

MINISTRY EDUCATION AND SCIENCES UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
"IGOR SIKORSKY KYIV

POLYTECHNIC INSTITUTE"

Gordienko Yu.G., Kochura Yu.P.

GENETIC ALGORITHMS

Synopsis of lectures

Tutorial
for master's degree holders

according to the educational program "Software engineering of computer systems»
specialties 121 "Software engineering"

according to the educational program "Computer systems and networks»
specialty 123 "Computer engineering"

according to the educational program "Information management systems and technologies»
 specialties 126 "Information systems and technologies»

Electronic educational publication

APPROVED
at the meeting of Computer Engineering department,
protocol No. 10 on 05/25/2022

2022

Генетичні алгоритми
-

GENETIC ALGORITHMS
-

Lecture 01. Introduction

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

Recommended Sources - Books
(some of them are used here!)

Books (classic):
Holland, J. H. (1992). Adaptation in natural and artificial

systems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press. <- inventor of

GA(!), the highest number of citations for GA-publication
by Google Scholar!

Mitchell, M. (1998). An introduction to genetic algorithms.
MIT press. <- classic textbook, the highest number of

citations for GA-textbook by Google Scholar!

Books (with codes at github):
Wirsansky, E. (2020). Hands-On Genetic Algorithms with

Python. Packt Publishing
Sheppard, C. (2019). Genetic Algorithms with Python (self-

published).

Recommended Sources - Papers
(some of them are used here!)

Holland, J. H. (1992). Genetic algorithms. Scientific
American, 267(1), 66-73. <- inventor of GA(!) <- Just

for Fun! :)

Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review
on genetic algorithm: past, present, and future.

Multimedia Tools and Applications, 1-36.

García-Martínez, C., Rodríguez, F. J., & Lozano, M.
(2018). Genetic Algorithms, Handbook of Heuristics,

2018, p. 431-464.

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

What are genetic algorithms?
Genetic algorithms (GA) are a family of search

algorithms inspired by the principles of natutral evolution.

Imitating the natural selection and reproduction, GAs
can produce high-quality solutions for various problems:

 search,
 optimization,

 learning.

Analogy to natural evolution allows GAs to overcome
some problems that are hard for traditional

algorithms, especially for cases with:
 large number of parameters and

 complex mathematical representations.

Theory behind GAs -
Darwinian evolution

GAs implement a
simplified version of the

Darwinian natural
evolution.

The principles of the
Darwinian evolution:

 Variation
 Inheritance

 Selection

Theory behind GAs -
Darwinian evolution

Variation:

The traits (attributes) of individual specimens
belonging to a population may vary.

As a result, the specimens differ from each other
to some degree,
for example, in:

 their behavior or
 their appearance.

Theory behind GAs -
Darwinian evolution

Inheritance:

Some traits are consistently passed on from
specimens to their offspring.

As a result, offspring resemble their parents
more than they resemble unrelated specimens.

Theory behind GAs -
Darwinian evolution

Selection:

Populations typically struggle for resources
within their given environment.

The specimens with traits that are better
adapted to the environment:

 will be more successful at surviving, and
 will contribute more offspring to the next

generation.

Theory behind GAs - Darwinian
evolution

Resume:
Evolution maintains a population of individual

specimens that vary from each other.

Those who are better adapted to their
environment have a greater chance of

surviving, breeding, and passing their traits to
the next generation.

This way, as generations go by, species become
more adapted to their environment and to the

challenges presented to them.

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

GA analogy with IT

GAs should find the optimal solution for a problem.
Darwinian evolution maintains a population of

individual specimens,
BUT(!) ... GAs maintain a population of candidate

solutions (individuals), for that given problem.
The individuals are iteratively evaluated and used to

create a new generation of individuals.
Those who are better at solving this problem have a
greater chance of being selected and passing their

qualities to the next generation of individuals.
This way ... with generations ... individuals get better

at solving the problem at hand.

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

GA analogy with IT -
Main Components

 Genotype

 Population

 Fitness function

 Selection

 Crossover

 Mutation

GA analogy with IT -
Main Components - Genotype

 In biology: genotype is a collection of genes that
are grouped into chromosomes. If two specimens
breed to create offspring, each chromosome of the

offspring will carry a mix of genes from both
parents.

 In IT (GAs):
 each individual is represented by ‘IT-chromosome’

that can be expressed as a binary string, where
each bit represents a single gene.

GA analogy with IT -
Main Components - Genotype

 GAs always maintain a population of individuals ->
a collection of candidate solutions for the problem.

Individual -> chromosome, population -> collection of
chromosomes.

Main Components - Population

The population
represents the

current generation
and

evolves over time
when the current

generation is replaced
by a new one.

At each iteration of the GA, the individuals are
evaluated by a fitness function (also called the
target function). This is the function we seek to
optimize or the problem we attempt to solve.

Individuals who achieve a better fitness score
represent better solutions and are more likely to be
chosen to reproduce and be represented in the

next generation.

Over time, the quality of the solutions improves, the
fitness values increase. The process can stop once
a solution is found with a satisfactory fitness value.

Main Components - Fitness function

Selection process is used to determine which of the
individuals in the population will get to reproduce and

create the offspring that will form the next
generation.

This is based on the fitness score of the individuals.
Those with higher score values are more likely to be

chosen and pass their genetic material to the next
generation.

Individuals with low fitness values can still be
chosen, but with lower probability. This way, their

genetic material is not completely excluded.

Main Components - Selection

To create a pair of new individuals, two parents are
usually chosen from the current generation, and parts
of their chromosomes are interchanged (crossover
or recombination) to create two new chromosomes

representing the offspring.

Main Components - Crossover

Thomas Hunt Morgan's
(Nobel Prize - 1933) illustration of

crossing over (1916)

IT GA- version
of crossover (recombination)

The aim of mutation (as an operator) is to periodically
and randomly refresh the population, introduce

new patterns into the chromosomes, and encourage
search in uncharted areas of the solution space.

A mutation can be as a random change in a gene,
for example, flipping a bit in a binary string.

Main Components - Mutation

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

The building-block hypothesis -> the optimal solution to
the problem is assembled of small building blocks, and as

we bring more of these building blocks together, we get
closer to this optimal solution.

Individuals in the population with the desired building
blocks are identified by their superior scores.

The repeated selection/crossover result in the better
individuals conveying these building blocks to the next
generations, while possibly combining them with other

successful building blocks.

This creates genetic pressure, thus guiding the population
toward having more individuals with the building blocks that

form the optimal solution.

Main Hypothesis behind GAs

We have a population of 4-digit binary strings.
Aim: to find the string with the largest possible sum of digits.
Start: The digit 1 appearing at any of the 4 string positions will

be a good building block.

The algorithm progresses will identify solutions that have
these building blocks and bring them together. Each new

generation will have more individuals with 1 values in various
positions, ultimately resulting in the string 1111, which

combines all the desired building blocks.

Main Hypothesis - Example

Schema is a pattern (or template) that can be
found within the chromosomes.

It represents (as a regular expression with
wildcards) a subset of chromosomes that have

a certain similarity among them.
Example: if the set of chromosomes is

represented by binary strings of length 4, the
schema 1*01 represents all those chromosomes
that have a 1 in the leftmost position, 01 in the
rightmost two positions, and either a 1 or a 0 in

the second from left position, since the *
represents a wildcard value.

Holland's Schema Theorem

“He is a founding father of the
complex systems approach. In
particular, he developed genetic
algorithms and learning classifier

systems”.

He was a member of the Board of
Trustees and Science Board of the

Santa Fe Institute and a fellow of the
World Economic Forum.

He received the 1961 Louis E. Levy
Medal from The Franklin Institute, and
the MacArthur Fellowship (unofficially
known as the "Genius Grant") in 1992.

John Henry Holland
(February 2, 1929 – August 9, 2015)

For each schema, one can assign two metrics:

Order:
The number of digits that are fixed (not wildcards!)

Defining Length:
The distance between the 2 furthermost fixed digits

Holland's Schema Theorem

The fundamental theorem of GAs:
The frequency of schemata of low order,

short defining length, and above-
average fitness increases exponentially in

successive generations.
In other words: the smaller, simpler

building blocks that represent the attributes
that make a solution better will become
increasingly present in the population as

the GA progresses.

Holland's Schema Theorem

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and
Traditional Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

The key characteristics of GAs distinguishing
them from traditional algorithms are:

 Maintaining a population of solutions

 Using a genetic representation of the
solutions

 Utilizing the outcome of a fitness function

 Exhibiting a probabilistic behavior

Differences GAs
from Traditional Algorithms

GA operates over a population of candidate
solutions (individuals) rather than a single candidate.

GA works with a set of individuals that form the
current generation. Each iteration of the GA creates

the next generation of set of individuals.
In contrast, most other search algorithms maintain a
single solution and iteratively modify it in search of

the best solution.
Example: The gradient descent algorithm (widely
used in ML/DL) iteratively works with the current

solution (moves it in the direction of steepest descent,
defined by the negative of the function's gradient).

Differences GAs
from Traditional Algorithms -

Maintaining a Population of Solutions

Traditional algorithms: operate directly on candidate
solutions,

GAs: operate on their representations (or coding),
often referred to as chromosomes.

Example: a chromosome is a fixed binary string.

The genetic operations are used for chromosomes:
 Crossover is interchanging chromosome parts

between two parents.
 Mutation is modifying parts of the chromosome.

A side effect: GAs are not aware of what the
chromosomes represent and do not interpret them.

Differences GAs
from Traditional Algorithms -

Genetic Representation of Solutions

Fitness function (FF) represents (estimate) the
problem we would like to solve.

Aim of GAs: to find the individuals that yield the
highest score when this FF is calculated for them.

Traditional algorithms: use the derivatives or any
other information related to FF.

GAs: only consider the value obtained by the FF.
This allows to use FFs that are hard or impossible to

mathematically differentiate.

Differences GAs
from Traditional Algorithms -

Result of Fitness Function

Traditional algorithms: are deterministic.
GAs: the rules are probabilistic.

Example: when selecting the individuals that will be used to
create the next generation, the probability of selecting a

given individual increases with the individual's fitness, but
there is still a random element in making that choice.

Mutation is probability-driven, usually makes changes at
random location(s) in the chromosome.

Crossover can have a probabilistic element as well.
Despite the probabilistic nature, GA is not random; instead, it
uses the random aspect to direct the search toward areas in
the search space where there is a better chance to improve

the results.

Differences GAs
from Traditional Algorithms -

Probabilistic Behavior

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

 Global optimization capability
 Handling problems with a complex

mathematical representation
 Handling problems that lack mathematical

representation
 Resilience to noise

 Support for parallelism and distributed
processing

 Suitability for continuous learning

Advantages of GAs

GAs: are more likely to find the global maximum due to:
1 - the use of a population of candidate solutions,

2 - crossover and mutation that will, in many cases, result in
candidate solutions that are distant from the previous ones.

This is true if we maintain the diversity of the population and
avoid premature convergence.

Advantages of GAs -
Global Optimization Capability

Traditional algorithms
(gradient-based):

may stuck in a local maximum
rather than finding the global one

->
because near a local maximum,
any small change will degrade

the score.

GAs need only the output of FF for each individual
and are not concerned with other aspects of the FF

such as derivatives.
 That is why GAs can be effective for problems with

 complex mathematical representations or
 functions that are hard or impossible to

differentiate,
 problems with a large number of parameters,

 problems with a mix of parameter types
(combination of continuous and discrete

parameters).

Advantages of GAs -
Complex Problems

Assume that the FF score is based on human opinion.
Example:

to find the most attractive color palette for a website.
Solution:

- to try different color combinations and ask users
to rate the attractiveness of the site;

- to apply GAs to search for the best scoring
combination while using this opinion-based score as

the fitness function outcome.
GA will do it, despite FF has NO mathematical

representation and there is NO way to calculate the
score directly from a given color combination.

Advantages of GAs - Problems without
Mathematical Representation

Some problems present noisy behavior:
 even for similar input parameter values,

the output value may be somewhat different every
time it's measured.

Examples:
 data go from sensor outputs, or

 FF score is based on human opinion.

Noisy behavior can ruin many traditional
algorithms, but GAs are generally resilient to it, due

to the repetitive operation of reassembling and
reevaluating the individuals.

Advantages of GAs -
Resilience to Noise

GAs by their definition are ready to parallelization
and distributed processing.

 FF is independently calculated for each individual,
which means all the individuals in the population

can be evaluated concurrently.

 Genetic operations of selection, crossover, and
mutation can each be performed concurrently on
individuals and pairs of individuals in the population.

That is why GAs are natural candidates for
distributed and cloud-based implementation.

Advantages of GAs -
Parallelism

In nature, evolution never stops.
But it is dubious ... :) ... look around.

As the environmental conditions change, the

population will adapt to them.
Similarly, GAs can operate continuously in an ever-
changing environment, and at any point in time, the
best current solution can be fetched and used.

But what about time?
For GAs to be effective, the changes in the

environment need to be slow in relation to the
generation turnaround rate of the GA-based search.

Advantages of GAs -
Continuous Learning

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

Limitations of GAs

 The need for special definitions

 The need for hyperparameter tuning

 Computationally-intensive operations

 The risk of premature convergence

 No guaranteed solution

Limitations of GAs -
Special Definitions

 To apply GAs to a given problem, we need to create
a suitable representation for GAs and define:

 FF and chromosome structure,
 genetic operators (selection, crossover, and

mutation) that will work for this problem.
 This is challenging and time-consuming process!

 BUT ... GAs have already been applied to
countless different types of problems, and many

of these definitions have been standardized.
 In other lectures some types of real-life problems will

be presented that can be solved using GAs.

Limitations of GAs -
Hyperparameter Tuning

The behavior of GAs is controlled by a set of
hyperparameters, such as the population size and

mutation rate, etc.

When applying GAs to the problem,
there are no exact rules (!)

for making these choices.

However, this is true also for ... nearly all
traditional search and optimization algorithms!
After doing some experimentation of your own, you

will be able to make sensible choices for these values.

Limitations of GAs -
Computationally-Intensive

Operations
Operating on (potentially large and very large)

populations and the repetitive nature of GAs can be
computationally intensive, as well as

time consuming before a good result is reached.

These can be alleviated by:
 a good choice of hyperparameters,
 implementing parallel processing,

 and caching the intermediate results (in some
cases).

Limitations of GAs -
Risk of Premature Convergence

If the fitness of one individual is much higher than the
rest of the population, it may be duplicated enough

that it takes over the entire population.

This can lead to the GA getting prematurely stuck in
a local extremum, instead of finding the global one.

To prevent this from occurring,
it is important to maintain the diversity of the

population.

Limitations of GAs -
No Guaranteed Solution

 The use of GAs does not guarantee that the global
extremum for the problem at hand will be found.

 However, this is almost true for ... any traditional
search and optimization algorithm, unless it is an
analytical solution for a particular type of problem.

 Generally, GAs, when used appropriately,
are known to provide good solutions within a

reasonable amount of time.

Content
 Recommended Sources
 What are Genetic Algorithms (GAs)?
 GA Analogy with IT
 Components of GA
 Main Hypothesis behind GAs
 Differences between GAs and Traditional
Algorithms

 Advantages of GAs
 Limitations of GAs
 When to use GAs

Use Cases of GAs

 GAs are best suited for the following types of
problems:


 with complex mathematical representation

 with no mathematical representation

 involving a noisy environment

 involving an environment that changes over time

(long version) based on (C) Eyal Wirsansky work

In this lecture we introduce DEAP — a powerful and flexible evolutionary computation
framework capable of solving real-life
problems using genetic algorithms (GA).

Brief Content:

introduction,
installation,
main modules: creator and toolbox,
components needed for the GA workflow,
the simplest example, the OneMax problem, so called the Hello World of genetic
algorithms.

By the end of this lecture you will know:

the DEAP framework and its modules,
the concepts of creator and toolbox in the DEAP framework,
the simplest example of GA,
how to create a GA solution using the DEAP framework,
how to use the DEAP framework's built-in algorithms to produce concise code
how to solve the OneMax problem using a GA coded with the DEAP framework,
how to experiment with various settings of the GA and interpret the differences in the
results.

Lecture 1 - DEMO A - Introduction to Genetic Algorithms

Installation and import of libraries

In these and other lectures, we will use various Python packages:

NumPy
Matplotlib
Seaborn

They are already pre-installed in Colab. Let's import them by the following code.

Import all necessary standard libraries

import random

import numpy

https://colab.research.google.com/%E2%80%8B/matplotlib.%E2%80%8Borg
https://colab.research.google.com/%E2%80%8B/seaborn.%E2%80%8Bpydata.%E2%80%8Borg/

import matplotlib.pyplot as plt

import seaborn as sns

Install DEAP by pip with the following code:

Install DEAP

!pip install deap

Collecting deap

 Downloading https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb2

 |████████████████████████████████| 163kB 8.7MB/s

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-package

Installing collected packages: deap

Successfully installed deap-1.3.1

Import DEAP

from deap import base

from deap import creator

from deap import tools

from deap import algorithms

Example: OneMax problem

Constants

Let's declare constants that set the parameters for the problem and control the b

problem constants:

ONE_MAX_LENGTH = 100 # length of bit string to be optimized

GA constants:

POPULATION_SIZE = 200

P_CROSSOVER = 0.9 # probability for crossover

P_MUTATION = 0.1 # probability for mutating an individual

MAX_GENERATIONS = 50

One important aspect of the GA is the use of probability, which
introduces a random element to
the behavior of the algorithm.

