
Технології графічного процесінгу

(Масивно-паралельні обчислення на графічних
прискорювачах

...
Massively Parallel Computing on Graphic

Processing Units - GPUs)

Lecture 2. Performance Metrics
in Parallel and GPU Computing

Yuri G. Gordienko
(NTUU-KPI, 2021)

(on the basis of materials by M.Hammoud, M.F.Sakr, A.Simpson, H.Kim)

Parallel Computing

The main aspects:

• Definition: what is Parallel Computing?
• Levels (heterogeneity, granularity)
• Classification of Systems
• Memory
• Programming Models

Levels of Parallel Computing

Memory in Parallel Computing

• Distributed

• Shared

• Hybrid (Distributed-Shared)

Functional Decomposition

• Computations
(not the data) are
grouped

• Each task
computes a part
of the overall
work.

Domain (Data) Decomposition – GPU!

• The data are divided into portions

• Each portion is given to a task that performs the
operation on it in in parallel

Sequential

Parallel

Communication - Timing

Synchronous

• “Handshaking" between tasks that are sharing
data is needed; it could be done implicitly or
explicitly

• Blocking communications: some work must be
held until the communications are done

Asynchronous

• Tasks can communicate with data independently
from the work they are doing

• Non-blocking communications

Synchronization - Barrier

Definition: A point at which a task must stop, and
can not proceed until all tasks are synchronized.

Synchronization - Locks/Semaphores

Definition:
to protect access to
global data or a
section of code

Synchronous Communication Oper-ns

Definition: Coordination is required between the
task that is performing an operation and the
other tasks performing the communication

Load Balancing

Definition: to distribute work among all tasks so
they are all kept busy all of the time

Ways to achieve:

• Adequate partitioning

• Dynamic work assignment

• Scheduler/task-pool

• Algorithm to detect and handle imbalances

Note: if barrier synchronization is used, then the
slowest task determines the performance

Granularity

Definition: computation/communication ratio

• Fine-grain parallelism: few computation events are
done between communication events

• High communication overhead

• Small opportunity to enhance performance

• Coarse-grain parallelism: many computational
events are done between communication events.

• Large opportunity to enhance performance

• Harder to do load balancing efficiently

All these aspects affects:

Performance
of Parallel and Distributed

Computing

All these aspects affects:

Performance
of Parallel and Distributed

Computing

Parallel Computing Performance -
Metrics

Analyzing Parallel Performance

What Metrics are Used?

• Time

is self-explanatory

• Speedup

• Efficiency

• Cost

Speedup - Definition

Definition: the ratio (n,p) between sequential execution time
and parallel execution time (for data size n and p processors):

Example: sequential program executes in 6 seconds and the
parallel program executes in 2 seconds -> speedup is 3.

Speedup curves
look like this

Processors

Sp
ee

d
u

p

y = x

timeexecution Parallel

timeexecution Sequential
),(Speedup pn

18

(n,p) = ts/tp

• In practice:

– ts is the execution time on a single processor, using the

fastest known sequential algorithm

– tp is the execution time using n parallel processors.

• In theory:

– ts is the worst case running time for of the fastest known

sequential algorithm for the problem

– tp is the worst case running time of the parallel algorithm

using n processing units.

Speedup - Notes

Definition: measure of processor utilization ε(n,p) as the
speedup divided by the number of processors p

Example:
Program achieves speedup of 3 on 4 CPUs
Efficiency is 3 / 4 = 75%

Effi
ci

en
cy

Processors

Efficiency curves
look like this

y = 1.0

Efficiency - Definition

Processors

Speedup
, Efficiency pn

Efficiency - Notes

• For algorithms for traditional problems (when superlinear
speedup is not possible):

speedup ≤ processors

• Since speedup ≥ 0 and processors > 1, it follows from the
above two equations that

0 (n,p) 1

• However, there are superlinear algorithms, when

speedup > processors

and for this case:

(n,p) > 1

Processors

Speedup
, Efficiency pn

Cost = Parallel running time processors

• “Cost” is a much overused word,
the term “algorithm cost” is sometimes used for
clarity.

• The cost of a parallel algorithm should be compared
to the running time of a sequential algorithm.

– Cost removes the advantage of parallelism by
charging for each additional processor.

– A parallel algorithm whose cost is growing “with
similar rate” than the running time of an optimal
sequential algorithm is called cost-optimal.

