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Parallel Computing

The main aspects:

•  Definition: what is Parallel Computing?
•  Levels (heterogeneity, granularity)
•  Classification of Systems
•  Memory
•  Programming Models



Levels of Parallel Computing



Memory in Parallel Computing

• Distributed

• Shared

• Hybrid (Distributed-Shared)



Functional Decomposition

• Computations 
(not the data) are 
grouped

• Each task 
computes a part 
of the overall 
work.



Domain (Data) Decomposition – GPU!

• The data are divided into portions

• Each portion is given to a task that performs the 
operation on it in in parallel

Sequential

Parallel



Communication - Timing

Synchronous

• “Handshaking" between tasks that are sharing 
data is needed; it could be done implicitly or 
explicitly

• Blocking communications:  some work must be 
held until the communications are done

Asynchronous 

• Tasks can communicate with data independently 
from the work they are doing

• Non-blocking communications



Synchronization - Barrier

Definition: A point at which a task must stop, and 
can not proceed until all tasks are synchronized.



Synchronization - Locks/Semaphores

Definition: 
to protect access to 
global data or a 
section of code



Synchronous Communication Oper-ns

Definition: Coordination is required between the 
task that is performing an operation and the 
other tasks performing the communication



Load Balancing

Definition: to distribute work among all tasks so 
they are all kept busy all of the time

Ways to achieve:

• Adequate partitioning

• Dynamic work assignment

• Scheduler/task-pool

• Algorithm to detect and handle imbalances

Note: if barrier synchronization is used, then the 
slowest task determines the performance



Granularity

Definition: computation/communication ratio

• Fine-grain parallelism: few computation events are 
done between communication events

• High communication overhead

• Small opportunity to enhance performance

• Coarse-grain parallelism: many computational 
events are done between communication events.

• Large opportunity to enhance performance

• Harder to do load balancing efficiently



All these aspects affects:

Performance
of Parallel and Distributed 

Computing



All these aspects affects:

Performance
of Parallel and Distributed 

Computing



Parallel Computing Performance - 
Metrics



Analyzing Parallel Performance

What Metrics are Used?

• Time 

is self-explanatory

• Speedup

• Efficiency

• Cost



Speedup - Definition

Definition: the ratio (n,p) between sequential execution time 
and parallel execution time (for data size n and p processors):

Example: sequential program executes in 6 seconds and the 
parallel program executes in 2 seconds -> speedup is 3.

Speedup curves
look like this
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(n,p) = ts/tp

• In practice:

– ts is the execution time on a single processor, using the 

fastest known sequential algorithm

– tp is the execution time using n parallel processors.

• In theory:

– ts is the worst case running time for of the fastest known 

sequential algorithm for the problem 

– tp is the worst case running time of the parallel algorithm 

using n processing units.

Speedup - Notes



Definition: measure of processor utilization ε(n,p) as the 
speedup divided by the number of processors p

Example:
Program achieves speedup of 3 on 4 CPUs
Efficiency is 3 / 4 = 75%
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Efficiency curves
look like this
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Efficiency - Definition
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Efficiency - Notes
 

• For algorithms for traditional problems (when superlinear 
speedup is not possible): 

speedup ≤ processors

• Since speedup ≥ 0 and processors > 1, it follows from the 
above two equations that

0  (n,p)  1

• However, there are  superlinear algorithms, when 

speedup > processors

and for this case: 

(n,p) > 1
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Cost = Parallel running time  processors

• “Cost” is a much overused word, 
the term “algorithm cost” is sometimes used for 
clarity. 

• The cost of a parallel algorithm should be compared 
to the running time of a sequential algorithm.

– Cost removes the advantage of parallelism by 
charging for each additional processor.

– A parallel algorithm whose cost is growing “with 
similar rate” than the running time of an optimal 
sequential algorithm is called cost-optimal.

Cost - Definition



Speedup, Cost, Efficiency

Sequential running time
Efficiency  

Processors  Parallel running time

Speedup
Efficiency  

Processors

Sequential running time
Efficiency

Cost










Parallel Computing Performance - 
Laws



Parallel Computing Performance - Laws

Amdahl’s Law (1967): the principal limit of speedup 
in sequential-parallel code

Gustafson’s Law (1988): another way to evaluate 
the performance of a parallel program

Karp/Flatt Metric (1990): whether the principle 
barrier to the program speedup is the amount of 
inherently sequential code or parallel overhead

Isoefficiency (isogranularity) Metric: the scalability 
of a parallel algorithm executing on a parallel 
system