However, for reproducibility of results, when experimenting with the code, we may want to be
able to run the same experiment several times and get repeatable results.

To accomplish this, we set the random function seed to a constant number of some value, as
shown in the following code:

Reproducibility of Results

https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb26264765abbaedd6d4d3640d90219a513aeabd08ee2b/deap-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl

set the random seed:

RANDOM_SEED = 42

random.seed(RANDOM_SEED)

The Toolbox class is used as a container for functions (or operators), and enables us to create
new operators by aliasing and customizing existing functions.

Toolbox class

toolbox = base.Toolbox()

For example, suppose we have a function, multiply() , defined as follows:

def multiply(a, b):

 return a*b

Using toolbox, we can now create a new operator, incrementByFive(),

which customizes the sumOfTwo() function as follows:

toolbox.register("MultiplyBy", multiply, b=5)

examples:

A = toolbox.MultiplyBy(10)

print('toolbox.MultiplyBy(10) =', A)

B = multiply(10,5)

print('multiply(10,5) =', B)

toolbox.MultiplyBy(10) = 50

multiply(10,5) = 50

Let's create the zeroOrOne operator, which customizes the
random.randomint(a, b) function.

This function normally returns a random integer N such that a ≤ N ≤ b.

By fixing the two arguments, a and b, to the values 0 and 1 the zeroOrOne operator will randomly
return either the value 0 or the value 1 when called later in the code.

create an operator that randomly returns 0 or 1:

toolbox.register("zeroOrOne", random.randint, 0, 1)

examples:

A = toolbox.zeroOrOne()

print('zeroOrOne =', A)

B = toolbox.zeroOrOne()

print('zeroOrOne =', B)

C = toolbox.zeroOrOne()

print('zeroOrOne =', C)

D = toolbox.zeroOrOne()

print('zeroOrOne =', D)

zeroOrOne = 0

zeroOrOne = 0

zeroOrOne = 1

zeroOrOne = 0

Next, we need to create the Fitness class. Since we only have one objective here—the sum of
digits—and our goal is to maximize it, we choose the FitnessMax strategy, using a weights tuple
with a single positive weight, as shown in the following code.

Fitness class

define a single objective, maximizing fitness strategy:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

A = base.Fitness.weights

print(A)

None

In DEAP, the Individual class is used to represent each of the population's individuals. This class
is created with the help of the creator tool. In our case, list serves as the base class, which is
used as the individual's chromosome. The class is augmented with the fitness attribute,
initialized to the FitnessMax class that we defined earlier

create the Individual class based on list:

creator.create("Individual", list, fitness=creator.FitnessMax)

#creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax

Next, register the individualCreator operator, which creates an instance of the Individual class,
filled up with random values of either 0 or 1 . This is done by customizing the previously defined
zeroOrOne operator.

Since the objects generated by the zeroOrOne operator are integers with random values of either
0 or 1 , the resulting individualCreator operator will fill an Individual instance with 100 randomly
generated values of 0 or 1.

create the individual operator to fill up an Individual instance:

toolbox.register("individualCreator", # Register the individualCreator operator,

 tools.initRepeat, # The initRepeat operator is customized he

 creator.Individual, # The container type (Individual) in which

 toolbox.zeroOrOne, # The function used to generate objects (=

 ONE_MAX_LENGTH) # The number of objects we want to generate

Register the populationCreator operator that creates a list of
individuals.

create the population operator to generate a list of individuals:

toolbox.register("populationCreator", # Register the populationCreator operator,

 tools.initRepeat, # The initRepeat operator is customized he

 list, # The container type (list) in which the re

 toolbox.individualCreator) # The function used to generate objects

Define the function oneMaxFitness that computes the number of 1s in the individual.

fitness calculation:

compute the number of '1's in the individual

def oneMaxFitness(individual):

 return sum(individual), # return a tuple,

 # fitness values in DEAP are represented as tuples,

 # and therefore a comma needs to follow when a single

Define the evaluate operator as an alias to the oneMaxfitness() function we defined earlier.

create the evaluate alias for calculating the fitness (by a DEAP convention)

toolbox.register("evaluate", oneMaxFitness)

The genetic operators are typically created by aliasing existing functions from the tools module
and setting the argument values as needed.

Note: The mutFlipBit function iterates over all the attributes of the individual, a list with values of
1s and 0s in our case, and for each attribute will use the argument value (indpb parameter) as
the probability of flipping (applying the not operator to) the attribute value. This value is
independent of the mutation probability, which is set by the P_MUTATION constant that we
defined earlier and has not yet been used. The mutation probability serves to decide if the
mutFlipBit function is called for a given individual in the population.

Genetic operators

genetic operators:

Tournament selection with tournament size of 3:

toolbox.register("select", tools.selTournament, tournsize=3)

Single-point crossover:

toolbox.register("mate", tools.cxOnePoint)

Flip-bit mutation:

indpb: Independent probability for each attribute to be flipped

toolbox.register("mutate", tools.mutFlipBit, indpb=1.0/ONE_MAX_LENGTH)

GA workflow

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

generationCounter = 0

Long version

calculate fitness tuple for each individual in the population:

fitnessValues = list(map(toolbox.evaluate, population)) # use map() to apply the ev

for individual, fitnessValue in zip(population, fitnessValues):

 individual.fitness.values = fitnessValue

extract the first value out of each fitness for gathering statistics:

fitnessValues = [individual.fitness.values[0] for individual in population]

initialize statistics accumulators:

maxFitnessValues = []

meanFitnessValues = []

main evolutionary loop:

stop if max fitness value reached the known max value

OR if number of generations exceeded the preset value:

while max(fitnessValues) < ONE_MAX_LENGTH and generationCounter < MAX_GENERATIONS:

 # update counter:

 generationCounter = generationCounter + 1

 # apply the selection operator, to select the next generation's individuals:

 offspring = toolbox.select(population, len(population))

 # clone the selected individuals:

 offspring = list(map(toolbox.clone, offspring))

 # apply the crossover operator to pairs of offspring:

 for child1, child2 in zip(offspring[::2], offspring[1::2]):

 if random.random() < P_CROSSOVER:

 toolbox.mate(child1, child2)

 del child1.fitness.values

 del child2.fitness.values

 for mutant in offspring:

 if random.random() < P_MUTATION:

 toolbox.mutate(mutant)

 del mutant.fitness.values

 # calculate fitness for the individuals with no previous calculated fitness value

 freshIndividuals = [ind for ind in offspring if not ind.fitness.valid]

 freshFitnessValues = list(map(toolbox.evaluate, freshIndividuals))

 for individual, fitnessValue in zip(freshIndividuals, freshFitnessValues):

 individual.fitness.values = fitnessValue

 # replace the current population with the offspring:

 population[:] = offspring

 # collect fitnessValues into a list, update statistics and print:

 fitnessValues = [ind.fitness.values[0] for ind in population]

 maxFitness = max(fitnessValues)

 meanFitness = sum(fitnessValues) / len(population)

 maxFitnessValues.append(maxFitness)

 meanFitnessValues.append(meanFitness)

 print("- Generation {}: Max Fitness = {}, Avg Fitness = {}".format(generationCoun

 # find and print best individual:

 best_index = fitnessValues.index(max(fitnessValues))

 print("Best Individual = ", *population[best_index], "\n")

- Generation 1: Max Fitness = 62.0, Avg Fitness = 52.59

Best Individual = 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1

- Generation 2: Max Fitness = 64.0, Avg Fitness = 55.205

Best Individual = 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1

- Generation 3: Max Fitness = 67.0, Avg Fitness = 56.88

Best Individual = 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0

- Generation 4: Max Fitness = 71.0, Avg Fitness = 58.425

Best Individual = 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0

- Generation 5: Max Fitness = 69.0, Avg Fitness = 59.77

Best Individual = 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0

- Generation 6: Max Fitness = 73.0, Avg Fitness = 61.53

Best Individual = 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1

- Generation 7: Max Fitness = 73.0, Avg Fitness = 62.525

Best Individual = 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1

- Generation 8: Max Fitness = 74.0, Avg Fitness = 63.23

Best Individual = 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1

- Generation 9: Max Fitness = 74.0, Avg Fitness = 63.76

Best Individual = 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

- Generation 10: Max Fitness = 74.0, Avg Fitness = 64.165

Best Individual = 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1

- Generation 11: Max Fitness = 75.0, Avg Fitness = 64.23

Best Individual = 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

- Generation 12: Max Fitness = 75.0, Avg Fitness = 64.83

Best Individual = 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

- Generation 13: Max Fitness = 78.0, Avg Fitness = 65.225

Best Individual = 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1

- Generation 14: Max Fitness = 80.0, Avg Fitness = 65.355

Best Individual = 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

- Generation 15: Max Fitness = 75.0, Avg Fitness = 65.87

Best Individual = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1

- Generation 16: Max Fitness = 76.0, Avg Fitness = 65.705

Best Individual = 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1

- Generation 17: Max Fitness = 75.0, Avg Fitness = 65.845

Best Individual = 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1

- Generation 18: Max Fitness = 79.0, Avg Fitness = 66.02

Best Individual = 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

- Generation 19: Max Fitness = 80.0, Avg Fitness = 66.44

Best Individual = 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

You should get the following output:

-- Generation 1: Max Fitness = 62.0, Avg Fitness = 52.59
Best Individual = 0 1 1 1 1 1 1 1 1 0 1 1 1
0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1
0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0

...

-- Generation 50: Max Fitness = 79.0, Avg Fitness = 68.43
Best Individual = 0 1 1 1 1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Plot statistics:

sns.set_style("whitegrid")

plt.plot(maxFitnessValues, color='red', label='Max')

plt.plot(meanFitnessValues, color='green', label='Mean')

plt.xlabel('Generation')

plt.ylabel('Max / Average Fitness')

plt.title('Max and Average Fitness over Generations')

plt.legend()

plt.show()

You should get the following output:

Colab paid products
 -
 Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

(short version of code implementation) based on (C) Eyal
Wirsansky work

In this lecture we introduce DEAP — a powerful and flexible evolutionary computation
framework capable of solving real-life
problems using genetic algorithms (GA).

Brief Content:

introduction,
installation,
main modules: creator and toolbox,
components needed for the GA workflow,
the simplest example, the OneMax problem, so called the Hello World of genetic
algorithms.

By the end of this lecture you will know:

the DEAP framework and its modules,
the concepts of creator and toolbox in the DEAP framework,
the simplest example of GA,
how to create a GA solution using the DEAP framework,
how to use the DEAP framework's built-in algorithms to produce concise code
how to solve the OneMax problem using a GA coded with the DEAP framework,
how to experiment with various settings of the GA and interpret the differences in the
results.

Lecture 1 - DEMO B - Introduction to Genetic Algorithms

Installation and import of libraries

In these and other lectures, we will use various Python packages:

NumPy
Matplotlib
Seaborn

They are already pre-installed in Colab. Let's import them by the following code.

Import all necessary standard libraries

import random

import numpy

https://colab.research.google.com/%E2%80%8B/matplotlib.%E2%80%8Borg
https://colab.research.google.com/%E2%80%8B/seaborn.%E2%80%8Bpydata.%E2%80%8Borg/

import matplotlib.pyplot as plt

import seaborn as sns

Install DEAP by pip with the following code:

Install DEAP

!pip install deap

Collecting deap

 Downloading https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb2

 |████████████████████████████████| 163kB 8.2MB/s

Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-package

Installing collected packages: deap

Successfully installed deap-1.3.1

Import DEAP

from deap import base

from deap import creator

from deap import tools

from deap import algorithms

Example: OneMax problem

Constants

Let's declare constants that set the parameters for the problem and control the b

problem constants:

ONE_MAX_LENGTH = 100 # length of bit string to be optimized

GA constants:

POPULATION_SIZE = 200

P_CROSSOVER = 0.9 # probability for crossover

P_MUTATION = 0.1 # probability for mutating an individual

MAX_GENERATIONS = 50

One important aspect of the GA is the use of probability, which
introduces a random element to
the behavior of the algorithm.

However, for reproducibility of results, when experimenting with the code, we may want to be
able to run the same experiment several times and get repeatable results.

Reproducibility of Results

https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb26264765abbaedd6d4d3640d90219a513aeabd08ee2b/deap-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl

To accomplish this, we set the random function seed to a constant number of some value, as
shown in the following code:

set the random seed:

RANDOM_SEED = 42

random.seed(RANDOM_SEED)

The Toolbox class is used as a container for functions (or operators), and enables us to create
new operators by aliasing and customizing existing functions.

Toolbox class

toolbox = base.Toolbox()

For example, suppose we have a function, multiply() , defined as follows:

def multiply(a, b):

 return a*b

Using toolbox, we can now create a new operator, incrementByFive(),

which customizes the sumOfTwo() function as follows:

toolbox.register("MultiplyBy", multiply, b=5)

examples:

A = toolbox.MultiplyBy(10)

print('toolbox.MultiplyBy(10) =', A)

B = multiply(10,5)

print('multiply(10,5) =', B)

toolbox.MultiplyBy(10) = 50

multiply(10,5) = 50

Let's create the zeroOrOne operator, which customizes the
random.randomint(a, b) function.

This function normally returns a random integer N such that a ≤ N ≤ b.

By fixing the two arguments, a and b, to the values 0 and 1 the zeroOrOne operator will randomly
return either the value 0 or the value 1 when called later in the code.

create an operator that randomly returns 0 or 1:

toolbox.register("zeroOrOne", random.randint, 0, 1)

examples:

A = toolbox.zeroOrOne()

print('zeroOrOne =', A)

B = toolbox.zeroOrOne()

print('zeroOrOne =', B)

C = toolbox.zeroOrOne()

print('zeroOrOne =', C)

D = toolbox.zeroOrOne()

print('zeroOrOne =', D)

zeroOrOne = 0

zeroOrOne = 0

zeroOrOne = 1

zeroOrOne = 0

Next, we need to create the Fitness class. Since we only have one objective here—the sum of
digits—and our goal is to maximize it, we choose the FitnessMax strategy, using a weights tuple
with a single positive weight, as shown in the following code.

Fitness class

define a single objective, maximizing fitness strategy:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

A = base.Fitness.weights

print(A)

None

In DEAP, the Individual class is used to represent each of the population's individuals. This class
is created with the help of the creator tool. In our case, list serves as the base class, which is
used as the individual's chromosome. The class is augmented with the fitness attribute,
initialized to the FitnessMax class that we defined earlier

create the Individual class based on list:

creator.create("Individual", list, fitness=creator.FitnessMax)

#creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax

Next, register the individualCreator operator, which creates an instance of the Individual class,
filled up with random values of either 0 or 1 . This is done by customizing the previously defined
zeroOrOne operator.

Since the objects generated by the zeroOrOne operator are integers with random values of either
0 or 1 , the resulting individualCreator operator will fill an Individual instance with 100 randomly
generated values of 0 or 1.

create the individual operator to fill up an Individual instance:

toolbox.register("individualCreator", # Register the individualCreator operator,

 tools.initRepeat, # The initRepeat operator is customized he

 creator.Individual, # The container type (Individual) in which

 toolbox.zeroOrOne, # The function used to generate objects (=

 ONE_MAX_LENGTH) # The number of objects we want to generate

Register the populationCreator operator that creates a list of
individuals.

create the population operator to generate a list of individuals:

toolbox.register("populationCreator", # Register the populationCreator operator,

 tools.initRepeat, # The initRepeat operator is customized he

 list, # The container type (list) in which the re

 toolbox.individualCreator) # The function used to generate objects

Define the function oneMaxFitness that computes the number of 1s in the individual.

fitness calculation:

compute the number of '1's in the individual

def oneMaxFitness(individual):

 return sum(individual), # return a tuple,

 # fitness values in DEAP are represented as tuples,

 # and therefore a comma needs to follow when a single

Define the evaluate operator as an alias to the oneMaxfitness() function we defined earlier.

create the evaluate alias for calculating the fitness (by a DEAP convention)

toolbox.register("evaluate", oneMaxFitness)

The genetic operators are typically created by aliasing existing functions from the tools module
and setting the argument values as needed.

Note: The mutFlipBit function iterates over all the attributes of the individual, a list with values of
1s and 0s in our case, and for each attribute will use the argument value (indpb parameter) as
the probability of flipping (applying the not operator to) the attribute value. This value is
independent of the mutation probability, which is set by the P_MUTATION constant that we
defined earlier and has not yet been used. The mutation probability serves to decide if the
mutFlipBit function is called for a given individual in the population.

