…



What is CUDA?

CUDA Architecture
• Provide GPU parallelism for general-purpose computing

• Propose potentially high performance

CUDA C/C++
• Based on industry-standard C/C++

• Small set of extensions to enable heterogeneous 
programming

• Straightforward APIs to manage devices, memory etc.



CUDA basics

Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Concepts



Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013



Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory
• May be passed to/from host code

• May not be dereferenced in host code

Host pointers point to CPU memory
• May be passed to/from device code

• May not be dereferenced in device code

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar  to the C equivalents: malloc(), free(), memcpy()

© NVIDIA 2013



Heterogeneous Computing
#include <iostream>
#include <algorithm>

using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - 
RADIUS];

temp[lindex + BLOCK_SIZE] = 
in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out;              // host copies of a, b, c
int *d_in, *d_out;          // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in,  size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in,  in,  size, 

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, 

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + 

RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, 

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

#include <iostream>
#include <algorithm>

using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - 
RADIUS];

temp[lindex + BLOCK_SIZE] = 
in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out;              // host copies of a, b, c
int *d_in, *d_out;          // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in,  size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in,  in,  size, 

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, 

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + 

RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, 

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn
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CUDA programming model
• The main CPU is referred to as the host
• The compute device is viewed as a coprocessor capable 
of executing a large number of light threads in parallel
• Computation on the device is performed by kernels, 
functions executed in parallel on each data element
• Both the host and the device have their own memory:
host and device cannot directly access each other’s 
memory, but data can be transferred
• The host manages all memory allocations on the device, 
data transfers, and the invocation of kernels on the device



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

PCI Bus

© NVIDIA 2013



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to 
CPU memory

© NVIDIA 2013

PCI Bus



Language and compiler

CUDA provides a set of extensions to the C programming 
language – new storage quantifiers, kernel invocation syntax, 
intrinsics, vector types, etc.

• CUDA source code saved in .cu files
– host and device code and coexist in the same file
– storage qualifiers determine type of code

• Compiled to object files using nvcc compiler
– object files contain executable host and device code

• Can be linked with object files generated by other C/C++
compilers



GPU programming –
CUDA –

trivial example (“Hello World”) 



Hello World!

int main(void) {
printf("Hello World!\n");
return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to 
compile programs with no device code

Output:

$ nvcc 
hello_world.
cu
$ a.out
Hello World!
$

© NVIDIA 2013



Hello World! with Device Code

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

 Two new syntactic elements…

© NVIDIA 2013



Hello World! with Device Code

__global__ void mykernel(void) {

}

CUDA C/C++ keyword __global__ indicates a function that:
• runs on the device

• is called from host code

nvcc separates source code into host and device components
• device functions (e.g. mykernel()) processed by NVIDIA compiler

• host functions (e.g. main()) processed by standard host compiler
• gcc, cl.exe

© NVIDIA 2013



Hello World! with Device COde

mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code 
to device code
• also called a “kernel launch”

• we’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function 
on the GPU!

© NVIDIA 2013



Hello World! with Device Code

__global__ void mykernel(void){
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

• mykernel() does nothing, somewhat 
disappointing!

Output:

$ nvcc 
hello.cu
$ a.out
Hello World!
$

© NVIDIA 2013



Parallel Programming in CUDA C/C++

• But wait… GPU computing is about 
massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and 
build up to vector addition

a b c

© NVIDIA 2013



GPU programming –
CUDA –

simple example (addition) 



Addition on the Device

A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

As before __global__ is a CUDA C/C++ keyword meaning

add() will execute on the device

add() will be called from the host

© NVIDIA 2013



Addition on the Device

Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

add() runs on the device, so a, b and c must point to 
device memory

We need to allocate memory on the GPU

© NVIDIA 2013



Addition on the Device: add()

Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

Let’s take a look at main()…

© NVIDIA 2013



Addition on the Device: main()

int main(void) {

int a, b, c;             // host copies of a, b, c

int *d_a, *d_b, *d_c;      // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;
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Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

© NVIDIA 2013



Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Blocks

© NVIDIA 2013
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Moving to Parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N 
times in parallel

© NVIDIA 2013



Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a 
different index
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Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

On the device, each block can execute in parallel:

c[0]  = a[0] + b[0];c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1];c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2];c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];c[3]  = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3
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Vector Addition on the Device: add()

Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Let’s take a look at main()…
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Vector Addition on the Device: main()
    #define N 512
    int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

© NVIDIA 2013



Vector Addition on the Device: main()
        // Copy inputs to device
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N blocks
        add<<<N,1>>>(d_a, d_b, d_c);

        // Copy result back to host
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup
        free(a); free(b); free(c);
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
        return 0;
    }

© NVIDIA 2013



Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Threads
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CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead 
of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
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Vector Addition Using Threads: main()
    #define N 512
    int main(void) {
        int *a, *b, *c; // host copies of a, b, c
        int *d_a, *d_b, *d_c; // device copies of a, b, c
        int size = N * sizeof(int);

        // Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d_a, size);
        cudaMalloc((void **)&d_b, size);
        cudaMalloc((void **)&d_c, size);
        
        // Alloc space for host copies of a, b, c and setup input values
        a = (int *)malloc(size); random_ints(a, N);
        b = (int *)malloc(size); random_ints(b, N);
        c = (int *)malloc(size);
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Vector Addition Using Threads: main()
         // Copy inputs to device
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N threads
        add<<<1,N>>>(d_a, d_b, d_c);

        // Copy result back to host
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup
        free(a); free(b); free(c);
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
        return 0;
    }
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Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Indexing
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Combining Blocks and Threads

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

© NVIDIA 2013



00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is 
given by:
int index = threadIdx.x + blockIdx.x * M;

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
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Indexing Arrays: Example

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
          =      5      +     2      * 8;
          = 21;

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

threadIdx.x = 5

blockIdx.x = 2

00 11
3
1
3
122 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030

M = 8
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Vector Addition with Blocks and Threads

What changes need to be made in main()?