Cost - Definition

Speedup, Cost, Efficiency

Sequential running time
Efficiency

Processors Parallel running time

Speedup
Efficiency

Processors

Sequential running time
Efficiency

Cost

Parallel Computing Performance -
Laws

Parallel Computing Performance - Laws

Amdahl’s Law (1967): the principal limit of speedup
in sequential-parallel code

Gustafson’s Law (1988): another way to evaluate
the performance of a parallel program

Karp/Flatt Metric (1990): whether the principle
barrier to the program speedup is the amount of
inherently sequential code or parallel overhead

Isoefficiency (isogranularity) Metric: the scalability
of a parallel algorithm executing on a parallel
system

Amdahl’s Law

Amdahl’s Law

• Suppose that the sequential execution of a
program takes T1 time units and the parallel

execution on p processors takes Tp time units

• Suppose that out of the entire execution of the
program, s fraction of it is not parallelizable
while 1-s fraction is parallelizable

• Then the speedup (Amdahl’s formula):

Amdahl’s Law: Illustration

Amdahl’s Law: An Example

 Suppose that 80% of your program can be
parallelized and that you use 4 processors to
run your parallel version of the program

 The speedup you can get:

 Although you use 4 processors you cannot get
a speedup more than 2.5 times!

28

Amdahl’s Law: Real vs. Actual Cases

 Amdahl’s Law is too simple for real cases

 The communication overhead and workload imbalance
among processes (in general) should be taken into account

20 80

20 20

Process 1

Process 2

Process 3

Process 4

Serial

Parallel

1. Parallel Speed-up: An Ideal Case

Cannot be parallelized

Can be parallelized

20 80

20 20

Process 1

Process 2

Process 3

Process 4

Serial

Parallel

2. Parallel Speed-up: An Actual Case

Cannot be parallelized

Can be parallelized

Load Unbalance

Communication overhead

Amdahl’s Law Is Too Optimistic

Amdahl’s Law ignores parallel processing
overheads:
– The time for creating and terminating threads

– Parallel processing overhead is usually an
increasing function of the number of processors

– Communication expenses

Graph with Parallel Overhead Added

Processors

Ex
ec

u
ti

o
n

 T
im

e

Parallel overhead
increases with
of processors

Other Optimistic Assumptions

• Amdahl’s Law assumes that the computation divides evenly
among the processors

• In reality, the amount of work does not divide evenly among
the processors

• Processor waiting time is another form of overhead

Task started

Task completed

Working time

Waiting time

Graph with Workload Imbalance Added

Processors

Ex
ec

u
ti

o
n

 T
im

e

Time lost
due to
workload
imbalance

Parallel Slowdown

A diagram of the program runtime (shown in blue) and program
speed-up (shown in red) of a real-world program with sub-optimal
parallelization. The dashed lines indicate optimal parallelization–

linear increase in speedup and linear decrease in program runtime.
Not: the runtime actually increases with more processors (and the

speed-up likewise decreases) -> this is parallel slowdown.

Types of Computing Problems
• Embarrassingly parallel problem - little or no effort is required

to separate the problem into a number of parallel tasks. They are
thus well suited to large, internet based distributed platforms
(such as volunteer computing, like BOINC), and do not suffer
from parallel slowdown. They require little or no communication
of results between tasks, and are thus different from …

• Distributed computing problems - require communication
between tasks, especially communication of intermediate
results.

• Inherently serial computing problems - cannot be parallelized
at all, and they are diametric opposite to embarrassingly parallel
problems.

More General Speedup Formula

(n,p)n,p) - speedup for problem of size n on p CPUs

(n,p)n) - time in sequential portion of code for problem of size n

(n,p)n) - time in parallel portion of code for problem of size n

(n,p)n,p) - parallel overheads

),(/)()(

)()(
),(

pnpnn

nn
pn

Amdahl’s Law: Maximum Speedup

),(/)()(

)()(
),(

pnpnn

nn
pn

This term is set to 0

Assumes parallel
work divides perfectly
among available CPUs

The Amdahl Effect

),(/)()(

)()(
),(

pnpnn

nn
pn

As n these terms dominate

Speedup is an increasing function of problem size

Illustration of the Amdahl Effect

n = 100,000

n = 10,000

n = 1,000

Processors

Sp
ee

d
u

p

Linear speedup

Using Amdahl’s Law

• Program executes in 5 seconds

• Profile reveals 80% of time spent in some
function, which we can execute in parallel

• What would be maximum speedup on 2
processors?

• New execution time ≥ 5 sec / 1.67 = 3
seconds

0.2 0.8 1
1.67

0.2 0.8 / 2 0.6

Gene Amdahl (1922-2015)

On work in IBM:

what I felt was that with that kind of an organization I'm not going to
be in control of what I want to do any time in the future. It's going to

be a much more bureaucratic structure. …

And I decided that I didn't want to have that kind of life, basically. ...
It was the way the structure was set up;

I was going to be a peg-in-a-hole.