Genetic operators

genetic operators:

Tournament selection with tournament size of 3:

toolbox.register("select", tools.selTournament, tournsize=3)

Single-point crossover:

toolbox.register("mate", tools.cxOnePoint)

Flip-bit mutation:

indpb: Independent probability for each attribute to be flipped

toolbox.register("mutate", tools.mutFlipBit, indpb=1.0/ONE_MAX_LENGTH)

GA workflow

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

Short version

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

perform the Genetic Algorithm flow:

population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mu

 stats=stats, verbose=True)

Genetic Algorithm is done - extract statistics:

maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")

gen	 nevals	 max	 avg

0 	 200 	 60 	 49.705

1 	 190 	 68 	 53.56

2 	 175 	 67 	 56.87

3 	 179 	 69 	 60.21

4 	 175 	 72 	 62.825

5 	 184 	 71 	 65.45

6 	 178 	 76 	 67.68

7 	 187 	 80 	 69.865

8 	 189 	 81 	 72.055

9 	 184 	 84 	 74.765

10 	 185 	 85 	 77.515

11 	 181 	 86 	 79.485

12 	 190 	 87 	 81.49

13 	 181 	 89 	 83.27

14 	 184 	 89 	 84.94

15 	 189 	 90 	 86.22

16 	 176 	 90 	 87.725

17 	 176 	 91 	 88.79

18 	 182 	 92 	 89.485

19 	 185 	 93 	 90.065

20 	 182 	 94 	 90.765

21 	 170 	 94 	 91.535

22 	 179 	 94 	 92.28

23 	 178 	 95 	 92.985

24 	 181 	 95 	 93.545

25 	 189 	 95 	 93.855

26 	 174 	 96 	 94.125

27 	 179 	 96 	 94.36

28 	 186 	 96 	 94.78

29 	 185 	 96 	 95.055

30 	 185 	 97 	 95.43

31 	 186 	 97 	 95.775

32 	 187 	 97 	 96.075

33 	 179 	 97 	 96.435

34 	 176 	 98 	 96.745

35 	 187 	 98 	 96.885

36 	 186 	 98 	 96.93

37 	 190 	 98 	 97.015

38 	 175 	 98 	 97.245

39 	 171 	 98 	 97.515

40 	 179 	 98 	 97.78

41 	 188 	 98 	 97.845

42 	 188 	 98 	 97.87

43 	 178 	 99 	 97.925

44 	 174 	 99 	 97.95

45 	 176 	 99 	 97.87

46 	 185 	 99 	 98.04

47 	 184 	 99 	 98.14

48 	 184 	 99 	 98.37

49 	 187 	 99 	 98.79

50 	 185 	 99 	 98.885

Plot statistics:

sns.set_style("whitegrid")

plt.plot(maxFitnessValues, color='red', label='Max')

plt.plot(meanFitnessValues, color='green', label='Mean')

plt.xlabel('Generation')

plt.ylabel('Max / Average Fitness')

plt.title('Max and Average Fitness over Generations - Short Version')

plt.legend()

plt.show()

Colab paid products
 -
 Cancel contracts here

You should get the following output:

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Основи еволюційних обчислень
-

Evolutionary Computing Basics
-

Lecture 02. Overview
(based on Alan Turing, Holland, Khaled Rasheed, Ben

Phillips, Eyal Wirsansky, and others works)

... in previous lecture ...
Content

Recommended Sources
What are Genetic Algorithms (GAs)?
GA Analogy with IT
Components of GA
Main Hypothesis behind GAs
Differences between GAs and Traditional
Algorithms

Advantages of GAs
Limitations of GAs
When to use GAs

Content — this lecture
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

Recommended Sources - Books
(the same as for GA!)

Books (classic):
Holland, J. H. (1992). Adaptation in natural and artificial

systems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press. <- inventor of

GA(!), the highest number of citations for GA-publication
by Google Scholar!

Mitchell, M. (1998). An introduction to genetic algorithms.
MIT press. <- classic textbook, the highest number of

citations for GA-textbook by Google Scholar!

Books (with codes at github):
Wirsansky, E. (2020). Hands-On Genetic Algorithms with

Python. Packt Publishing
Sheppard, C. (2019). Genetic Algorithms with Python (self-

published).

Recommended Sources - Papers
(the same as for GA!)

Holland, J. H. (1992). Genetic algorithms. Scientific
American, 267(1), 66-73. <- inventor of GA(!) <- Just

for Fun! :)

Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review
on genetic algorithm: past, present, and future.

Multimedia Tools and Applications, 1-36.

García-Martínez, C., Rodríguez, F. J., & Lozano, M.
(2018). Genetic Algorithms, Handbook of Heuristics,

2018, p. 431-464.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

What is Evolutionary Computing (EC)?

EVOLUTION

Environment

Individual

Fitness

IT

Problem

Candidate Solution (Individual)

Quality

Quality 
chance for

seeding
new solutions

Fitness 
chances for
survival and
reproduction

What is EC — Metaphor (nature-IT)

A population of individuals exists in an environment with
limited resources.

Competition for those resources causes selection of those
fitter individuals that are better adapted to the environment.

These individuals act as seeds for the new generation of
individuals through some variation operations

(for example, GA like recombination and mutation).

The new individuals have their fitness evaluated and
compete (possibly also with parents) for survival.

Natural selection causes a rise in the fitness of the
population.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

EC — History — Founders
1948, Turing:
“genetical or evolutionary search”

1962, Bremermann
optimization through evolution and
recombination

1964, Rechenberg
evolution strategies

1965, L. Fogel, Owens and Walsh
evolutionary programming

1975, Holland
genetic algorithms

1992, Koza
genetic programming

EC — History — Community
1985:
first international conference (ICGA)

1990:
first international conference in Europe
(PPSN)

1993:
first scientific EC journal (MIT Press)

1997:
launch of European EC Research
Network EvoNet

EC — History — NOW!
 3 major EC conferences

+ 10 small related ones

 3 scientific core EC journals

 750-1000 papers published in 2003

 numerous applications

 numerous consultancy and R&D firms

EC — History — Lessons
Nature has always served as a source of inspiration for engineers

and scientists

The best problem solver known in nature is:
 the (human) brain that created “the wheel, New York, wars

and so on” (after Douglas Adams’ Hitch-Hikers Guide)
 the evolution mechanism that created the human brain

(after Darwin’s Origin of Species)

Answer 1  neurocomputing

Answer 2  evolutionary computing

EC — Current Needs
Developing, analyzing, applying

problem solving methods (algorithms)
is a central theme

in mathematics and computer science.

Why?

 Time for careful problem analysis decreases

 Complexity of the current problems increases

Resume:

Robust problem solving technology needed!

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

EC — Problem Types
We have

a model, inputs and outputs
of our system

and look for different entities:

- optimization,

- modeling,

- simulation.

Problem Types – Optimization

We have the model of our system and
seek inputs that give us a specified goal:

 Input? The model is known!

We look for inputs to reach the specified goal, for example:
- time table for KPI (rozklad.kpi.ua - fantastic!),

- software/hardware design specifications,
- etc.

Problem Types – Modeling

We have the corresponding input/output sets of our system
and seek model that give us a specified goal:

The input is known! Model? The output is known!

The model should deliver the correct output for every known input,
for example:

- machine learning models,
- deep learning models.

Problem Types – Simulation

We have the model of our system and look for the outputs that
will appear under different inputs:

The input is known! The model is known! Output?

It is used to investigate scenarios the evolving dynamic environments:
- evolutionary economics,

- geo-politics,
- military planning,

- artificial life...

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

Again:
What is EC — Metaphor (nature-IT)

EVOLUTION

Environment

Individual

Fitness

IT

Problem

Candidate Solution (Individual)

Quality

Quality 
chance for

seeding
new solutions

Fitness 
chances for
survival and
reproduction

What is Evolutionary Algorithms (EA) —
Metaphor (nature-IT)

EAs is the category of “generate and test” algorithms.

They are stochastic, population-based algorithms.

Variation (genetic?) operators (recombination and
mutation) create the necessary diversity and thereby

facilitate novelty.

Selection reduces(!) diversity
and

acts as a force pushing quality.

EA — History and Types
Different types of EAs have been associated with different

representations:
 Binary strings : Genetic Algorithms (GA)
 Real-valued vectors : Evolution Strategies (ES)
 Finite state Machines: Evolutionary Programming (EP)
 LISP trees: Genetic Programming (GP)

 These differences are largely irrelevant, best strategy
 choose representation to suit problem

 choose variation operators to suit representation

 Selection operators only use fitness
 and so

 are independent of representation.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

EA — General Scheme ...

... and ...

EA — General Scheme ...

... and Workflow ----------------->

EA — Workflow — Terminology

Candidate solutions (individuals) exist in phenotype
space.

They are encoded in chromosomes, which exist in
genotype space.

Encoding: phenotype->genotype (not always 1-to-1).

Decoding: genotype->phenotype (must be 1-to-1).

Chromosomes contain genes, which are in (usually
fixed) positions called loci (sing. locus) and have a

value (allele).

To find the global optimum, every feasible solution
must be representable in genotype space!

EA — Workflow — Population

Has (representations of) possible solutions.

Usually has a fixed size and is a multi-set of
genotypes.

Some sophisticated EAs also assert a spatial
structure on the population e.g., a grid.

Selection operators work with whole
population into account i.e., reproductive

probabilities are relative to current generation.

Diversity of a population refers to the number of
different fitnesses / phenotypes / genotypes

present (note not the same thing).

EA — Workflow — Fitness

Represents the requirements that the
population should adapt to some criteria like

quality function or objective function.

Assigns a single real-valued fitness to each
phenotype which forms the basis for

selection.

So the more diversity (different values)
the better.

Typically fitness is assumed to be maximized,
but ... some problems can be formulated as

minimization problems.

EA — Workflow — Selection

Assigns variable probabilities of individuals
acting as parents depending on their fitnesses.

Usually probabilistic:
higher quality solutions more likely to become

parents than lower quality, but ... not
guaranteed.

Even worst in current population usually has
non-zero probability of becoming a parent.

This stochastic nature
can aid escape from local optima!

EA — Workflow —
Variation Operators

The main aim is
to generate new candidate solutions.

Usually divided into types according to their
arity (number of inputs):

 arity = 1 -> mutation operators
 arity > 1 -> recombination operators

 arity = 2 -> crossover operators

The relative importance of recombination and
mutation is debated intensively now, but

most EAs use both of them.

Choice of particular variation operators is
representation dependant.

Workflow - Variation Operators -
Crossover

Crossover or Recombination

Merges information from parents into
offspring.

Choice of what information to merge is
stochastic.

Most offspring may be worse or the same as
the parents.

Hypothesis: some can be better by combining
elements of genotypes that lead to good traits.

Metaphor from nature:
it has been successfully used by breeders of

plants and livestock!

Operates on one genotype and delivers another.

Element of randomness is essential and
differentiates it from other unary heuristic operators.

It depends on representation and dialect:
 Binary GAs – background operator responsible for

preserving and introducing diversity,
 EP for FSM’s/ continuous variables – only search

operator,
 GP – hardly used.

May guarantee connectedness of search space and
hence convergence proofs.

Workflow - Variation Operators -
Mutation

EA — Workflow — Start/Stop

Start

Initialization usually done at random.

It should be even spread and mixture of possible
allele values.

It can include existing solutions, or use problem-
specific heuristics, to “seed” the population (care

should be taken!)

Stop

Termination condition checked every generation:
 some planned (known/assumed) fitness,

 some maximum allowed number of generations,
 some minimum level of diversity,

 some specified number of generations without
fitness improvement.

EA — Workflow — End

Choose

the individual

with

the highest fitness value.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection — in details now
Crossover
Mutation
Real-coded EA

EA — Workflow —
Selection Methods

 Roulette wheel selection
(fitness proportionate selection — FPS)

 Stochastic universal sampling (SUS)

 Rank-based selection

 Tournament selection

Workflow —
Roulette Wheel Selection
Probability for selecting an individual is directly

proportionate to its fitness value.
This is comparable to using a roulette wheel in a
casino and assigning each individual a portion of

the wheel proportional to its fitness value.

Workflow —
Stochastic Universal Sampling

Instead of a single selection point and turning
the roulette wheel N times until all needed N
individuals have been selected, we turn the

wheel only 1 time and use N selection points
that are equally spaced around the wheel.

Workflow —
Rank-based Selection
The fitness is used to sort the individuals: each

individual is given a rank for its position and
wheel-portion, and the roulette probabilities are

calculated based on these ranks.

Workflow —
Tournament Selection

In each round of the tournament selection
method, two or more individuals are randomly
picked from the population, and the one with

the highest fitness score wins and gets
selected.

The number of individuals participating at each
tournament selection round (three in this figure)
is suitably called tournament size. The larger
the tournament size, the higher the chances

that the best individuals will be selected.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover — in details now
Mutation
Real-coded EA

Workflow - Variation Operators -
Crossover

Crossover or Recombination

Merges information from parents into
offspring.

Choice of what information to merge is
stochastic.

Most offspring may be worse or the same as
the parents.

Hypothesis: some can be better by combining
elements of genotypes that lead to good traits.

Metaphor from nature:
it has been successfully used by breeders of

plants and livestock!

Workflow - Variation Operators -
Crossover - Sinlge-point

The crossover point (or cut point) on the
chromosomes of both parents is selected

randomly.Genes to the right of that point are
swapped between the two parent chromosomes.
As a result, we get two offsprings, where each

of them carry some genetic information from
both parents.

Workflow - Variation Operators -
Crossover - K-point

For example, in 2-point crossover 2 points on
the chromosomes of both parents are selected
randomly. The genes residing between these
points are swapped between the two parent

chromosomes.
A generalization of this method is the k-

point crossover, where k represents a positive
integer, and k crossover points are used.

Workflow - Variation Operators -
Crossover - Uniform

Each gene is independently determined by
randomly choosing one of the parents.

If the random distribution is 50%, each parent
has the same chance of influencing the

offspring.
NOTE: Below, integer-based chromosomes
are shown, but it is the same for binary ones.

Workflow - Variation Operators -
Crossover — Ordered Lists
The ordered crossover (OX1) method strives to

preserve the relative ordering of the parent's
genes as much as possible.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation — in details now
Real-coded EA

Operates on one genotype and delivers another.

Element of randomness is essential and
differentiates it from other unary heuristic operators.

It depends on representation and dialect:
 Binary GAs – background operator responsible for

preserving and introducing diversity,
 EP for FSM’s/ continuous variables – only search

operator,
 GP – hardly used.

May guarantee connectedness of search space and
hence convergence proofs.

Workflow - Variation Operators -
Mutation

Workflow — Mutation -
Flip bit

For a binary chromosome,

1 gene is randomly

selected and its value is flipped (complemented).

This can be extended to several random genes
being flipped instead of just one.

Workflow — Mutation -
Swap

For a binary or integer-based chromosomes,

2 genes are randomly selected

and their values are swapped.

This mutation operation is suitable

for the chromosomes of ordered lists,

as the new chromosome

still carries the same genes as the original one.

Workflow — Mutation -
Inversion

For a binary or integer-based chromosomes,

a random sequence of genes is selected and

the order of the genes in that sequence is reversed.

Similar to the swap mutation,

the inversion mutation operation is suitable

for the chromosomes of ordered lists.

Workflow — Mutation -
Scramble

For a binary or integer-based chromosomes,

a random sequence of genes is selected and

and the order of the genes in that sequence

 is shuffled (or scrambled).

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA

Workflow - Variation Operators -
Real-coded
The selection methods will work just the same

as they only depend on the fitness of the
individuals and not their representation.

But the crossover and mutation methods will
not be suitable and so specialized ones need to

be used.
They should be applied separately for each
dimension of the array that forms the real-

coded chromosome.

Workflow - Variation Operators -
Real-coded — Blend Crossover

Blend crossover (BLX) - each offspring is
randomly selected from the interval created by

its parent values by some formulae:

The parameter α is a constant, whose value lies
between 0 and 1. With larger values of α, the

interval gets wider.

Workflow - Variation Operators -
Real-coded — Simulated Binary

Simulated binary crossover (SBX) - each
offspring is randomly selected from the interval

created by its parent values by formula:

Workflow - Variation Operators -
Real-coded — Simulated Binary
In the preceding cases, the average value of the

two offspring is 3.525, which is equal to the
average value of the two parents.

We need to preserve is the similarity between
offspring and parents.

For this, the probability of β should be much
higher for values near 1, where the offspring

are similar to the parents.
That is why, the β value is calculated using

another random value, denoted by u, that is
uniformly distributed over the interval [0, 1]:

u <=0.5

u > 0.5

Workflow - Variation Operators -
Real-coded — Real Mutation
Another approach is to generate a random real

number that resides in the vicinity of the
original individual.

Example: the normally distributed (or
Gaussian) mutation -> a random number is
generated using a normal distribution with a
mean = 0 and some predetermined standard

deviation.

Workflow - Variation Operators -
Real-coded — Real Mutation
Another approach is to generate a random real

number that resides in the vicinity of the
original individual.

Example: the normally distributed (or
Gaussian) mutation -> a random number is
generated using a normal distribution with a
mean = 0 and some predetermined standard

deviation.

Content
Recommended Sources
What is Evolutionary Computing (EC)
EC History
Problem Types for EC
What is Evolutionary Algorithm (EA)
EA Workflow
Selection
Crossover
Mutation
Real-coded EA
Elitism, Niching, Sharing

Workflow -
Elitism Strategy

We want to guarantee that the best individual(s)
always make it to the next generation, we can

apply the optional elitism strategy.
This means that the top n individuals (n is a

predefined parameter) are duplicated into the
next generation before we fill the rest of the
available spots with offspring that are created

using selection, crossover, and mutation. The
elite individuals that were duplicated are still

eligible for the selection process so they can
still be used as the parents of new individuals.

Elitism can sometimes have a significant positive
impact on the algorithm's performance as it

avoids the potential time waste needed for re-
discovering good solutions that were lost.