Amdahl’s Law



Amdahl’s Law

• Suppose that the sequential execution of a 
program takes T1 time units and the parallel 

execution on p processors takes Tp time units

• Suppose that out of the entire execution of the 
program, s fraction of it is not parallelizable 
while 1-s fraction is parallelizable

• Then the speedup (Amdahl’s formula):

 



Amdahl’s Law: Illustration



Amdahl’s Law: An Example

 Suppose that 80% of your program can be 
parallelized and that you use 4 processors to 
run your parallel version of the program

 The speedup you can get:

 Although you use 4 processors you cannot get 
a speedup more than 2.5 times!
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Amdahl’s Law: Real vs. Actual Cases

 Amdahl’s Law is too simple for real cases

 The communication overhead and workload imbalance 
among processes (in general) should be taken into account
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Amdahl’s Law Is Too Optimistic

Amdahl’s Law ignores parallel processing 
overheads:
– The time for creating and terminating threads

– Parallel processing overhead is usually an 
increasing function of the number of processors

– Communication expenses



Graph with Parallel Overhead Added
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Other Optimistic Assumptions

• Amdahl’s Law assumes that the computation divides evenly 
among the processors

• In reality, the amount of work does not divide evenly among 
the processors

• Processor waiting time is another form of overhead

Task started

Task completed

Working time

Waiting time



Graph with Workload Imbalance Added
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Parallel Slowdown

A diagram of the program runtime (shown in blue) and program 
speed-up (shown in red) of a real-world program with sub-optimal 
parallelization. The dashed lines indicate optimal parallelization–

linear increase in speedup and linear decrease in program runtime. 
Not: the runtime actually increases with more processors (and the 

speed-up likewise decreases) -> this is parallel slowdown.



Types of Computing Problems
•  Embarrassingly parallel problem - little or no effort is required 

to separate the problem into a number of parallel tasks. They are 
thus well suited to large, internet based distributed platforms 
(such as volunteer computing, like BOINC), and do not suffer 
from parallel slowdown.  They require little or no communication 
of results between tasks, and are thus different from …

•  Distributed computing problems - require communication 
between tasks, especially communication of intermediate 
results. 

•  Inherently serial computing problems - cannot be parallelized 
at all, and they are diametric opposite to embarrassingly parallel 
problems.



More General Speedup Formula

(n,p)n,p) - speedup for problem of size n on p CPUs

(n,p)n) - time in sequential portion of code for problem of size n

(n,p)n) - time in parallel portion of code for problem of size n

(n,p)n,p) - parallel overheads
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Amdahl’s Law: Maximum Speedup
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This term is set to 0

Assumes parallel
work divides perfectly
among available CPUs



The Amdahl Effect
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As n   these terms dominate

Speedup is an increasing function of problem size



Illustration of the Amdahl Effect

n = 100,000

n = 10,000

n = 1,000
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Using Amdahl’s Law

• Program executes in 5 seconds

• Profile reveals 80% of time spent in some 
function, which we can execute in parallel

• What would be maximum speedup on 2 
processors?

• New execution time ≥ 5 sec / 1.67 = 3 
seconds

0.2 0.8 1
1.67

0.2 0.8 / 2 0.6



  





Gene Amdahl (1922-2015)

On work in IBM: 

what I felt was that with that kind of an organization I'm not going to 
be in control of what I want to do any time in the future. It's going to 

be a much more bureaucratic structure. … 

And I decided that I didn't want to have that kind of life, basically. ... 
It was the way the structure was set up; 

I was going to be a peg-in-a-hole.



Gene Amdahl (1922-2015)
He left IBM again in September 1970, after his ideas 

for computer development were rejected, and set up 
Amdahl Corporation in Sunnyvale, California with aid 

from Fujitsu.

Competing with IBM in the mainframe market, the 
company manufactured "plug-compatible" 

mainframes.

In 1967 at the Spring Joint Computer Conference, 
Amdahl argued verbally and in three written pages, 
for performance limitations in any special feature or 

mode introduced to new machines 
---> Amdahl’s law. 

These arguments continue to this day.



Karp-Flatt Metric



Karp-Flatt Metric: Example 1

• Suppose we benchmark a parallel program and get 
these speedup figures

• Why is efficiency dropping?

• How much speedup could we expect on 8 processors?