Gene Amdahl (1922-2015)
He left IBM again in September 1970, after his ideas

for computer development were rejected, and set up
Amdahl Corporation in Sunnyvale, California with aid

from Fujitsu.

Competing with IBM in the mainframe market, the
company manufactured "plug-compatible"

mainframes.

In 1967 at the Spring Joint Computer Conference,
Amdahl argued verbally and in three written pages,
for performance limitations in any special feature or

mode introduced to new machines
---> Amdahl’s law.

These arguments continue to this day.

Karp-Flatt Metric

Karp-Flatt Metric: Example 1

• Suppose we benchmark a parallel program and get
these speedup figures

• Why is efficiency dropping?

• How much speedup could we expect on 8 processors?

Processors Speedup Efficiency

2 1.5 75%

3 1.8 60%

4 2 50%

Deriving the Karp-Flatt Metric

• The denominator represents parallel execution time

• One processor does sequential code; others idle

• All processors incur overhead time

• “Wasted time” (when p-1 processors are idle):

(p-1)(n) + p(n, p)

• “Experimentally determined serial fraction”:

“wasted time” divided by (p-1) times sequential time

),(/)()(

)()(
),(

pnpnn

nn
pn

Karp-Flatt Metric –
Comparison with Amdahl’s Law – 1

Assume that:

• p - the number of processors in a system;

• T(p) - the total code execution time in a system with p
processors;

• Ts - the execution time of the serial part of the code;

• Tp - the execution time of the parallel part of the code
by one processor.

Then:

p

T
TpT p
s

Karp-Flatt Metric –
Comparison with Amdahl’s Law – 2

Assume that we have a system with 1 processor, i.e. p =1:

Then from:

we get and if we define serial fraction

then we can obtain

As far as speedup we get

p

T
TpT p
s

 ps TTT 1
 1T

T
e s

p

e
eT

p

eTT
eT

p

TT
eTpT s 1

1
11

1
1

1

 pT
T 1

p

e
e

11

• The experimentally determined serial fraction e is a
function of speedup ψ and the number of processors p

• We can use e to determine whether efficiency
decreases are due to

– Sequential component of computation

– Increases in overhead

p

p
e

/11

/1/1

Karp-Flatt Metric –
Comparison with Amdahl’s Law – 3

49

Analyzing Parallel Performance

Interpretation of e

• If e is constant as the number of processors p
increases, then speedup ψ is constrained by the
sequential component of the computation

• If e is increasing as the number of processors p
increases, then speedup ψ is constrained by the
parallel overhead, such as
– Thread creation/termination time
– Contention for shared data structures
– Cache-related inefficiencies

• Often a combination of these two factors is observed

Return to the Previous Example:
Constant e

Processors
(p)

Speedup
(ψ)

Efficiency e

2 1.5 75% 0.33

3 1.8 60% 0.33

4 2.0 50% 0.33

• In this case, serial fraction e is constant, then
speedup ψ is constrained by the relatively
large amount of time spent in sequential code

Example 2: Compute

The benchmark data for a parallel program computing value of .

Let’s predict speedup on 6 processors:

• Assume that e can be extrapolated to be equal to 0.11.

• Then speedup would be ~3.871…

Processors
(p)

Speedup
(ψ)

Efficiency e

2 1.87 93% 0.070

3 2.60 87% 0.078

4 3.16 79% 0.089

Example 2:
Speedup Prediction Formula

1)1(

/11

/1/1

pe

p

p

p
e

Example 3:
Increase the Number of Processors
• Assume that we benchmarked a sequential program,

which spends 85% of its time in functions that can be
re-written for parallel execution.

• Then we re-write these functions for parallel
execution and run the program on a 2-processor
system.

• The parallel program achieves a speedup of 1.67 on 2
processors.

Question: if we run the program on a 4-processor
system, what kind of speedup should we expect?