Workflow -
Niching and Sharing

When several different species coexist in the
same niche, they all compete over the same

resources, and a tendency is to search for new,
unpopulated niches and populate them.

This can be used to maintain the diversity of the
population and to find several optimal solutions

-> several niches.

For this we should offer resources in the amount
proportional to a niche height by sharing
fitness depended on distance to others.

Основи еволюційних обчислень
-

Evolutionary Computing Basics
-

Lecture 03. EC for Machine Learning
— Feature Selection

(based on Alan Turing, Holland, Khaled Rasheed, Ben
Phillips, Eyal Wirsansky, and others works)

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

Recommended Sources
— Books

Books (scientific):
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.).

(2008). Feature extraction: foundations and applications (Vol.
207). Springer.

Dong, G., & Liu, H. (Eds.). (2018). Feature engineering for
machine learning and data analytics. CRC Press.

Books (with codes at github):
Soledad Galli (2020). Python Feature Engineering

Cookbook. Packt Publishing
Alice Zheng and Amanda Casari (2018). Feature Engineering

for Machine Learning (O'Reilly)

Recommended Sources -
Papers and Datasets

Regression Problem (F1RP):
Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.

Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of
Statistics 19 (1), pages 1-67.

Classification Problem
UCI Zoo dataset (http://archive.ics.uci.edu/ml/datasets/Zoo)

Eibe Frank and Stefan Kramer. Ensembles of nested dichotomies for multi-class
problems. ICML. 2004.

Huan Liu and Hiroshi Motoda and Lei Yu. Feature Selection with Selective
Sampling. ICML. 2002.

http://archive.ics.uci.edu/ml/datasets/Zoo

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

Evolutionary Computing (EC) —
for Feature Selection — why?

Supervised learning:

Workflow: the model receives a set of inputs, called features, and
maps them to a set of outputs.

Assumption: the information described by the features is useful for
determining the value of the corresponding outputs.

Common sense: the more information we can use as input, the better
our chances of predicting the output(s) correctly.

Reality: in many cases the opposite is true ... if some of the features we
use are irrelevant or redundant, the consequence could be a

(sometimes significant) decrease in the accuracy of the models.

That is why we need feature selection:
the process of selecting the most beneficial set of features out of the

entire set of features to reach the better solution.

EC for Feature Selection —
Benefits

 Decreasing the errors (the lost function) of the model

 Increasing the accuracy of the model

 Training times of the models are shorter.

 Trained models are simpler and easier to interpret.

 Trained resulting models are likely to provide better generalization,
that is, they perform better with new input data that is dissimilar to the

data that was used for training.

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection —
Problem Types

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

– regression (use case of Friedman-1 Regression Problem)
and

– classification (use case of UCI-dataset animal classification)

for
– feature selection

or
– dimensionality reduction

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection — Example:
Friedman-1 Regression Problem (F1RP)

F1RP was described by Friedman (1991) and Breiman (1996).
Inputs: n_features independent variables uniformly distributed on the

interval [0,1], only 5 out of these n_features are actually used.
Outputs: are created according to the formula:

The last component in the formula is the randomly generated noise. The
noise is normally distributed and multiplied by the constant noise, which

determines its level.
Various implementations in programming languages:

Python: make_friedman1() function in scikit-learn (sklearn) library
R: friedman1() function in mlbench library

Why F1RP is useful for us?

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of

Statistics 19 (1), pages 1-67.

EC for Feature Selection — Example:
why F1RP is useful for us?

If n_features = 15, we will get a dataset with the original 5 input variables
(or features) that were used to generate y values by the formula and 10

features that are completely irrelevant to the output.
Why: F1RP is used to test various regression models as to presence of

noise and irrelevant features in the dataset.

Example:
Aim: test EC (GA) as a feature selection mechanism.

Workflow: use make_friedman1() function to create a dataset with 15
features and use GA to search for the subset of features that provides

the best performance.
Hypothesis: EC (GA) will pick the first 5 features and drop the rest,
assuming that the model's accuracy is better when only the relevant

features are used as input.
EC (GA) role: The fitness function (FF) will use a regression model
that, for each potential solution – a subset of the feature to use – will

be trained using the dataset containing only the selected features.

EC for Feature Selection — Example:
Individual Representation by EC (GA)

An individual solution (genotype) should indicate which features are
selected and which are dropped:

 Each individual solution is a list of binary values

 Every entry in the list (0 or 1) is one of the features in the dataset:
 1 - the corresponding feature WAS selected,

 0 - the feature has NOT been selected.

This is very similar to the knapsack 0-1 problem from Lab01.

IMPORTANT:
Each 0 in the individual solution means

->
dropping the corresponding feature's data column from the dataset.

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection — Example:
F1RP — Classic Solution

1) Create the dataset by Friedman formula
using make_friedman1() function in scikit-learn (sklearn) library.

2) Divide the data into two subsets – a training set and a validation set
– using model_selection.train_test_split() function in the scikit-learn.

3) Create the regression model ... various can be used ... Gradient
Boosting Regressor (GBR) in this example.

4) Determine the performance of the used regression model for a set of
selected features by getMSE() function-metric*.

5) Then the new training subset (with the selected features only!) is
used to train the model, while the new validation subset - to evaluate it.

*) The mean square error (MSE) = the average squared difference between the
model's predicted values and the actual values. A lower value of this

measurement indicates better performance of the model.

EC for Feature Selection — Example:
F1RP — Classic Solution — Results...

As far as we add the first 5 features one by one, the performance
improves. However, later each additional feature degrades

the performance of the model:

1 first features: score = 47.553993
2 first features: score = 26.121143
3 first features: score = 18.509415
4 first features: score = 7.322589
5 first features: score = 6.702669
6 first features: score = 7.677197
7 first features: score = 11.614536
8 first features: score = 11.294010
9 first features: score = 10.858028
10 first features: score = 11.602919
11 first features: score = 15.017591
12 first features: score = 14.258221
13 first features: score = 15.274851
14 first features: score = 15.726690
15 first features: score = 17.187479

EC for Feature Selection — Example:
F1RP — Classic Solution — DEMO...

Try to reproduce these results:

1 first features: score = 47.553993
2 first features: score = 26.121143
3 first features: score = 18.509415
4 first features: score = 7.322589
5 first features: score = 6.702669
6 first features: score = 7.677197
7 first features: score = 11.614536
8 first features: score = 11.294010
9 first features: score = 10.858028
10 first features: score = 11.602919
11 first features: score = 15.017591
12 first features: score = 14.258221
13 first features: score = 15.274851
14 first features: score = 15.726690
15 first features: score = 17.187479

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection — Example:
F1RP — EC (GA) Solution

The differences from classic solution:

1) Chromosomes - binary lists of selected features

 2) Fitness Function (FF) - returns the regression model's MSE

3) Selection
- tournament selection with a tournament size of 2

- elitism, where the hall of fame (HOF) members – the current best
individuals – are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover

and
- mutation operators

that are specialized for binary list chromosomes

EC for Feature Selection — Example:
F1RP — EC (GA) Solution — Results

After 30 generations of EC (GA):

Best Ever Individual = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Best Ever Fitness = 6.702668910463287

What does it mean?

The best MSE (about 6.7) is provided by the first five features.

IMPORTANT:
EA (GA) makes no assumptions about the set of features.
EA (GA) does not know about the first or last n features.

EA (GA) simply searched for the best possible subset of features.

EC for Feature Selection — Example:
F1RP — EC (GA) Solution — DEMO

Try to reproduce these results:

After 30 generations of EC (GA):

Best Ever Individual = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Best Ever Fitness = 6.702668910463287

What does it mean?

The best MSE (about 6.7) is provided by the first five features.

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection — Example:
Animals Classification Problem

It is the classic example of classification problem.

UCI Zoo dataset (http://archive.ics.uci.edu/ml/datasets/Zoo).

EC for Feature Selection — Example:
Animals Classification — Dataset

Dataset General Information:
A simple database containing 17 Boolean-valued attributes.

The "type" attribute appears to be the class attribute. Here is a breakdown of
which animals are in which type: (I find it unusual that there are 2 instances

of "frog" and one of "girl"!)
Class# -- Set of animals:

1 -- (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin,
elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink,

mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat,
raccoon, reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf

2 -- (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,
penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren

3 -- (5) pitviper, seasnake, slowworm, tortoise, tuatara
4 -- (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse,

sole, stingray, tuna
5 -- (4) frog, frog, newt, toad

6 -- (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
7 -- (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish,

worm

EC for Feature Selection — Example:
Animals Classification — Dataset

Attribute (Feature) Information:
1. animal name: Unique for each instance

2. hair: Boolean
3. feathers: Boolean

4. eggs: Boolean
5. milk: Boolean

6. airborne: Boolean
7. aquatic: Boolean
8. predator: Boolean
9. toothed: Boolean

10. backbone: Boolean
11. breathes: Boolean

12. venomous: Boolean
13. fins: Boolean

14. legs: Numeric (set of values: {0,2,4,5,6,8})
15. tail: Boolean

16. domestic: Boolean
17. catsize: Boolean

18. type: Numeric (integer values in range [1,7])

Origin: it is the classic example of classification problem, where the
input features need to be mapped into two or more categories/labels.

Inputs: features 2-17 (hair, feathers, fins, and so on), mostly features
are Boolean (value of 1 or 0) meaning the presence or absence of a

certain attribute, such as hair, fins, and so on.
Note: The 1st feature - animal name - is just to provide us with some

information and does not participate in the learning.

Outputs: the last feature – type – represents 7 categories.
For instance, type 5 represents a category with: frog, newt, and toad.

Aim: train a classification model on this dataset with features 2-17
(hair, feathers, fins, and so on) to predict the value of feature 18

(animal type).

EC for Feature Selection — Example:
Animals Classification — Problem

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

1) Load the UCI-Zoo dataset by the standard read_csv function.

2) Divide the data into input features (first remaining 16 columns) and
the resulting output category (last column). Then instead of separating
the data into 1 training set and 1 test set, like we did in the previous
section, we're using k-fold cross-validation -> The data is split into k

equal parts and the model is evaluated k times:
(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
Decision Tree Classifier (DCT) in this example.

4) Determine the performance of the used regression model for a set of
selected features by getMeanAccuracy() function-metric*.

*) Accuracy – the portion of the cases that were classified correctly. A higher
value of this measurement indicates better performance of the model.

EC for Feature Selection — Example:
Animals Classification — Classic Way

EC for Feature Selection — Example:
Classification — Classic Way — DEMO...

After training/testing:

the model - DTC-classifier
5-fold cross-validation

all 16 features

the classification accuracy was about 91%.

Try to reproduce these results:

All features selected:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Accuracy = 0.9099999999999999

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection — Example:
Classification — EC (GA) Solution

The differences from classic solution:

1) Chromosomes - binary lists of selected features

 2) Fitness Function (FF) - returns the model's mean accuracy

3) Selection
- tournament selection with a tournament size of 2

- elitism, where the hall of fame (HOF) members – the current best
individuals – are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover

and
- mutation operators

that are specialized for binary list chromosomes

EC for Feature Selection — Example:
Classification — EC (GA) — Results

After 50 generations of EC (GA) and HOF size of 5:

Best solutions are:
0 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.964 accuracy = 0.97 features = 6
1 : [0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.963 accuracy = 0.97 features = 7
2 : [1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.963 accuracy = 0.97 features = 7
3 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0] fitness = 0.963 accuracy = 0.97 features = 7
4 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1] fitness = 0.963 accuracy = 0.97 features = 7

The top solution is the set of 6 features, which are as follows:
feathers, milk, airborne, backbone, fins, tail

By selecting these particular features out of the 16 given in the dataset:
1 - we reduced the dimensionality of the problem,

2 - we also improved our model accuracy from 91% to 97%.

IMPORTANT: It is not very large increase of an absolute accuracy,
BUT a great (TRIPLE!) reduction of the error rate from 9% to 3% – a

very significant improvement in terms of classification performance.

EC for Feature Selection — Example:
Classification — EC (GA) — DEMO

Try to reproduce these results:
Best solutions are:
0 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.964 accuracy = 0.97 features = 6
1 : [0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.963 accuracy = 0.97 features = 7
2 : [1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] fitness = 0.963 accuracy = 0.97 features = 7
3 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0] fitness = 0.963 accuracy = 0.97 features = 7
4 : [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1] fitness = 0.963 accuracy = 0.97 features = 7

Content
Recommended Sources
EA (GA) for Feature Selection — Why?
Problem Types for Feature Selection:
Regression: Friedman-1 Problem

Classic Solution
EA (GA) Solution

Classification: Animals Problem
Classic Solution
EA (GA) Solution

Resume

EC for Feature Selection —
Resume

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

– regression (use case of Friedman-1 Regression Problem)
and

– classification (use case of UCI-dataset animal classification)

for
– feature selection

or
– dimensionality reduction

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Основи еволюційних обчислень
-

Evolutionary Computing Basics
-

Lecture 04. EC for Machine Learning
— Hyperparameter Tuning

(based on Holland, Khaled Rasheed, Ben Phillips, Eyal
Wirsansky, and others works)

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

Recommended Sources
— Books

Books (scientific):
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016).

Deep learning. Cambridge: MIT press
 Цитовано в 23692 джерелах.

Books (with codes at github):
Alan Fontaine (2018) Mastering Predictive Analytics with

scikit-learn and TensorFlow. Packt Publishing.

Tanay Agrawal (2021). Hyperparameter Optimization in
Machine Learning: Make Your Machine Learning and Deep

Learning Models More Efficient, Apress

Recommended Sources -
Papers and Datasets

Example Problem and Dataset

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

S. Aeberhard, D. Coomans and O. de Vel,
Comparison of Classifiers in High Dimensional Settings,

Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.

The data was used for comparing various classifiers.
(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))

(All results using the leave-one-out technique)

Mikhail Bilenko (Head of AI and Research, Yandex) and Sugato Basu and
Raymond J. Mooney. Integrating constraints and metric learning in semi-

supervised clustering. ICML. 2004.

Kamal Ali and Michael J. Pazzani. Error Reduction through Learning Multiple
Descriptions. Machine Learning, 24. 1996

https://archive.ics.uci.edu/ml/datasets/wine

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

Evolutionary Computing (EC) —
for Hyperparameter Tuning — why?

Supervised learning:

Workflow: the model receives a set of inputs, called features, and
maps them to a set of outputs.

Assumption: the information described by the features is useful for
determining the value of the corresponding outputs.

Model: learning is adjusting (or tuning) the internal parameters of a
model to produce the desired outputs in response to given inputs.
For this, each type of supervised learning model is accompanied by a
learning algorithm that iteratively adjusts its internal parameters

during the learning (or training) phase.
Reality: BUT ... most models have another set of hyperparameters that
are set before the learning and they affect the way the learning is done!

Usually: hyperparameters have some default values that will take effect
if we don't specifically set them and they are not optimal!

That is why we need hyperparameter tuning!

EC for Hyperparameter Tuning —
Benefits and Overheads

Benefits:
Decreasing the errors (the lost function) of the model

 Increasing the accuracy of the model

 Training times of the models are shorter.

Overheads:
 The possible number of hyperparameter combinations can

be very-very huge.

 Search for the best hyperparameter combinations
(hyperparameter tuning) takes significant amounts of time.

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

EC for Hyperparameter Tuning —
Problem Type - Classification

EC (GA) can be effectively applied to
the classic supervised machine learning probles:

– classification (use case of UCI-dataset Wine classification)

for
– hyperparameter tuning

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

EC for Hyperparameter Tuning —
Example: Wine Classification Problem

It is the classic example of classification problem.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Dataset General Information:
These data are the results of a chemical analysis of wines grown in the same

region in Italy but derived from 3 different cultivars.

 The analysis determined the quantities of 13 constituents found in each of
the 3 types of wines.

In a classification context, this is a well posed problem with "well behaved"
class structures.

A good data set for first testing of a new classifier, but not very challenging.



EC for Hyperparameter Tuning —
Wine Classification — Dataset

Attribute (Feature) Information:
1) Alcohol

2) Malic acid
3) Ash

4) Alcalinity of ash
5) Magnesium

6) Total phenols
7) Flavanoids

8) Nonflavanoid phenols
9) Proanthocyanins
10) Color intensity

11) Hue
12) OD280/OD315 of diluted wines

13) Proline

Class identifier: One (0th) attribute is class identifier (1,2,3)

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Workflow and Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

Origin: it is the classic example of classification problem, where
the input features need to be mapped into 3 categories/labels.

Inputs: all features (wine properties) are continuous.

Outputs: the one feature – class –
represents 3 categories (cultivars).

Aim: train a classification model on this dataset with 13 features
to predict the value of feature 0 (cultivar).

EC for Hyperparameter Tuning —
Wine Classification — Problem

1) Load the UCI Wine dataset by the standard read_csv function (with url =
'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data').

2) Divide the data into input features (first remaining 13 columns) and the
resulting output category (the first column). Then instead of separating the
data into 1 training set and 1 test set, like we did in the previous example,

we're using k-fold cross-validation -> The data is split into k equal parts and
the model is evaluated k times:

(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
AdaBoostClassifier in this example.

4) Determine the performance of the used regression model for a set of
selected hyperparameters by accuracy metric*.

*) Accuracy – the portion of the cases that were classified correctly. A higher value
of this measurement indicates better performance of the model.