Use the built-in variable blockDim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

Combined version of add() to use parallel threads 
and parallel blocks

__global__ void add(int *a, int *b, int *c) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}
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Addition with Blocks and Threads: 
main()

    #define N (2048*2048)
    #define THREADS_PER_BLOCK 512
    int main(void) {
        int *a, *b, *c; // host copies of a, b, c
        int *d_a, *d_b, *d_c; // device copies of a, b, c
        int size = N * sizeof(int);

        // Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d_a, size);
        cudaMalloc((void **)&d_b, size);
        cudaMalloc((void **)&d_c, size);

        // Alloc space for host copies of a, b, c and setup input values
        a = (int *)malloc(size); random_ints(a, N);
        b = (int *)malloc(size); random_ints(b, N);
        c = (int *)malloc(size);
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Addition with Blocks and Threads: 
main()

        // Copy inputs to device
        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU
        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

        // Copy result back to host
        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup
        free(a); free(b); free(c);
        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
        return 0;
    }
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Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of 
blockDim.x

Avoid accessing beyond the end of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}
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Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Memory
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Sharing Data Between Threads

• Terminology: within a block, threads share data via 
shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks
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__syncthreads()

• void __syncthreads();

• Synchronizes all threads within a block
– Used to prevent some hazards

• All threads must reach the barrier
– In conditional code, the condition must be 

uniform across the block
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Review (1 of 2)

Launching parallel threads

Launch N blocks with M threads per block with 
kernel<<<N,M>>>(…);

Use blockIdx.x to access block index within grid

Use threadIdx.x to access thread index within block

Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;
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Review (2 of 2)

Use __shared__ to declare a variable/array in 
shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Use __syncthreads() as a barrier

Use to prevent data hazards
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Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Management
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Coordinating Host & Device

Kernel launches are asynchronous

Control returns to the CPU immediately

CPU needs to synchronize before consuming the 
results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have 
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have 
completed
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Handling Errors

All CUDA API calls return an error code (cudaError_t)

Error in the API call itself

OR

Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:
cudaError_t cudaGetLastError(void)

Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));
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Managing Devices

Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support
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Resume

What have we learned?

Write and launch CUDA C/C++ kernels

__global__,  blockIdx.x,  threadIdx.x,  <<<>>>

Manage GPU memory

cudaMalloc(),  cudaMemcpy(),  cudaFree()

Manage communication and synchronization

__shared__,  __syncthreads()

cudaMemcpy() vs cudaMemcpyAsync(),  cudaDeviceSynchronize()
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Compute Capability
The compute capability of a device describes its architecture, e.g.

Number of registers

Sizes of memories

Features & capabilities

Compute 
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

GPU models

1.0 Fundamental CUDA support Tesla C870

1.3 Double precision, improved memory accesses, 
atomics

Tesla 10-
series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, 
P2P, concurrent kernels/copies, function pointers, 
recursion

Tesla 20-
series

2.1 - GTX 560

3.5 Warp shuffle functions, funnel shift, dynamic 
parallelism

Tesla K40



IDs and Dimensions

A kernel is launched as a grid of 
blocks of threads

blockIdx and threadIdx 
are 3D

We showed only one dimension 
(x)

Built-in variables:
threadIdx

blockIdx

blockDim

gridDim

DeviceDevice

Grid 1Grid 1
Bloc

k
(0,0,

0)

Bloc
k

(0,0,
0)

Bloc
k

(1,0,
0)

Bloc
k

(1,0,
0)

Bloc
k

(2,0,
0)

Bloc
k

(2,0,
0)

Bloc
k

(1,1,
0)

Bloc
k

(1,1,
0)

Bloc
k

(2,1,
0)

Bloc
k

(2,1,
0)

Bloc
k

(0,1,
0)

Bloc
k

(0,1,
0)

Block (1,1,0)Block (1,1,0)

Thre
ad

(0,0,
0)

Thre
ad

(1,0,
0)

Thre
ad

(2,0,
0)

Thre
ad

(3,0,
0)

Thre
ad

(4,0,
0)

Thre
ad

(0,1,
0)

Thre
ad

(1,1,
0)

Thre
ad

(2,1,
0)

Thre
ad

(3,1,
0)

Thre
ad

(4,1,
0)

Thre
ad

(0,2,
0)

Thre
ad

(1,2,
0)

Thre
ad

(2,2,
0)

Thre
ad

(3,2,
0)

Thre
ad

(4,2,
0)
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Textures

• Read-only object

Dedicated cache

• Dedicated filtering hardware

(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)
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Current trends in GPU programming



Contacts

Any course-related information 
(notifications, reports) from you:

send your message to my e-mail
yuri.gordienko@gmail.com

with the word GPU2021 in the “Subject” field
(if not, your message will be filtered out to 

Spam).
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