Processors Speedup Efficiency

2 1.5 75%

3 1.8 60%

4 2 50%



Deriving the Karp-Flatt Metric

• The denominator represents parallel execution time

• One processor does sequential code; others idle

• All processors incur overhead time

• “Wasted time” (when p-1 processors are idle):

(p-1)(n) + p(n, p)

• “Experimentally determined serial fraction”: 

“wasted time” divided by (p-1) times sequential time
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Karp-Flatt Metric – 
Comparison with Amdahl’s Law – 1 

Assume that:

• p - the number of processors in a system;

• T(p) - the total code execution time in a system with p 
processors; 

• Ts - the execution time of the serial part of the code;

• Tp - the execution time of the parallel part of the code 
by one processor.

Then:
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Karp-Flatt Metric – 
Comparison with Amdahl’s Law – 2

Assume that we have a system with 1 processor, i.e. p =1:

Then from:

we get                            and if we define serial fraction

then we can obtain

As far as speedup                      we get  
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• The experimentally determined serial fraction e is a 
function of speedup ψ and the number of processors p

• We can use e to determine whether efficiency 
decreases are due to

– Sequential component of computation

– Increases in overhead
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p
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Karp-Flatt Metric – 
Comparison with Amdahl’s Law – 3
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Analyzing Parallel Performance

Interpretation of e 

• If e is constant as the number of processors  p
increases, then speedup ψ is constrained by the 
sequential component of the computation

• If e is increasing as the number of processors  p
increases, then speedup ψ is constrained by the 
parallel overhead, such as
– Thread creation/termination time
– Contention for shared data structures
– Cache-related inefficiencies

• Often a combination of these two factors is observed



Return to the Previous Example: 
Constant e

Processors 
(p)

Speedup 
(ψ)

Efficiency e

2 1.5 75% 0.33

3 1.8 60% 0.33

4 2.0 50% 0.33

• In this case, serial fraction e is constant, then 
speedup ψ is constrained by the relatively 
large amount of time spent in sequential code



Example 2: Compute 

The benchmark data for a parallel program computing value of .

Let’s predict speedup on 6 processors:

• Assume that e can be extrapolated to be equal to 0.11.

• Then speedup would be ~3.871…

Processors 
(p)

Speedup 
(ψ)

Efficiency e

2 1.87 93% 0.070

3 2.60 87% 0.078

4 3.16 79% 0.089



Example 2: 
Speedup Prediction Formula
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Example 3: 
Increase the Number of Processors
• Assume that we benchmarked a sequential program, 

which spends 85% of its time in functions that can be 
re-written for parallel execution.

• Then we re-write these functions for parallel 
execution and run the program on a 2-processor 
system.

• The parallel program achieves a speedup of 1.67 on 2 
processors.

Question: if we run the program on a 4-processor 
system, what kind of speedup should we expect?



Example 3:
Prediction Based on Amdahl’s Law

76.2
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Example 3:
Prediction Based on Karp-Flatt Metric

• From Karp-Flatt  formula                                for p = 2, ψ=1.67, 
we get e = 0.1976

• We know that the sequential part of code is 0.15, then the 
rest part of e is (0.0476) is related with some parallel 
overheads

• Assume that the parallel overheads increase linearly with 
number of processors p>1, then it will be 0.0476(p-1)=0.1428 
when p = 4

• Then we can predict  that  for p = 4: e = 0.15+0.1428 =0.2928

• Finally, for p = 4, from the reverse Karp-Flatt  formula
we can estimate speedup ψ=2.1294≈2.13
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Superlinear Speedup
• According to our general speedup formula, the maximum 

speedup a program can achieve on p processors is p

• Superlinear speedup is the situation where speedup is greater 
than the number of processors used

• It means the computational rate of the processors is faster 
when the parallel program is executing

• Superlinear speedup is usually caused, because: 

– the cache hit rate of the parallel program is higher

– data input/output operation is much lower

– some data can be obtained principally earlier in parallel than in 
sequential regimes



Isoefficiency Metric



Isoefficiency Metric - Definition

• Parallel system – a parallel program executing 
on a parallel computer

• Scalability of a parallel system - a measure of 
its ability to increase performance as number 
of processors increases

• A scalable system maintains efficiency as 
processors are added

• Isoefficiency - a way to measure scalability



Isoefficiency - Notations 

• n - data size

• p - number of processors

• T(n,p) - execution time, using p processors

• (n,p)  - speedup

• (n) - inherently sequential computations

• (n) - potentially parallel computations

• (n,p) - communication operations 

• (n,p) - efficiency 



Isoefficiency - Concepts

• T0(n,p) - the total wasting time spent by 

processes doing work not done by sequential 
algorithm.

T0(n,p) = (p-1)(n) + p(n,p)

• We want the algorithm to maintain a constant 
level of efficiency as the data size n increases. 
Hence, (n,p) is required to be a constant.