Example 3:
Prediction Based on Amdahl’s Law

76.2

4/)15.01(15.0

1

Example 3:
Prediction Based on Karp-Flatt Metric

• From Karp-Flatt formula for p = 2, ψ=1.67,
we get e = 0.1976

• We know that the sequential part of code is 0.15, then the
rest part of e is (0.0476) is related with some parallel
overheads

• Assume that the parallel overheads increase linearly with
number of processors p>1, then it will be 0.0476(p-1)=0.1428
when p = 4

• Then we can predict that for p = 4: e = 0.15+0.1428 =0.2928

• Finally, for p = 4, from the reverse Karp-Flatt formula
we can estimate speedup ψ=2.1294≈2.13

(1) 1

p

e p

p

p
e

/11

/1/1

Superlinear Speedup
• According to our general speedup formula, the maximum

speedup a program can achieve on p processors is p

• Superlinear speedup is the situation where speedup is greater
than the number of processors used

• It means the computational rate of the processors is faster
when the parallel program is executing

• Superlinear speedup is usually caused, because:

– the cache hit rate of the parallel program is higher

– data input/output operation is much lower

– some data can be obtained principally earlier in parallel than in
sequential regimes

Isoefficiency Metric

Isoefficiency Metric - Definition

• Parallel system – a parallel program executing
on a parallel computer

• Scalability of a parallel system - a measure of
its ability to increase performance as number
of processors increases

• A scalable system maintains efficiency as
processors are added

• Isoefficiency - a way to measure scalability

Isoefficiency - Notations

• n - data size

• p - number of processors

• T(n,p) - execution time, using p processors

• (n,p) - speedup

• (n) - inherently sequential computations

• (n) - potentially parallel computations

• (n,p) - communication operations

• (n,p) - efficiency

Isoefficiency - Concepts

• T0(n,p) - the total wasting time spent by

processes doing work not done by sequential
algorithm.

T0(n,p) = (p-1)(n) + p(n,p)

• We want the algorithm to maintain a constant
level of efficiency as the data size n increases.
Hence, (n,p) is required to be a constant.

• Recall that T(n,1) represents the sequential
execution time.

Isoefficiency Relation

The main steps to derivation:

• Begin with speedup formula

• Compute total amount of overhead

• Assume efficiency remains constant

• Determine relation between sequential
execution time and overhead

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo

Determine overhead

Substitute overhead into speedup equation
() ()

(,)
() () / (,)

n n
n p

n n p n p

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo

Determine overhead

Substitute overhead into speedup equation
() ()

(,)
() () / (,)

n n
n p

n n p n p

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = (n) + (n) also in it

() ()
(,)

() () / (,)

n n
n p

n n p n p

Deriving Isoefficiency Relation

),()()1(),(pnpnppnTo

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = (n) + (n) also in it, and get:

),()1,(0 pnCTnT

() ()
(,)

() () / (,)

n n
n p

n n p n p

where (,)

1 (,)

n p
C

n p

0 0

() ()
(,)

() () / (,)

() ()

() () / (,)

() ()

() () (,)

() ()

() () 1 () (,)

() () (,1)

() () (,) (,1) (,)

n n
n p

n n p n p

p n n

p n n p n p

p n n

p n n p n p

p n n

n n p n p n p

p n n pT n

n n T n p T n T n p

Deriving Isoefficiency Relation

Isoefficiency Relation Usage

• Used to determine the range of processors p for
which a given level of efficiency (n,p)n,p) can be
maintained

• The way to maintain a given efficiency (n,p)n,p) is to
increase the problem size n when the number of
processors p increase.

• The maximum problem size n we can solve is limited
by the amount of memory M available

• The memory size M is a constant multiple of the
number of processors p for most parallel systems

The Scalability Function

• Suppose the isoefficiency relation can be
transformed to n f(n,p)p), where f is an
isoefficiency function

• Let M(n,p)n) is a memory required for problem of
size n

• M(n,p)f(n,p)p))/p characterizes how memory usage
per processor must increase to maintain same
efficiency

• M(n,p)f(n,p)p))/p is called the scalability function
[i.e., scale(n,p)p) = M(n,p)f(n,p)p))/p)]

Meaning of Scalability Function

• To maintain efficiency (n,p)n,p) when increasing p, we
must increase n

• Maximum problem size n is limited by available
memory M, which increases linearly with p: M ~ p

• Scalability function scale(n,p)p) shows how memory
usage per processor M(n,p)f(n,p)p))/p must grow to
maintain efficiency (n,p)n,p)

• If the scalability function scale(n,p)p) is a constant this
means the parallel system is perfectly scalable

Interpreting Scalability Function

Number of processors

M
em

or
y

ne
ed

ed
 p

er
 p

ro
ce

ss
or

Cplogp

Cp

Clogp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency

Examples

• Reduction task – collects the answers to all the
sub-problems and combines them in some way
to form the output.

• Floyd-Warshall Algorithm – the
graph analysis algorithm for finding shortest
paths in a weighted graph.