Wine Classification —
Workflow

Let’s consider in details this stage:
3) Create the classification model ... various models can be used ...

AdaBoostClassifier in this example.

The adaptive boosting algorithm (AdaBoost)
is a powerful ML model that combines the outputs of multiple instances of
a simple ML algorithm (weak learner) using a weighted sum. AdaBoost adds
instances of the weak learner during the learning process, each of which is

adjusted to improve previously misclassified inputs.
We’ll use sklearn library's implementation of AdaboostClassifier

with some hyperparameters:

Wine Classification —
Hyperparameter Tuning

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

Let’s start from 2 classic approaches:

default values of model hyperparameters:
{'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 50,

'random_state': 42},

grid search of the best values of model hyperparameters:

Algorithm — 2 possible values 'SAMME' and 'SAMME.R',
learning_rate - 10 values logarithmically spaced

between 0.01 (10-2) and 1 (100),
n_estimators -> 10 values linearly spaced between 10 and 100,

Total: 200 = (10×10×2) different combinations of the grid parameters.

Wine Classification — Classic Way

Wine Classification —
Classic Way — DEMO 1 and 2

Results:

DEMO 1 - Default values:
Default Classifier Hyperparameter values:

{'algorithm': 'SAMME.R', 'base_estimator': None, 'learning_rate': 1.0,
'n_estimators': 50, 'random_state': 42}

Score (with default values) = 0.6457142857142857
Time Elapsed = 0.4167492389678955

DEMO 2 - After gridSearch:
Best parameters: {'algorithm': 'SAMME.R', 'learning_rate':

0.3593813663804626, 'n_estimators': 70}
Score (after gridSearch): 0.9325842696629213

Time Elapsed = 74.51628732681274

Try to reproduce these results!

Wine Classification —
Classic Way — DEMO 1 and 2

After training/testing - see test.gridTest() function in the DEMO code:
the model is AdaBoostClassifier-classifier

5-fold cross-validation
Results:

DEMO 1 - Default values:
Model hyperparameter values:

{'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 50,
'random_state': 42}
Accuracy: 0.65%

Time Elapsed = 0.42 seconds

DEMO 2 - After gridSearch:
Best hyperparameter values:

{'algorithm': 'SAMME.R', 'learning_rate': 0.359, 'n_estimators': 70}
Accuracy: 0.93%

Time Elapsed = 74 seconds
Try to reproduce these results!

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

Wine Classification — EC (GA) Ways
Difference from Classic Ways

The differences from classic solution:
1) Chromosomes — heterogeneous sets of selected values of

hyperparameters:
 n_estimators values - a list of 10 integers
 learning_rate - an ndarray of 10 floats,

 algorithm - a list of 2 strings

 2) Fitness Function (FF) - returns the model's mean accuracy

3) Selection
- tournament selection with a tournament size of 2

- elitism, where the hall of fame (HOF) members – the current best
individuals – are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover and

- mutation operators
that are specialized for chromosomes

Wine Classification — EC (GA) Ways
— Grid and Direct

The possible EC-GA-based approaches:

 GA-based grid search:
to search among the initially selected 200 grid combinations only,

 direct GA:
to search directly the entire parameter space,

where each hyperparameter can be represented
as a variable participating in the search,

and the chromosome can be a combination of all these variables.

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

3) GA-based grid search:

--- Evolve in 200 possible combinations ---
gen nevals avg min max std

0 20 0.708427 0.117978 0.910112 0.265992
1 13 0.865169 0.662921 0.926966 0.0717915
2 15 0.887921 0.646067 0.926966 0.0571676
3 12 0.896348 0.679775 0.926966 0.0526256
4 16 0.918539 0.88764 0.926966 0.0110233
5 9 0.911517 0.730337 0.926966 0.0425958

Best individual is: {'n_estimators': 60, 'learning_rate': 0.5994842503189409,
'algorithm': 'SAMME.R'}

with fitness: 0.9269662921348315
Time Elapsed = 24.287983655929565

Try to reproduce these results!

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

3) GA-based grid search:
to search among the initially selected 200 grid combinations only

GA-parameters:
population_size=20,

gene_mutation_prob=0.30,
tournament_size=2,

generations_number=5

Results:
 Model hyperparameter values:

{'algorithm': 'SAMME.R', 'learning_rate': 0.5995, 'n_estimators': 60,
'random_state': 42}
Accuracy: 0.93%

Time Elapsed = 24 secs for 6 generations (compare with gridSearch: 74
sec, but it takes only 2 generations - 8 secs! - to reach Max Accuracy)

Try to reproduce these results!

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

Conclusions:
GA-driven grid search can find the same best result

(found by the classic search),
but in a 6 times(!) faster – about 12 seconds (2 generations).

BUT ... in real-life situations:
 datasets are much larger,

 models are more complex, and
 hyperparameter grids are larger!

 That is why exhaustive classic grid search can be prohibitively
lengthy, while the GA-driven grid search can reach good results

within a reasonable time.

BUT here ... GAs are limited to the subset of hyperparameter
values that are defined by the grid.

Let’s search outside the grid of a subset of predefined values?

Wine Classification — EC (GA) Ways
4.Direct GA — DEMO 4

4) Direct GA:
to search directly the entire parameter space,

where each hyperparameter can be represented
as a variable participating in the search,

and the chromosome can be a combination of all these variables.

We need to represent each hyperparameter as a floating-point number,
regardless of its actual type:

 n_estimators - originally an integer — it will be represented by a float
value in the range of [1, 100],

 learning_rate - already a float, so no conversion is needed — it will be
bound to the range of [0.01, 1.0],

 algorithm - have one of two string values, 'SAMME' or 'SAMME.R' —
it and will be represented by a float number in the range of [0, 1].

Wine Classification — EC (GA) Ways
4.Direct GA — DEMO 4

4) Direct GA - Results:

gen nevals max avg

0 20 0.92127 0.841024
1 14 0.943651 0.900603
2 13 0.943651 0.912841
3 14 0.943651 0.922476
4 15 0.949206 0.929468
5 13 0.949206 0.938563

Time Elapsed = 46.62226867675781
- Best solution is:

params = 'n_estimators'= 69, 'learning_rate'=0.628, 'algorithm'=SAMME.R
Accuracy = 0.94921

Try to reproduce these results!

Wine Classification — EC (GA) Ways
4.Direct GA — DEMO 4

4) Direct GA with GA-parameters:
population_size=20,

gene_mutation_prob=0.50,
probability for crossover = 0.90,

tournament_size=2,
generations_number=5

hall_of_fame_size=5

Results:
 Model hyperparameter values:

{'algorithm': 'SAMME.R', 'learning_rate': 0.628, 'n_estimators': 69,
'random_state': 42}
Accuracy: 0.95%

Time Elapsed = 46 secs for 6 generations (compare with gridSearch: 74
sec, but it takes only 2 generations - 16 secs! - to > GA-grid Accuracy)

Try to reproduce these results!

Wine Classification — EC (GA) Ways
4.Direct GA — DEMO 4

Conclusions:
 Direct GA can find the better accuracy 95%

than classic (65-93%) and GA-driven grid search (93%),

 and in 4-5 times(!) faster (8 secs for 2 generations) than classic and
the same time for GA-driven grid search.

NOTE: the best hyperparameter values (for n_estimators and
learning_rate) were found outside the grid values!

BUT ... again! ... in real-life situations:
 datasets are much larger,

 models are more complex, and
 hyperparameter grids are larger!

●That is why exhaustive classic grid search can be prohibitively
lengthy, while the GA-driven grid search can reach good results

within a reasonable time.

Content
Recommended Sources
EA (GA) for Hyperparameter Tuning — Why?
Problem Types for Feature Selection
Classification Problem Example

● UCI Wine Dataset
● Hyperparameter Tuning

Classic Solutions
● DEMO 1 - Default Values
● DEMO 2 - Extensive Grid Search

EA (GA) Solutions
● DEMO 3 — GA-driven Grrid Search
● DEMO 4 — Direct GA

Resume

EC for Feature Selection —
Classification — Comparative Plot

Try to reproduce these results!

EC for Feature Selection —
Resume

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

– regression (use case of Friedman-1 Regression Problem)
and

– classification (use case of UCI-dataset animal classification)

for
– feature selection

or
– dimensionality reduction

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Основи еволюційних обчислень
-

Evolutionary Computing Basics
-

Lecture 05. EC for Neural Networks
— Architecture and Hyperparameter

Tuning
(based on Varoquaux, Grobler, Rasheed, Phillips,

Wirsansky, and others works)

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

Recommended Sources
— Books

Books (scientific):
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016).

Deep learning. Cambridge: MIT press
 Цитовано в 23692 джерелах.

Books (with codes at github):
Alan Fontaine (2018) Mastering Predictive Analytics with

scikit-learn and TensorFlow. Packt Publishing.

Tanay Agrawal (2021). Hyperparameter Optimization in
Machine Learning: Make Your Machine Learning and Deep

Learning Models More Efficient, Apress

Recommended Sources -
Papers and Datasets

Example Problem and Dataset

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)
S. Aeberhard, D. Coomans and O. de Vel,

Comparison of Classifiers in High Dimensional Settings,
Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of

Mathematics and Statistics, James Cook University of North Queensland.

UCI Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)
Fisher,R.A. The use of multiple measurements in taxonomic problems, Annual

Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical
Statistics" (John Wiley, NY, 1950).

UCI Breast Cancer dataset
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))
W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for
breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic
Imaging: Science and Technology, volume 1905, 861-870, San Jose, CA, 1993.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

Evolutionary Computing (EC) —
MLP/Neural Network (NN) — Intro

Multi-layer Perceptron (MLP) is a supervised
learning algorithm (artifical neural netwrork -
NN) that learns a function f(X) by training on a

dataset. Given a set of features X and a target y,
it can learn a non-linear function approximator

for classification or regression.

Between the input and the output layer, there
can be one or more non-linear layers, called

hidden layers.

The weight matrix W
i
 at some index i

represents the weights between layer i and layer
i+1. The bias b

i
 at index i represents the bias

values added to layer i+1.

 MLP uses backpropagation for training.
It can distinguish not linearly separable data.

Supervised learning:
Workflow: the model (NN here) receives a set of inputs, called

features, and maps them to a set of outputs.
Assumption: the information described by the features is useful for

determining the value of the corresponding outputs.
Model: learning is adjusting (or tuning) the internal parameters

(weights in NN layers here) of a model to produce the desired outputs
in response to given inputs. Each type of supervised learning model is

accompanied by a learning algorithm that iteratively adjusts its
internal parameters (weights in NN layers here) during the learning.
AND ... most models (NN here) have structure (NN architecture here:
layers, blocks, and connections between them) + hyperparameters

(learning rate, ...) that are set before the learning and they affect it!
Usually: EC can be applied for search of optimal: a) weights, b)

hyperparameters (like in the previous lecture for ML), c) architecture.

IMPORTANT: Weights tuning by EC is NOT considered here, because
it is performed by gradient-based methods.

NN Tuning —
What are Tuning Objects?

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

NN Tuning —
What Types of Tuning?

Tuning Types ... for various parts of NN:
 internal parameters:

weights in NN - is NOT considered here, because it is performed by
gradient-based methods;

 external parameters:
1) NN architecture (layers and nodes in layers here)

+ influence of various ...
- RANDOM_SEEDs,

- datasets,
- MAX number of layers.

2) NN hyperparameters (learning rate, activation function, optimization

solver, and regularization, here),

3) NN architecture + NN hyperparameters.

EC for Hyperparameter Tuning —
Benefits and Overheads

Benefits:

Decreasing the errors (the lost function) of the model
Increasing the accuracy of the model

Training times of the models are shorter.

Overheads:

 The possible number of NN architectures and NN
hyperparameter combinations can be very-very huge.

 Search for the best NN architectures and NN
hyperparameter combinations (hyperparameter tuning)

takes significant amounts of time.

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

EC for Hyperparameter Tuning —
Problem Type - Classification

EC (GA) can be effectively applied to
the classic supervised machine learning probles:

– classification (use case of UCI-dataset Wine classification)

for
– NN tuning

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

EC for Hyperparameter Tuning —
Example: Wine Classification Problem

It is the classic example of classification problem.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Dataset General Information:
These data are the results of a chemical analysis of wines grown in the same

region in Italy but derived from 3 different cultivars.

 The analysis determined the quantities of 13 constituents found in each of
the 3 types of wines.

In a classification context, this is a well posed problem with "well behaved"
class structures.

A good data set for first testing of a new classifier, but not very challenging.



EC for Hyperparameter Tuning —
Wine Classification — Dataset

Attribute (Feature) Information:
1) Alcohol

2) Malic acid
3) Ash

4) Alcalinity of ash
5) Magnesium

6) Total phenols
7) Flavanoids

8) Nonflavanoid phenols
9) Proanthocyanins
10) Color intensity

11) Hue
12) OD280/OD315 of diluted wines

13) Proline

Class identifier: One (0th) attribute is class identifier (1,2,3)

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

Origin: it is the classic example of classification problem, where
the input features need to be mapped into 3 categories/labels.

Inputs: all features (wine properties) are continuous.

Outputs: the one feature – class –
represents 3 categories (cultivars).

Aim: train a classification model on this dataset with 13 features
to predict the value of feature 0 (cultivar).

EC for Hyperparameter Tuning —
Wine Classification — Workflow

1) Load the UCI Wine dataset by the standard read_csv function (with url =
'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data').

2) Divide the data into input features (first remaining 13 columns) and the
resulting output category (the first column). Then instead of separating the
data into 1 training set and 1 test set, like we did in the previous example,

we're using k-fold cross-validation -> The data is split into k equal parts and
the model is evaluated k times:

(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
Multi-layer Perceptron (MLP) in this example.

4) Determine the performance of the used regression model for a set of
selected hyperparameters by accuracy metric*.

*) Accuracy – the portion of the cases that were classified correctly. A higher value
of this measurement indicates better performance of the model.

NN Tuning —
Wine Classification — Workflow

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

DEMO — Part1: NN Architecture Tuning
— Layers and Nodes

We limit NN to 4 hidden layers, the chromosome will be:
[n

1
, n

2
, n

3
, n

4
]

Here, n i denotes the number of nodes in the layer i from 1 to 4.
To control the number of hidden layers in NN, some of n

i
 may be

0 or <0 ... it means -> no more layers will be added to NN.
Example of some chromosomes:

 [10, 20, -5, 15] -> tuple (10, 20) since -5 ends the layer count.
[10, 0, -5, 15] -> tuple (10,) since 0 ends the layer count.

[10, 20, 5, -15] -> tuple (10, 20, 5) since -15 ends the count.
[10, 20, 5, 15] > tuple (10, 20, 5, 15).

We limit NN to 4 hidden layers, the chromosome will be:
[n

1
, n

2
, n

3
, n

4
]

Here, n i denotes the number of nodes in the layer i from 1 to 4.
To control the number of hidden layers in NN, some of n

i
 may be

0 or <0 ... it means -> no more layers will be added to NN.
Example of some chromosomes:

 [10, 20, -5, 15] -> tuple (10, 20) since -5 ends the layer count.
[10, 0, -5, 15] -> tuple (10,) since 0 ends the layer count.

[10, 20, 5, -15] -> tuple (10, 20, 5) since -15 ends the count.
[10, 20, 5, 15] > tuple (10, 20, 5, 15).

To guarantee that there is at least 1 hidden layer, the 1st
parameter (10 here) is always >0.

The other layer parameters can have varying distributions
around 0 ... why ... to control their chances of being the

terminating parameters.

DEMO — Part1: NN Architecture Tuning
— Layers and Nodes

Results:

DEMO 1 - Default MLP Hyperparameter values.

Try to reproduce these results!

DEMO - Part 1:
NN Architecture Tuning Solution

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

DEMO - Part 1: NN Architecture Tuning
Solution

What is Influence of ...

● Random Seed

● Dataset (Wine, Iris, Breast Cancer)

● Max NN Layer Number

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds - Resume

Resume for various RANDOM_SEEDs:

For various RANDOM_SEED we can obtain NNs with the very different:
 performance (accuracy),

● the number of nodes in layers,
● the number of layers.

The possible reason is
the stochastic (so-called non-gradient) manner of parameter change

during evolution.
There is some possibility that

all these models for different RANDOM_SEEDs can reach the different
local (NOT global) the maximum value of fitness function (accuracy

here).
Try to reproduce these results!

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

DEMO - Part 1: NN Architecture Tuning
Solution

What is Influence of ...

● Random Seed

● Dataset (Wine, Iris, Breast Cancer)

● Max NN Layer Number

It is the classic example of classification problem.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

NN Tuning Example:
Wine Dataset

NN Tuning Example:
Iris Dataset

It is the classic example of classification problem.

UCI Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)

It is the classic example of classification problem.

UCI Breast Cancer dataset
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))

NN Tuning Example:
Breast Cancer Dataset

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets?

Results for various RANDOM_SEEDs:

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets - Resume

Resume for various datasets:

Again ... for various datasets we can obtain NNs with the very different:
 performance (accuracy),

● the number of nodes in layers,
● the number of layers.

The possible reason is
more evident here:
- different features,

- different number of features,
- their different contribution
to fitness function (accuracy).

Try to reproduce these results!