• Recall that T(n,1) represents the sequential 
execution time. 



Isoefficiency Relation

The main steps to derivation:

• Begin with speedup formula

• Compute total amount of overhead

• Assume efficiency remains constant

• Determine relation between sequential 
execution time and overhead



Deriving Isoefficiency Relation
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Deriving Isoefficiency Relation
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Deriving Isoefficiency Relation

),()()1(),( pnpnppnTo  

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = (n) + (n) also in it
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Deriving Isoefficiency Relation

),()()1(),( pnpnppnTo  

Determine overhead

Substitute overhead into speedup equation

Substitute T(n,1) = (n) + (n) also in it, and get:
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Deriving Isoefficiency Relation



Isoefficiency Relation Usage

• Used to determine the range of processors p for 
which a given level of efficiency (n,p)n,p) can be 
maintained

• The way to maintain a given efficiency (n,p)n,p) is to 
increase the problem size n when the number of 
processors p increase. 

• The maximum problem size n we can solve is limited 
by the amount of memory M available

• The memory size M is a constant multiple of the 
number of processors p for most parallel systems 



The Scalability Function

• Suppose the isoefficiency relation can be 
transformed to n  f(n,p)p), where f is an 
isoefficiency function

• Let M(n,p)n) is a memory required for problem of 
size n

• M(n,p)f(n,p)p))/p characterizes how memory usage 
per processor must increase to maintain same 
efficiency

• M(n,p)f(n,p)p))/p is called the scalability function 
[i.e., scale(n,p)p) = M(n,p)f(n,p)p))/p) ] 



Meaning of Scalability Function

• To maintain efficiency (n,p)n,p) when increasing p, we 
must increase n

• Maximum problem size n is limited by available 
memory M, which increases linearly with p: M ~ p 

• Scalability function scale(n,p)p) shows how memory 
usage per processor M(n,p)f(n,p)p))/p must grow to 
maintain efficiency (n,p)n,p) 

• If the scalability function scale(n,p)p) is a constant this 
means the parallel system is perfectly scalable



Interpreting Scalability Function
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Examples

• Reduction task – collects the answers to all the 
sub-problems and combines them in some way 
to form the output.

• Floyd-Warshall Algorithm – the 
graph analysis algorithm for finding shortest 
paths in a weighted graph.

• Finite Difference Method - numerical 
methods for approximating the solutions 
to differential equations using finite 
difference equations to approximate derivatives



Example 1: Reduction

• Sequential algorithm complexity T(n,1) = (n)

• Parallel algorithm
– Computational complexity = (n/p)

– Communication complexity = (log p)

• Parallel overhead
T0(n,p) = (p log p)
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Reduction (continued)

• Isoefficiency relation: n  C p log p

• We ask: To maintain same level of efficiency 
(n,p)n,p), how must n increase when p increases?

• Since M(n,p)n) ~ n,

• The system has good scalability
pCppCpppCpM log/log/)log( 



Example 2: Floyd-Warshall Algorithm

• Sequential time complexity: (n3)

• Parallel computation time: (n3/p)

• Parallel communication time: (n2log p)

• Parallel overhead: T0(n,p) = (pn2log p)



Floyd-Warshall Algorithm (continued)

• Isoefficiency relation
n3  C(p n2 log p)  n  C p log p

• M(n,p)n) = n2

• The parallel system has poor scalability

ppCpppCppCpM 22222 log/log/)log( 



Example 3: Finite Difference Method

• Sequential time complexity per iteration: (n2)

• Parallel communication complexity per iteration: 
(n/p)

• Parallel overhead: (n p)



Finite Difference Method (continued)

• Isoefficiency relation
n2  Cnp  n  C p

• M(n,p)n) = n2

• This algorithm is perfectly scalable

22 //)( CppCppCM 



Summary on Metrics
• Time

• Speedup 

• Efficiency

• Cost

• Amdahl’s Law: predict maximum speedup

• Karp-Flatt metric:
– analyze parallel program performance

– predict speedup with additional processors

• Isoefficiency metric: estimate scalability



Guidelines

In order to organize parallel work efficiently 
developers need to follow these guidelines:

– Maximize the fraction of our program that 
can be parallelized 

– Balance the workload of parallel processes

– Minimize the time spent for 
communication



Contacts

Any course-related information 
(notifications, reports) from you:

send your message to my e-mail
yuri.gordienko@gmail.com

with the word GPU2021 in the “Subject” field
(if not, your message will be filtered out to 

Spam).

mailto:yuri.gordienko@gmail.com
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