• Finite Difference Method - numerical
methods for approximating the solutions
to differential equations using finite
difference equations to approximate derivatives

Example 1: Reduction

• Sequential algorithm complexity T(n,1) = (n)

• Parallel algorithm
– Computational complexity = (n/p)

– Communication complexity = (log p)

• Parallel overhead
T0(n,p) = (p log p)

3
2

0

dc

2

9

5

31

ba
P

ro
ce

ss
o

r

Data

MPI_Reduce

3
2

0

dc

2

9

195

31

ba

P
ro

ce
ss

o
r

Data

op:MPI_SUM

Reduction (continued)

• Isoefficiency relation: n C p log p

• We ask: To maintain same level of efficiency
(n,p)n,p), how must n increase when p increases?

• Since M(n,p)n) ~ n,

• The system has good scalability
pCppCpppCpM log/log/)log(

Example 2: Floyd-Warshall Algorithm

• Sequential time complexity: (n3)

• Parallel computation time: (n3/p)

• Parallel communication time: (n2log p)

• Parallel overhead: T0(n,p) = (pn2log p)

Floyd-Warshall Algorithm (continued)

• Isoefficiency relation
n3 C(p n2 log p) n C p log p

• M(n,p)n) = n2

• The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log(

Example 3: Finite Difference Method

• Sequential time complexity per iteration: (n2)

• Parallel communication complexity per iteration:
(n/p)

• Parallel overhead: (n p)

Finite Difference Method (continued)

• Isoefficiency relation
n2 Cnp n C p

• M(n,p)n) = n2

• This algorithm is perfectly scalable

22 //)(CppCppCM

Summary on Metrics
• Time

• Speedup

• Efficiency

• Cost

• Amdahl’s Law: predict maximum speedup

• Karp-Flatt metric:
– analyze parallel program performance

– predict speedup with additional processors

• Isoefficiency metric: estimate scalability

Guidelines

In order to organize parallel work efficiently
developers need to follow these guidelines:

– Maximize the fraction of our program that
can be parallelized

– Balance the workload of parallel processes

– Minimize the time spent for
communication

Contacts

Any course-related information
(notifications, reports) from you:

send your message to my e-mail
yuri.gordienko@gmail.com

with the word GPU2021 in the “Subject” field
(if not, your message will be filtered out to

Spam).

mailto:yuri.gordienko@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Parallel Computing Performance - Metrics
	What Metrics are Used?
	Speedup - Definition
	Slide 18
	Slide 19
	Efficiency - Notes
	Slide 21
	Speedup, Cost, Efficiency
	Parallel Computing Performance - Laws
	Slide 24
	Amdahl’s Law
	Slide 26
	Slide 27
	Amdahl’s Law: An Example
	Amdahl’s Law: Real vs. Actual Cases
	Amdahl’s Law Is Too Optimistic
	Graph with Parallel Overhead Added
	Other Optimistic Assumptions
	Graph with Workload Imbalance Added
	Parallel Slowdown
	Types of Computing Problems
	More General Speedup Formula
	Amdahl’s Law: Maximum Speedup
	The Amdahl Effect
	Illustration of the Amdahl Effect
	Using Amdahl’s Law
	Gene Amdahl (1922-2015)
	Gene Amdahl (1922-2015)
	Karp-Flatt Metric
	Karp-Flatt Metric: Example 1
	Deriving the Karp-Flatt Metric
	Karp-Flatt Metric – Comparison with Amdahl’s Law – 1
	Karp-Flatt Metric – Comparison with Amdahl’s Law – 2
	Karp-Flatt Metric – Comparison with Amdahl’s Law – 3
	Interpretation of e
	Return to the Previous Example: Constant e
	Example 2: Compute
	Example 2: Speedup Prediction Formula
	Example 3: Increase the Number of Processors
	Example 3: Prediction Based on Amdahl’s Law
	Example 3: Prediction Based on Karp-Flatt Metric
	Superlinear Speedup
	Isoefficiency Metric
	Isoefficiency Metric - Definition
	Isoefficiency - Notations
	Isoefficiency - Concepts
	Isoefficiency Relation
	Deriving Isoefficiency Relation
	Deriving Isoefficiency Relation
	Deriving Isoefficiency Relation
	Deriving Isoefficiency Relation
	Deriving Isoefficiency Relation
	Isoefficiency Relation Usage
	The Scalability Function
	Meaning of Scalability Function
	Interpreting Scalability Function
	Examples
	Example 1: Reduction
	Reduction (continued)
	Example 2: Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm (continued)
	Example 3: Finite Difference Method
	Finite Difference Method (continued)
	Summary on Metrics
	Guidelines
	Slide 80