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

DEMO - Part 1: NN Architecture Tuning
Solution

What is Influence of ...

● Random Seed

● Dataset (Wine, Iris, Breast Cancer)

● Max NN Layer Number

DEMO - Part 1: NN Architecture Tuning
Solution — Various MAX Layer Number?

Results for various MAX Layer Number:

BUT
...

try it as a self-guided learning
...

if you want! :)

Try to reproduce these results!

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

For the previous 1) NN Architecture Tuning
we used the default hyperparameters.
BUT ... from the previous lecture ...

tuning the various hyperparameters can
increase the classifier's performance.

Q: Can we use hyperparameter tuning here? A: Yes.

From sklearn implementation of MLP we can use numerous tunable
hyperparameters:

DEMO - Part 2: NN Hyperparameter Tuning

Like in the previous lecture demos,
a floating point-based chromosome representation allows us to combine
various types of hyperparameters into GA-based optimization process.

activation - one of three values: tanh, relu, or logistic.
This can be achieved by representing it as a float in the range of [0, 2.99] .

To transform the float into one of the aforementioned string values, we
need to apply the floor() function to it, which will yield either 0, 1, or 2.

Then we replace 0 -> tanh, 1 -> relu, and 2 -> logistic.

solver - one of 3 values: sgd, adam, or lbfgs.
Like for activation: it can be represented using a float in [0, 2.99] range.

alpha - already a float, no conversion is needed.
It will be bound to the range of [0.0001, 2.0].

learning_rate - one of 3 values: constant, invscaling, adaptive.
Like for activation: it can be represented using a float in [0, 2.99] range.

DEMO - Part 2: NN Hyperparameter Tuning

Results:
DEMO 2 - The best NN Architecture from DEMO 1.

 HIDDEN_LAYER_SIZES = [13, 4, 7]

Try to reproduce these results!

DEMO - Part 2: NN Hyperparameter Tuning

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture +
NN Hyperparameter Tuning Solution

Resume

The first 4 ranges for NN Arhictecture tuning
–> one for each hidden layer.

The next 4 ranges
-> represent the additional 4 hyperparameters.

DEMO - Part 3: Hybrid: NN Architecture +
NN Hyperparameter Tuning

Input Boundaries:

DEMO - Part 3: Hybrid: NN Architecture +
NN Hyperparameter Tuning

Results:

Try to reproduce these results!

DEMO - Part 3: Hybrid: NN Architecture +
NN Hyperparameter Tuning

Results -> Compare with NN Hyper ONLY

Funny Differences in Best Solution Parameters ... :)
Try to reproduce these results!

DEMO - Part 3: Hybrid: NN Architecture +
NN Hyperparameter Tuning

Content
Recommended Sources
EA (GA) for Neural Network (NN) Tuning
Types of NN Tuning
Classification Problem Example: Dataset + Workflow
DEMO - Part 1: NN Architecture Tuning Solution

● Random Seed
● Dataset (Wine, Iris, Breast Cancer)
● Max NN Layer Number

DEMO - Part 2: NN Hyperparameter Tuning Solution
DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution

Resume

EC for NN Architecture + NN Hyperparameter
Tuning — Comparative Plot — Accuracy

Try to reproduce these results!

EC for NN Architecture + NN Hyperparameter
Tuning — Comparative Plot — Time

It does not matter ... in such problem formulation ... but ...

Try to reproduce these results!

EC for Feature Selection —
Resume

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

– regression (use case of Friedman-1 Regression Problem)
and

– classification (use case of UCI-dataset animal classification)

for
– feature selection

or
– dimensionality reduction

with the purpose of:
– decrease of MSE

or
– increase of mean accuracy.

Lecture 6 - DEMO A - OpenAI Gym platform

based on (C) OpenAI, Heaton, Moore, Varoquaux, Grobler,
Wirsansky work

Brief Content:

OpenAI Gym platform
Reinforcement Learning (RL) problems:

MountainCar-v0,
MountainCarContinuous-v0,
CartPole-v1
...

Functions to visualize Gym-game-scenarios in Colab.

Evolutionary Algorithms (EA) Basics

Installation and import of libraries

Gym is a toolkit for developing and comparing reinforcement learning algorithms.

It supports teaching agents everything from walking to playing games like Pong or Pinball.

Library to support RL algorithms

! pip install gym

Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages

Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python

Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist

Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/py

Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-package

Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packag

Libraries to Render OpenAI Gym Environments in Colab

It is possible to visualize the activities performed in Gym (game your agent is playing), even on
Colab. This section provides information on how to generate a video in Colab that shows you an

episode of the game your agent is playing.

%%time

!pip install gym pyvirtualdisplay > /dev/null 2>&1

!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1

CPU times: user 28.9 ms, sys: 18.1 ms, total: 47 ms

Wall time: 11.6 s

Collecting setuptools

 Downloading https://files.pythonhosted.org/packages/60/6a/dd9533a

 |████████████████████████████████| 788kB 7.3MB/s

ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll

Installing collected packages: setuptools

 Found existing installation: setuptools 54.0.0

 Uninstalling setuptools-54.0.0:

 Successfully uninstalled setuptools-54.0.0

Successfully installed setuptools-54.1.1

CPU times: user 73.7 ms, sys: 44.5 ms, total: 118 ms

%%time

!apt-get update > /dev/null 2>&1

!apt-get install cmake > /dev/null 2>&1

!pip install --upgrade setuptools 2>&1

!pip install ez_setup > /dev/null 2>&1

!pip install gym[atari] > /dev/null 2>&1

IMPORTANT: you should restart runtime!

Part 1.Introduction to the OpenAI Gym

OpenAI Gym aims to provide an easy-to-setup general-intelligence benchmark with a wide
variety of differentt environments. The goal is to standardize how environments are defined in
AI research publications so that published research becomes more easily reproducible. The
project claims to provide the user with a simple interface.

OpenAI gym is pip-installed onto your local machine. There are a few significant limitations to
be aware of:

developers can only use Gym with Python (as of June 2017).

Gym - Advanages and Limitations

https://files.pythonhosted.org/packages/60/6a/dd9533ae9367a1f35b1b704e2ac9554a61e6dfa4d97e1d86c3760e1e135d/setuptools-54.1.1-py3-none-any.whl
https://gym.openai.com/

OpenAI Gym can not directly render animated games in Google CoLab.

Because OpenAI Gym requires a graphics display, the only way to display Gym in Google CoLab
is an embedded video. The presentation of OpenAI Gym game animations in Google CoLab is
discussed later in this module.

The OpenAI Gym does have a leaderboard, similar to Kaggle; however, the OpenAI Gym's
leaderboard is much more informal compared to Kaggle. The user's local machine performs all
scoring. As a result, the OpenAI gym's leaderboard is strictly an "honor's system." The
leaderboard is maintained the following GitHub repository:

OpenAI Gym Leaderboard

If you submit a score, you are required to provide a writeup with sufficient instructions to
reproduce your result. A video of your results is suggested, but not required.

Gym - Leaderboard

The centerpiece of Gym is the environment, which defines the "game" in which your
reinforcement algorithm will compete. An environment does not need to be a game; however, it
describes the following game-like features:

action space: What actions can we take on the environment, at each step/episode, to alter
the environment.
observation space: What is the current state of the portion of the environment that we can
observe. Usually, we can see the entire environment.

Gym - Environments

Agent - The machine learning program or model that controls the actions.
Step - One
round of issuing actions that affect the observation space.
Episode - A collection of steps that terminates when the agent fails to meet the
environment's objective, or the episode reaches the maximum number of allowed steps.
Render - Gym can render one frame for display after each episode.
Reward - A positive reinforcement that can occur at the end of each episode, after the
agent acts.
Nondeterministic - For some environments, randomness is a factor in deciding what
effects actions have on reward and changes to the observation space.

It is important to note that many of the gym environments specify that they are not
nondeterministic even though they make use of random numbers to process actions. It is

Gym - Basic Termonology

https://github.com/openai/gym/wiki/Leaderboard

generally agreed upon (based on the gym GitHub issue tracker) that nondeterministic property
means that a deterministic environment will still behave randomly even when given consistent
seed value. The seed method of an environment can be used by the program to seed the
random number generator for the environment.

The Gym library allows us to query some of these attributes from environments. I created the
following function to query gym environments.

Environment - Attributes

import gym

def query_environment(name):

 env = gym.make(name)

 spec = gym.spec(name)

 print(f"Action Space: {env.action_space}")

 print(f"Observation Space: {env.observation_space}")

 print(f"Max Episode Steps: {spec.max_episode_steps}")

 print(f"Nondeterministic: {spec.nondeterministic}")

 print(f"Reward Range: {env.reward_range}")

 print(f"Reward Threshold: {spec.reward_threshold}")

MountainCar-v0,
MountainCarContinuous-v0,
CartPole-v1
...

Environment - Examples:

MountainCar-v0

We will begin by looking at the MountainCar-v0 environment, which challenges an
underpowered car to escape the valley between two mountains. The following code describes
the Mountian Car environment.

query_environment("MountainCar-v0")

Action Space: Discrete(3)

Observation Space: Box(-1.2000000476837158, 0.6000000238418579, (2,), float32

Max Episode Steps: 200

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: -110.0

Actions

There are three distinct actions that can be taken:

accelerate forward,
decelerate,
accelerate backwards.

Observation space

The observation space contains two continuous (floating point) values, as evident by the box
object.

The observation space contains:

the position and
velocity of the car.

The car has 200 steps to escape for each episode.

Reward:
The mountian car recieves NO incremental reward. The only reward for the car is given
when it escapes the valley.

MountainCarContinuous-v0

There is also a continuous variant of the mountain car. This version does not simply have the
motor on or off. For the continuous car the action space is a single floating point number that
specifies how much forward or backward force is being applied.

query_environment("MountainCarContinuous-v0")

Action Space: Box(-1.0, 1.0, (1,), float32)

Observation Space: Box(-1.2000000476837158, 0.6000000238418579, (2,), float32

Max Episode Steps: 999

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: 90.0

Note: ignore the warning above, it is a relativly inconsequential bug in OpenAI Gym.

CartPole-v1

The CartPole-v1 environment challenges the agent to move a cart while keeping a pole
balanced.

Observation space

The environment has an observation space of 4 continuous numbers:

Cart Position
Cart Velocity
Pole Angle
Pole Velocity At Tip

Actions

To achieve this goal, the agent can take the following actions:

Push cart to the left
Push cart to the right

query_environment("CartPole-v1")

Action Space: Discrete(2)

Observation Space: Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,),

Max Episode Steps: 500

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: 475.0

Breakout-v0

Atari games, like breakout can use an observation space that is either equal to the size of the
Atari screen (210x160) or even use the RAM memory of the Atari (128 bytes) to determine the
state of the game. Yes thats bytes, not kilobytes!

query_environment("Breakout-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (210, 160, 3), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Breakout-ram-v0

query_environment("Breakout-ram-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (128,), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Atlantis-v0

query_environment("Atlantis-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (210, 160, 3), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Next we define functions used to show the video by adding it to the Colab notebook.

Part 2.Functions to visualize Gym-game-scenarios in Colab

import gym

from gym.wrappers import Monitor

import glob

import io

import base64

from IPython.display import HTML

from pyvirtualdisplay import Display

from IPython import display as ipythondisplay

display = Display(visible=0, size=(1400, 900))

display.start()

"""

Utility functions to enable video recording of gym environment

and displaying it.

To enable video, just do "env = wrap_env(env)""

"""

def show_video():

 mp4list = glob.glob('video/*.mp4')

 if len(mp4list) > 0:

 mp4 = mp4list[0]

 video = io.open(mp4, 'r+b').read()

 encoded = base64.b64encode(video)

 ipythondisplay.display(HTML(data='''<video alt="test" autoplay

 loop controls style="height: 400px;">

 <source src="data:video/mp4;base64,{0}" type="video/mp4" />

 </video>'''.format(encoded.decode('ascii'))))

 else:

 print("Could not find video")

def wrap_env(env):

 env = Monitor(env, './video', force=True)

 return env

Now we are ready to play the game. We use a simple random agent.

MountainCar-v0

env = wrap_env(gym.make("MountainCar-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

MountainCarContinuous-v0

env = wrap_env(gym.make("MountainCarContinuous-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

CartPole-v1

env = wrap_env(gym.make("CartPole-v1"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Breakout-v0

env = wrap_env(gym.make("Breakout-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Breakout-ram-v0

env = wrap_env(gym.make("Breakout-ram-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Atlantis-v0

env = wrap_env(gym.make("Atlantis-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Colab paid products
 -
 Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

based on (C) OpenAI, Heaton, Moore, Varoquaux, Grobler,
Wirsansky work

Brief Content:

DEAP installation (every time after start of Colab VM!),
components needed for the GA workflow,
Reinforcement Learning (RL) problems:

MountainCar-v0,
MountainCarContinuous-v0,
CartPole-v1
...

performance comparison (accuracy and run time).

By the end of this lecture you will know:

again, how to use the DEAP framework's built-in algorithms to produce concise code
how to solve the Reinforcement Learning problem using a GA-based solutions for search
of solutions,
how to experiment with various settings of the GA and interpret the differences in the
results.

Lecture 7 - Applications of EA for Reinforcement Learning

Get Figures for Text Description

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

! cp -r /content/drive/MyDrive/COLAB_EVO/EVO_Lecture07_CartPole/figures .

! ls figures

MLPRegressor.png

Installation and import of libraries

! pip install deap

Collecting deap

 Downloading https://files.pythonhosted.org/packages/99/d1/803c7a387d8a7e686

 |████████████████████████████████| 163kB 6.1MB/s

Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-package

Installing collected packages: deap

Successfully installed deap-1.3.1

Gym is a toolkit for developing and comparing reinforcement learning algorithms.

It supports teaching agents everything from walking to playing games like Pong or Pinball.

Library to support RL algorithms

! pip install gym

Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages

Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/py

Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-package

Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist

Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python

Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packag

Libraries to Render OpenAI Gym Environments in Colab

It is possible to visualize the activities performed in Gym (game your agent is playing), even on
Colab. This section provides information on how to generate a video in Colab that shows you an
episode of the game your agent is playing.

%%time

!pip install gym pyvirtualdisplay > /dev/null 2>&1

!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1

CPU times: user 47 ms, sys: 13 ms, total: 59.9 ms

Wall time: 14.1 s

%%time

!apt-get update > /dev/null 2>&1

!apt-get install cmake > /dev/null 2>&1

!pip install --upgrade setuptools 2>&1

!pip install ez_setup > /dev/null 2>&1

!pip install gym[atari] > /dev/null 2>&1

https://files.pythonhosted.org/packages/99/d1/803c7a387d8a7e6866160b1541307f88d534da4291572fb32f69d2548afb/deap-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl

Collecting setuptools

 Downloading https://files.pythonhosted.org/packages/60/6a/dd9533ae9367a1f35

 |████████████████████████████████| 788kB 4.2MB/s

ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have foli

Installing collected packages: setuptools

 Found existing installation: setuptools 54.0.0

 Uninstalling setuptools-54.0.0:

 Successfully uninstalled setuptools-54.0.0

Successfully installed setuptools-54.1.1

CPU times: user 94.1 ms, sys: 46.3 ms, total: 140 ms

Wall time: 28.6 s

IMPORTANT: you should restart runtime!

Part 1.Introduction to the OpenAI Gym

OpenAI Gym aims to provide an easy-to-setup general-intelligence benchmark with a wide
variety of differentt environments. The goal is to standardize how environments are defined in
AI research publications so that published research becomes more easily reproducible. The
project claims to provide the user with a simple interface.

OpenAI gym is pip-installed onto your local machine. There are a few significant limitations to
be aware of:

developers can only use Gym with Python (as of June 2017).
OpenAI Gym can not directly render animated games in Google CoLab.

Because OpenAI Gym requires a graphics display, the only way to display Gym in Google CoLab
is an embedded video. The presentation of OpenAI Gym game animations in Google CoLab is
discussed later in this module.

Gym - Advanages and Limitations

The OpenAI Gym does have a leaderboard, similar to Kaggle; however, the OpenAI Gym's
leaderboard is much more informal compared to Kaggle. The user's local machine performs all
scoring. As a result, the OpenAI gym's leaderboard is strictly an "honor's system." The
leaderboard is maintained the following GitHub repository:

OpenAI Gym Leaderboard

If you submit a score, you are required to provide a writeup with sufficient instructions to
reproduce your result. A video of your results is suggested, but not required.

Gym - Leaderboard

Gym - Environments

https://files.pythonhosted.org/packages/60/6a/dd9533ae9367a1f35b1b704e2ac9554a61e6dfa4d97e1d86c3760e1e135d/setuptools-54.1.1-py3-none-any.whl
https://gym.openai.com/
https://github.com/openai/gym/wiki/Leaderboard

The centerpiece of Gym is the environment, which defines the "game" in which your
reinforcement algorithm will compete. An environment does not need to be a game; however, it
describes the following game-like features:

action space: What actions can we take on the environment, at each step/episode, to alter
the environment.
observation space: What is the current state of the portion of the environment that we can
observe. Usually, we can see the entire environment.

Agent - The machine learning program or model that controls the actions.
Step - One
round of issuing actions that affect the observation space.
Episode - A collection of steps that terminates when the agent fails to meet the
environment's objective, or the episode reaches the maximum number of allowed steps.
Render - Gym can render one frame for display after each episode.
Reward - A positive reinforcement that can occur at the end of each episode, after the
agent acts.
Nondeterministic - For some environments, randomness is a factor in deciding what
effects actions have on reward and changes to the observation space.

It is important to note that many of the gym environments specify that they are not
nondeterministic even though they make use of random numbers to process actions. It is
generally agreed upon (based on the gym GitHub issue tracker) that nondeterministic property
means that a deterministic environment will still behave randomly even when given consistent
seed value. The seed method of an environment can be used by the program to seed the
random number generator for the environment.

Gym - Basic Termonology

The Gym library allows us to query some of these attributes from environments. I created the
following function to query gym environments.

Environment - Attributes

import gym

def query_environment(name):

 env = gym.make(name)

 spec = gym.spec(name)

 print(f"Action Space: {env.action_space}")

 print(f"Observation Space: {env.observation_space}")

 print(f"Max Episode Steps: {spec.max_episode_steps}")

 print(f"Nondeterministic: {spec.nondeterministic}")

 print(f"Reward Range: {env.reward_range}")

 print(f"Reward Threshold: {spec.reward_threshold}")

MountainCar-v0,
MountainCarContinuous-v0,
CartPole-v1
...

Environment - Examples:

MountainCar-v0

We will begin by looking at the MountainCar-v0 environment, which challenges an
underpowered car to escape the valley between two mountains. The following code describes
the Mountian Car environment.

query_environment("MountainCar-v0")

Action Space: Discrete(3)

Observation Space: Box(-1.2000000476837158, 0.6000000238418579, (2,), float32

Max Episode Steps: 200

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: -110.0

Actions

There are three distinct actions that can be taken:

accelerate forward,
decelerate,
accelerate backwards.

Observation space

The observation space contains two continuous (floating point) values, as evident by the box
object.

The observation space contains:

the position and
velocity of the car.

The car has 200 steps to escape for each episode.

Reward:
The mountian car recieves NO incremental reward. The only reward for the car is given
when it escapes the valley.

MountainCarContinuous-v0

There is also a continuous variant of the mountain car. This version does not simply have the
motor on or off. For the continuous car the action space is a single floating point number that
specifies how much forward or backward force is being applied.

query_environment("MountainCarContinuous-v0")

Action Space: Box(-1.0, 1.0, (1,), float32)

Observation Space: Box(-1.2000000476837158, 0.6000000238418579, (2,), float32

Max Episode Steps: 999

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: 90.0

Note: ignore the warning above, it is a relativly inconsequential bug in OpenAI Gym.

CartPole-v1

The CartPole-v1 environment challenges the agent to move a cart while keeping a pole
balanced.

Observation space

The environment has an observation space of 4 continuous numbers:

Cart Position
Cart Velocity
Pole Angle
Pole Velocity At Tip

Actions

To achieve this goal, the agent can take the following actions:

Push cart to the left
Push cart to the right

query_environment("CartPole-v1")

Action Space: Discrete(2)

Observation Space: Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,),

Max Episode Steps: 500

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: 475.0

Breakout-v0

Atari games, like breakout can use an observation space that is either equal to the size of the
Atari screen (210x160) or even use the RAM memory of the Atari (128 bytes) to determine the
state of the game. Yes thats bytes, not kilobytes!

query_environment("Breakout-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (210, 160, 3), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Breakout-ram-v0

query_environment("Breakout-ram-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (128,), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Atlantis-v0

query_environment("Atlantis-v0")

Action Space: Discrete(4)

Observation Space: Box(0, 255, (210, 160, 3), uint8)

Max Episode Steps: 10000

Nondeterministic: False

Reward Range: (-inf, inf)

Reward Threshold: None

Next we define functions used to show the video by adding it to the Colab notebook.

Functions to visualize game-scenarios in Colab

import gym

from gym.wrappers import Monitor

import glob

import io

import base64

from IPython.display import HTML

from pyvirtualdisplay import Display

from IPython import display as ipythondisplay

display = Display(visible=0, size=(1400, 900))

display.start()

"""

Utility functions to enable video recording of gym environment

and displaying it.

To enable video, just do "env = wrap_env(env)""

"""

def show_video():

 mp4list = glob.glob('video/*.mp4')

 if len(mp4list) > 0:

 mp4 = mp4list[0]

 video = io.open(mp4, 'r+b').read()

 encoded = base64.b64encode(video)

 ipythondisplay.display(HTML(data='''<video alt="test" autoplay

 loop controls style="height: 400px;">

 <source src="data:video/mp4;base64,{0}" type="video/mp4" />

 </video>'''.format(encoded.decode('ascii'))))

 else:

 print("Could not find video")

def wrap_env(env):

 env = Monitor(env, './video', force=True)

 return env

Now we are ready to play the game. We use a simple random agent.

MountainCar-v0

env = wrap_env(gym.make("MountainCar-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

0:00 / 0:06

 break;

env.close()

show_video()

MountainCarContinuous-v0

env = wrap_env(gym.make("MountainCarContinuous-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

0:00 / 0:33

CartPole-v1

env = wrap_env(gym.make("CartPole-v1"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

0:00 / 0:00

Breakout-v0

env = wrap_env(gym.make("Breakout-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

0:00 / 0:11

Breakout-ram-v0

0:00 / 0:08

env = wrap_env(gym.make("Breakout-ram-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Atlantis-v0

env = wrap_env(gym.make("Atlantis-v0"))

observation = env.reset()

while True:

 env.render()

 #your agent goes here

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 break;

env.close()

show_video()

Part 3. GA Solution for RL problem - CartPole-v1

A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The
system is controlled by applying a force of +1 or -1 to the cart. The pendulum starts upright, and
the goal is to prevent it from falling over.

CartPole-v1 - Problem Description

Reward
A reward of +1 is provided for every timestep that the pole remains upright. The episode
ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4
units from the center.

This environment corresponds to the version of the cart-pole problem described by Barto,
Sutton, and Anderson:

AG Barto, RS Sutton and CW Anderson, Neuronlike Adaptive Elements That Can Solve Difficult
Learning Control Problem, IEEE Transactions on Systems, Man, and Cybernetics, 1983.

Cited in 4063 sources.
Let's try it as a self-guided learning!

Use the following CartPole-v1 resources:

description at Gym,
Python-codes at github

Import Python libraries

In these and other lectures, we will use various Python packages:

NumPy
Matplotlib
Seaborn

They are already pre-installed in Colab. Let's import them by the following code.

import gym

import time

import pickle

import random

import numpy

for plotting

import matplotlib.pyplot as plt

import seaborn as sns

! rm -r ./video

! rm ./*pickle

rm: cannot remove './video': No such file or directory

rm: cannot remove './*pickle': No such file or directory

Actors - CartPole

https://gym.openai.com/envs/CartPole-v1/
https://github.com/openai/gym/tree/master/gym/envs/classic_control/cartpole.py
https://colab.research.google.com/%E2%80%8B/matplotlib.%E2%80%8Borg
https://colab.research.google.com/%E2%80%8B/seaborn.%E2%80%8Bpydata.%E2%80%8Borg/

from IPython.display import Image

Image('./figures/MLPRegressor.png')

import gym

import time

import numpy as np

import pickle

from sklearn.neural_network import MLPRegressor

from sklearn.exceptions import ConvergenceWarning

from sklearn.utils.testing import ignore_warnings

INPUTS = 4

HIDDEN_LAYER = 4

OUTPUTS = 1

class CartPole:

 def __init__(self, randomSeed=None):

 #self.env = gym.make('CartPole-v1')

 self.env = wrap_env(gym.make('CartPole-v1'))

 self.env.seed(randomSeed)

 if randomSeed is not None:

 self.env.seed(randomSeed)

 def __len__(self):

 return INPUTS * HIDDEN_LAYER + HIDDEN_LAYER * OUTPUTS + HIDDEN_LAYER + OUT

 @ignore_warnings(category=ConvergenceWarning)

 def initMlp(self, netParams):

 """

 initializes a MultiLayer Perceptron (MLP) Regressor with the desired netwo

 and network parameters (weights and biases).

 :param netParams: a list of floats representing the network parameters (we

 :return: initialized MLP Regressor

 """

 # create the initial MLP:

 mlp = MLPRegressor(hidden_layer_sizes=(HIDDEN_LAYER,), max_iter=1)

 # This will initialize input and output layers, and nodes weights and bias

 # we are not otherwise interested in training the MLP here, hence the sett

 mlp.fit(np.random.uniform(low=-1, high=1, size=INPUTS).reshape(1, -1), np.

 # weights are represented as a list of 2 ndarrays:

 # - hidden layer weights: INPUTS x HIDDEN_LAYER

 # - output layer weights: HIDDEN_LAYER x OUTPUTS

 numWeights = INPUTS * HIDDEN_LAYER + HIDDEN_LAYER * OUTPUTS

 weights = np.array(netParams[:numWeights])

 mlp.coefs_ = [

 weights[0:INPUTS * HIDDEN_LAYER].reshape((INPUTS, HIDDEN_LAYER)),

 weights[INPUTS * HIDDEN_LAYER:].reshape((HIDDEN_LAYER, OUTPUTS))

]

 # biases are represented as a list of 2 ndarrays:

 # - hidden layer biases: HIDDEN_LAYER x 1

 # - output layer biases: OUTPUTS x 1

 biases = np.array(netParams[numWeights:])

 mlp.intercepts_ = [biases[:HIDDEN_LAYER], biases[HIDDEN_LAYER:]]

 return mlp

 def getScore(self, netParams):

 """

 calculates the score of a given solution, represented by the list of float

 by creating a corresponding MLP Regressor, initiating an episode of the Ca

 running it with the MLP controlling the actions, while using the observati

 Higher score is better.

 :param netParams: a list of floats representing the network parameters (we

 :return: the calculated score value

 """

 mlp = self.initMlp(netParams)

 self.env.reset()

 actionCounter = 0

 totalReward = 0

 observation = self.env.reset()

 action = int(mlp.predict(observation.reshape(1, -1)) > 0)

 while True:

 actionCounter += 1

 observation, reward, done, info = self.env.step(action)

 totalReward += reward

 if done:

 break

 else:

 action = int(mlp.predict(observation.reshape(1, -1)) > 0)

 #print(action)

 return totalReward

 def saveParams(self, netParams):

 """

 serializes and saves a list of network parameters using pickle

 :param netParams: a list of floats representing the network parameters (we

 """

 savedParams = []

 for param in netParams:

 savedParams.append(param)

 pickle.dump(savedParams, open("cart-pole-data.pickle", "wb"))

 def replayWithSavedParams(self):

 """

 deserializes a saved list of network parameters and uses it to replay an e

 """

 savedParams = pickle.load(open("cart-pole-data.pickle", "rb"))

 self.replay(savedParams)

 def replay(self, netParams):

 """

 renders the environment and uses the given network parameters to replay an

 :param netParams: a list of floats representing the network parameters (we

 """

 mlp = self.initMlp(netParams)

 self.env.render()

 actionCounter = 0

 totalReward = 0

 observation = self.env.reset()

 action = int(mlp.predict(observation.reshape(1, -1)) > 0)

 while True:

 actionCounter += 1

 self.env.render()

 observation, reward, done, info = self.env.step(action)

 totalReward += reward

 print(actionCounter, ": --------------------------")

 print("action = ", action)

 print("observation = ", observation)

 print("reward = ", reward)

 print("totalReward = ", totalReward)

 print("done = ", done)

 print()

 if done:

 break

 else:

 time.sleep(0.03)

 action = int(mlp.predict(observation.reshape(1, -1)) > 0)

 self.env.close()

 def replayVideo(self):

 #self.env.close()

 show_video()

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:144: Futu

 warnings.warn(message, FutureWarning)

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 42

random.seed(RANDOM_SEED)

Create the instance of the MountainCar class:

cartPole = CartPole(RANDOM_SEED)

NUM_OF_PARAMS = len(cartPole)

boundaries for layer size parameters:

weight and bias values are bound between -1 and 1:

BOUNDS_LOW, BOUNDS_HIGH = -1.0, 1.0 # boundaries for all dimensions

GA Solution

from deap import base

from deap import creator

from deap import tools

from deap import algorithms

Genetic Algorithm constants:

POPULATION_SIZE = 100

P_CROSSOVER = 0.9 # probability for crossover

P_MUTATION = 0.5 # probability for mutating an individual

MAX_GENERATIONS = 40

HALL_OF_FAME_SIZE = 3

CROWDING_FACTOR = 10.0 # crowding factor for crossover and mutation

Genetic Tools

toolbox = base.Toolbox()

define a single objective, maximizing fitness strategy:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

create the Individual class based on list:

creator.create("Individual", list, fitness=creator.FitnessMax)

helper function for creating random real numbers uniformly distributed within a

it assumes that the range is the same for every dimension

def randomFloat(low, up):

 return [random.uniform(l, u) for l, u in zip([low] * NUM_OF_PARAMS, [up] * NUM

create an operator that randomly returns a float in the desired range:

toolbox.register("attrFloat", randomFloat, BOUNDS_LOW, BOUNDS_HIGH)

create an operator that fills up an Individual instance:

toolbox.register("individualCreator",

 tools.initIterate,

 creator.Individual,

 toolbox.attrFloat)

create an operator that generates a list of individuals:

toolbox.register("populationCreator",

 tools.initRepeat,

 list,

 toolbox.individualCreator)

fitness calculation using the CrtPole class:

def score(individual):

 return cartPole.getScore(individual),

toolbox.register("evaluate", score)

genetic operators:

toolbox.register("select", tools.selTournament, tournsize=2)

toolbox.register("mate",

 tools.cxSimulatedBinaryBounded,

 low=BOUNDS_LOW,

 up=BOUNDS_HIGH,

 eta=CROWDING_FACTOR)

toolbox.register("mutate",

 tools.mutPolynomialBounded,

 low=BOUNDS_LOW,

 up=BOUNDS_HIGH,

 eta=CROWDING_FACTOR,

 indpb=1.0/NUM_OF_PARAMS)

/usr/local/lib/python3.7/dist-packages/deap/creator.py:141: RuntimeWarning: A

 RuntimeWarning)

/usr/local/lib/python3.7/dist-packages/deap/creator.py:141: RuntimeWarning: A

 RuntimeWarning)

Elitism Tools

def eaSimpleWithElitism(population, toolbox, cxpb, mutpb, ngen, stats=None,

 halloffame=None, verbose=__debug__):

 """This algorithm is similar to DEAP eaSimple() algorithm, with the modificati

 halloffame is used to implement an elitism mechanism. The individuals containe

 halloffame are directly injected into the next generation and are not subject

 genetic operators of selection, crossover and mutation.

 """

 logbook = tools.Logbook()

 logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

 # Evaluate the individuals with an invalid fitness

 invalid_ind = [ind for ind in population if not ind.fitness.valid]

 fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)

 for ind, fit in zip(invalid_ind, fitnesses):

 ind.fitness.values = fit

 if halloffame is None:

 raise ValueError("halloffame parameter must not be empty!")

 halloffame.update(population)

 hof_size = len(halloffame.items) if halloffame.items else 0

 record = stats.compile(population) if stats else {}

 logbook.record(gen=0, nevals=len(invalid_ind), **record)

 if verbose:

 print(logbook.stream)

 # Begin the generational process

 for gen in range(1, ngen + 1):

 # Select the next generation individuals

 offspring = toolbox.select(population, len(population) - hof_size)

 # Vary the pool of individuals

 offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)

 # Evaluate the individuals with an invalid fitness

 invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

 fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)

 for ind, fit in zip(invalid_ind, fitnesses):

 ind.fitness.values = fit

 # add the best back to population:

 offspring.extend(halloffame.items)

 # Update the hall of fame with the generated individuals

 halloffame.update(offspring)

 # Replace the current population by the offspring

 population[:] = offspring

 # Append the current generation statistics to the logbook

 record = stats.compile(population) if stats else {}

 logbook.record(gen=gen, nevals=len(invalid_ind), **record)

 if verbose:

 print(logbook.stream)

 return population, logbook

GA Workflow

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_NNA = end - start

print("Time Elapsed = ", time_NNA)

gen	 nevals	 max	 avg

0 	 100 	 500	 18.35

1 	 94 	 500	 20.6

2 	 93 	 500	 23.76

3 	 94 	 500	 38.88

4 	 93 	 500	 48.58

5 	 93 	 500	 50.68

6 	 92 	 500	 62.93

7 	 93 	 500	 47.7

8 	 92 	 500	 59.98

9 	 94 	 500	 75.68

10 	 95 	 500	 55.81

11 	 85 	 500	 76.89

12 	 93 	 500	 79.83

13 	 92 	 500	 73.48

14 	 85 	 500	 66.83

15 	 96 	 500	 69.02

16 	 94 	 500	 98.28

17 	 95 	 500	 91.89

18 	 93 	 500	 92.16

19 	 93 	 500	 100.52

20 	 90 	 500	 112.75

21 	 89 	 500	 112.59

22 	 92 	 500	 149.5

23 	 95 	 500	 177.98

24 	 96 	 500	 228.95

25 	 89 	 500	 239.97

26 	 91 	 500	 298.21

27 	 91 	 500	 277.71

28 	 95 	 500	 356.53

29 	 93 	 500	 426.83

30 	 94 	 500	 426.92

31 	 93 	 500	 371.19

32 	 92 	 500	 415.99

33 	 91 	 500	 447.65

34 	 90 	 500	 431.27

35 	 94 	 500	 445.97

36 	 91 	 500	 448.41

37 	 91 	 500	 449.5

38 	 88 	 500	 470.01

39 	 93 	 500	 473.17

40 	 90 	 500	 460.75

Time Elapsed = 102.10462594032288

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMax = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

minFitnessValues_GA, meanFitnessValues_GA = logbook.select("max", "avg")

print('History of maxFitnessValues_GA =',minFitnessValues_GA)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA)

save best solution for a replay:

#car.saveActions(best)

cartPole.saveParams(best)

Best solution: [0.9039409992284728, 0.06655498740733878, -0.6699136774532918

Best FitnessMax = 500.00000

History of maxFitnessValues_GA = [500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 5

History of meanFitnessValues_GA = [18.35, 20.6, 23.76, 38.88, 48.58, 50.68, 6

Replay the best solution - TEXT version

#car.replaySavedActions()

cartPole.replayWithSavedParams()

1 : --------------------------

action = 1

observation = [0.00669915 0.22729017 0.02071759 -0.2462488]

reward = 1.0

totalReward = 1.0

done = False

2 : --------------------------

action = 0

observation = [0.01124495 0.03187854 0.01579262 0.05289627]

reward = 1.0

totalReward = 2.0

done = False

3 : --------------------------

action = 1

observation = [0.01188253 0.22677053 0.01685054 -0.23476242]

reward = 1.0

totalReward = 3.0

done = False

4 : --------------------------

action = 0

observation = [0.01641794 0.03141193 0.01215529 0.06318771]

reward = 1.0

totalReward = 4.0

done = False

5 : --------------------------

action = 1

observation = [0.01704617 0.22635751 0.01341905 -0.2256355]

reward = 1.0

totalReward = 5.0

done = False

6 : --------------------------

action = 0

observation = [0.02157332 0.03104637 0.00890634 0.07124991]

reward = 1.0

totalReward = 6.0

done = False

7 : --------------------------

action = 1

observation = [0.02219425 0.22603951 0.01033134 -0.21860977]

reward = 1.0

totalReward = 7.0

done = False

8 : --------------------------

action = 0

observation = [0.02671504 0.03077141 0.00595914 0.07731411]

reward = 1.0

totalReward = 8.0

done = False

9 : --------------------------

ti 1

0:00 / 0:00

cartPole.replayVideo()

Replay the best solution - VIDEO version

#env.close()

show_video()

0:00 / 0:00

find average score of 100 episodes using the best solution found:

print("Running 100 episodes using the best solution...")

scores = []

for test in range(100):

 scores.append(cartPole.getScore(best))

 print("scores = ", scores)

 print("Avg. score = ", sum(scores) / len(scores))

Part 4.What about the solution dependence on GA
conditions?

... with various RANDOM_SEED ...

Results for various RANDOM_SEEDs

RANDOM_SEED = 42

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 42

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_42 = end - start

print("Time Elapsed = ", time_42)

gen	 nevals	 max	 avg

0 	 100 	 500	 18.35

1 	 94 	 500	 20.6

2 	 93 	 500	 23.76

3 	 94 	 500	 38.88

4 	 93 	 500	 48.58

5 	 93 	 500	 50.68

6 	 92 	 500	 62.93

7 	 93 	 500	 47.7

8 	 92 	 500	 59.98

9 	 94 	 500	 75.68

10 	 95 	 500	 55.81

11 	 85 	 500	 76.89

12 	 93 	 500	 79.83

13 	 92 	 500	 73.48

14 	 85 	 500	 66.83

15 	 96 	 500	 69.02

16 	 94 	 500	 98.28

17 	 95 	 500	 91.89

18 	 93 	 500	 92.16

19 	 93 	 500	 100.52

20 	 90 	 500	 112.75

21 	 89 	 500	 112.59

22 	 92 	 500	 149.5

23 	 95 	 500	 177.98

24 	 96 	 500	 228.95

25 	 89 	 500	 239.97

26 	 91 	 500	 298.21

27 	 91 	 500	 277.71

28 	 95 	 500	 356.53

29 	 93 	 500	 426.83

30 	 94 	 500	 426.92

31 	 93 	 500	 371.19

32 	 92 	 500	 415.99

33 	 91 	 500	 447.65

34 	 90 	 500	 431.27

35 	 94 	 500	 445.97

36 	 91 	 500	 448.41

37 	 91 	 500	 449.5

38 	 88 	 500	 470.01

39 	 93 	 500	 473.17

40 	 90 	 500	 460.75

Time Elapsed = 100.9089777469635

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMax = %1.5f" % best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_42, meanFitnessValues_GA_42 = logbook.select("max", "avg")

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_42)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_42)

Best solution: [0.9039409992284728, 0.06655498740733878, -0.6699136774532918

Best FitnessMax = 500.00000

History of maxFitnessValues_GA = [500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 5

History of meanFitnessValues_GA = [18.35, 20.6, 23.76, 38.88, 48.58, 50.68, 6

RANDOM_SEED = 666

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 666

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_666 = end - start

print("Time Elapsed = ", time_666)

gen	 nevals	 max	 avg

0 	 100 	 107	 13.16

1 	 94 	 107	 15.3

2 	 90 	 195	 21.15

3 	 92 	 195	 22.12

4 	 90 	 309	 28.75

5 	 93 	 500	 40.27

6 	 93 	 500	 51.37

7 	 92 	 500	 55.92

8 	 89 	 500	 60.71

9 	 91 	 500	 52.74

10 	 90 	 500	 46.15

11 	 89 	 500	 48.56

12 	 94 	 500	 48.64

13 	 96 	 500	 50.98

14 	 92 	 500	 72.16

15 	 91 	 500	 63.82

16 	 92 	 500	 77.75

17 	 90 	 500	 82.13

18 	 96 	 500	 101.53

19 	 93 	 500	 109.37

20 	 88 	 500	 127.58

21 	 93 	 500	 177.51

22 	 94 	 500	 218.88

23 	 94 	 500	 238.59

24 	 95 	 500	 248.42

25 	 95 	 500	 243.61

26 	 93 	 500	 254.23

27 	 90 	 500	 286.46

28 	 94 	 500	 338.73

29 	 94 	 500	 376.32

30 	 94 	 500	 411.44

31 	 89 	 500	 434.94

32 	 92 	 500	 437.33

33 	 91 	 500	 434.47

34 	 92 	 500	 440.55

35 	 92 	 500	 461.34

36 	 88 	 500	 460.73

37 	 91 	 500	 445.49

38 	 87 	 500	 451.93

39 	 95 	 500	 433.93

40 	 93 	 500	 446.73

Time Elapsed = 100.75136065483093

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMax = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_666, meanFitnessValues_GA_666 = logbook.select("max", "avg")

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_666)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_666)

Best solution: [-0.2582487265171046, 0.24179682019576307, -0.150886079529518

Best FitnessMax = 500.00000

History of minFitnessValues_GA = [107.0, 107.0, 195.0, 195.0, 309.0, 500.0, 5

History of meanFitnessValues_GA = [13.16, 15.3, 21.15, 22.12, 28.75, 40.27, 5

RANDOM_SEED = 1042

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042 = end - start

print("Time Elapsed = ", time_1042)

gen	 nevals	 max	 avg

0 	 100 	 98 	 14.05

1 	 93 	 369	 20.27

2 	 90 	 369	 24.69

3 	 95 	 500	 37.39

4 	 90 	 500	 34

5 	 94 	 500	 36.67

6 	 90 	 500	 47.13

7 	 91 	 500	 58.5

8 	 95 	 500	 85.11

9 	 92 	 500	 81.75

10 	 94 	 500	 83.59

11 	 92 	 500	 98.02

12 	 94 	 500	 120.35

13 	 89 	 500	 136.98

14 	 87 	 500	 136.72

15 	 91 	 500	 134.35

16 	 93 	 500	 128.28

17 	 95 	 500	 140.19

18 	 93 	 500	 149.64

19 	 90 	 500	 161.43

20 	 95 	 500	 204.21

21 	 93 	 500	 208.19

22 	 91 	 500	 234.49

23 	 90 	 500	 283.42

24 	 93 	 500	 336.07

25 	 92 	 500	 339.78

26 	 89 	 500	 353.78

27 	 85 	 500	 360.43

28 	 88 	 500	 376.7

29 	 95 	 500	 374.63

30 	 88 	 500	 394.9

31 	 94 	 500	 357.41

32 	 90 	 500	 370.26

33 	 92 	 500	 378.91

34 	 89 	 500	 362.35

35 	 83 	 500	 402.14

36 	 89 	 500	 372.56

37 	 93 	 500	 393.47

38 	 96 	 500	 431.22

39 	 93 	 500	 402.09

40 	 85 	 500	 411.7

Time Elapsed = 108.02887892723083

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042, meanFitnessValues_GA_1042 = logbook.select("max", "avg")

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042)

Best solution: [0.5889028101863627, -0.7057154551790351, 0.42332444618582854

Best FitnessMin = 500.00000

History of maxFitnessValues_GA = [98.0, 369.0, 369.0, 500.0, 500.0, 500.0, 50

History of meanFitnessValues_GA = [14.05, 20.27, 24.69, 37.39, 34.0, 36.67, 4

For various RANDOM_SEED we can obtain different:

solutions :) ... of course,
performance (fitness function value),
history.

The reason is the stochastic manner of parameter change during evolution.

RESUME

It takes a small change in P_CROSSOVER variable.

... with various GA parameters ... like Crossover Probability

P_CROSSOVER = 0.1

P_CROSSOVER = 0.1 # probability for crossover

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042_CR0p1 = end - start

print("Time Elapsed = ", time_1042_CR0p1)

gen	 nevals	 max	 avg

0 	 100 	 98 	 14.05

1 	 93 	 369	 20.27

2 	 90 	 369	 24.69

3 	 95 	 500	 37.39

4 	 90 	 500	 34

5 	 94 	 500	 36.67

6 	 90 	 500	 47.13

7 	 91 	 500	 58.5

8 	 95 	 500	 85.11

9 	 92 	 500	 81.75

10 	 94 	 500	 83.59

11 	 92 	 500	 98.02

12 	 94 	 500	 120.35

13 	 89 	 500	 136.98

14 	 87 	 500	 136.72

15 	 91 	 500	 134.35

16 	 93 	 500	 128.28

17 	 95 	 500	 140.19

18 	 93 	 500	 149.64

19 	 90 	 500	 161.43

20 	 95 	 500	 204.21

21 	 93 	 500	 208.19

22 	 91 	 500	 234.49

23 	 90 	 500	 283.42

24 	 93 	 500	 336.07

25 	 92 	 500	 339.78

26 	 89 	 500	 353.78

27 	 85 	 500	 360.43

28 	 88 	 500	 376.7

29 	 95 	 500	 374.63

30 	 88 	 500	 394.9

31 	 94 	 500	 357.41

32 	 90 	 500	 370.26

33 	 92 	 500	 378.91

34 	 89 	 500	 362.35

35 	 83 	 500	 402.14

36 	 89 	 500	 372.56

37 	 93 	 500	 393.47

38 	 96 	 500	 431.22

39 	 93 	 500	 402.09

40 	 85 	 500	 411.7

Time Elapsed = 106.09052872657776

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042_CR0p1, meanFitnessValues_GA_1042_CR0p1 = logbook.select("

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042_CR0p1)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042_CR0p1)

Best solution: [0.5889028101863627, -0.7057154551790351, 0.42332444618582854

Best FitnessMin = 500.00000

History of minFitnessValues_GA = [98.0, 369.0, 369.0, 500.0, 500.0, 500.0, 50

History of meanFitnessValues_GA = [14.05, 20.27, 24.69, 37.39, 34.0, 36.67, 4

P_CROSSOVER = 0.2

P_CROSSOVER = 0.2 # probability for crossover

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042_CR0p2 = end - start

print("Time Elapsed = ", time_1042_CR0p2)

gen	 nevals	 max	 avg

0 	 100 	 61 	 12.76

1 	 84 	 139	 18.63

2 	 87 	 139	 20.28

3 	 86 	 139	 20.38

4 	 88 	 262	 27.71

5 	 87 	 500	 36.11

6 	 89 	 500	 46.12

7 	 76 	 500	 50.12

8 	 83 	 500	 69.22

9 	 83 	 500	 102.08

10 	 90 	 500	 112.98

11 	 90 	 500	 135.09

12 	 92 	 500	 151.42

13 	 79 	 500	 196.46

14 	 89 	 500	 206.88

15 	 85 	 500	 254.88

16 	 87 	 500	 307.1

17 	 92 	 500	 343.59

18 	 87 	 500	 368.36

19 	 89 	 500	 361.83

20 	 90 	 500	 386.21

21 	 84 	 500	 401.56

22 	 87 	 500	 450.47

23 	 88 	 500	 428.24

24 	 89 	 500	 446.1

25 	 86 	 500	 427.84

26 	 90 	 500	 465.95

27 	 87 	 500	 464.36

28 	 89 	 500	 468.08

29 	 83 	 500	 461.77

30 	 88 	 500	 457.34

31 	 83 	 500	 487.66

32 	 83 	 500	 485.6

33 	 83 	 500	 457.34

34 	 80 	 500	 478.28

35 	 88 	 500	 470.93

36 	 87 	 500	 464.49

37 	 89 	 500	 479.88

38 	 87 	 500	 462.48

39 	 90 	 500	 492.46

40 	 85 	 500	 472.49

Time Elapsed = 137.8567316532135

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042_CR0p2, meanFitnessValues_GA_1042_CR0p2 = logbook.select("

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042_CR0p2)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042_CR0p2)

Best solution: [0.8956039608596099, 0.013569898457665541, 0.8330109873780233

Best FitnessMin = 500.00000

History of maxFitnessValues_GA = [61.0, 139.0, 139.0, 139.0, 262.0, 500.0, 50

History of meanFitnessValues_GA = [12.76, 18.63, 20.28, 20.38, 27.71, 36.11,

P_CROSSOVER = 0.4

P_CROSSOVER = 0.4 # probability for crossover

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042_CR0p4 = end - start

print("Time Elapsed = ", time_1042_CR0p4)

gen	 nevals	 max	 avg

0 	 100 	 98 	 14.05

1 	 57 	 98 	 15.38

2 	 76 	 413	 23.66

3 	 66 	 413	 32.9

4 	 65 	 413	 40.32

5 	 71 	 413	 54.39

6 	 65 	 413	 76.21

7 	 57 	 500	 101.52

8 	 65 	 500	 127.46

9 	 62 	 500	 165.06

10 	 74 	 500	 164.39

11 	 66 	 500	 185.03

12 	 74 	 500	 168.55

13 	 59 	 500	 244.16

14 	 63 	 500	 310.33

15 	 70 	 500	 359.5

16 	 61 	 500	 422.41

17 	 73 	 500	 444.25

18 	 63 	 500	 481.18

19 	 66 	 500	 467.12

20 	 60 	 500	 470.3

21 	 74 	 500	 484.17

22 	 69 	 500	 481.37

23 	 64 	 500	 479.4

24 	 71 	 500	 484.64

25 	 65 	 500	 470.95

26 	 64 	 500	 468.52

27 	 74 	 500	 472.32

28 	 67 	 500	 476.02

29 	 66 	 500	 477.52

30 	 61 	 500	 492.61

31 	 72 	 500	 469.78

32 	 59 	 500	 469.91

33 	 68 	 500	 464.12

34 	 68 	 500	 478.64

35 	 64 	 500	 464.44

36 	 72 	 500	 481.83

37 	 65 	 500	 474.61

38 	 67 	 500	 470.35

39 	 69 	 500	 453.34

40 	 64 	 500	 455.02

Time Elapsed = 116.45055270195007

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042_CR0p4, meanFitnessValues_GA_1042_CR0p4 = logbook.select("

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042_CR0p4)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042_CR0p4)

Best solution: [0.6272811775924462, 0.4841432610995863, 0.6791695047075679,

Best FitnessMin = 500.00000

History of maxFitnessValues_GA = [98.0, 98.0, 413.0, 413.0, 413.0, 413.0, 413

History of meanFitnessValues_GA = [14.05, 15.38, 23.66, 32.9, 40.32, 54.39, 7

P_CROSSOVER = 0.8

P_CROSSOVER = 0.8 # probability for crossover

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042_CR0p8 = end - start

print("Time Elapsed = ", time_1042_CR0p8)

gen	 nevals	 max	 avg

0 	 100 	 98 	 14.05

1 	 91 	 228	 17.72

2 	 86 	 228	 24.53

3 	 85 	 228	 31.98

4 	 84 	 228	 30.83

5 	 90 	 310	 34.15

6 	 86 	 500	 43.3

7 	 87 	 500	 45.03

8 	 82 	 500	 44.2

9 	 88 	 500	 50.58

10 	 90 	 500	 72.82

11 	 84 	 500	 69.19

12 	 86 	 500	 84.47

13 	 88 	 500	 103.33

14 	 90 	 500	 119.05

15 	 91 	 500	 156.08

16 	 86 	 500	 210.4

17 	 90 	 500	 244.17

18 	 85 	 500	 282.28

19 	 84 	 500	 347.16

20 	 90 	 500	 369.82

21 	 86 	 500	 421.07

22 	 86 	 500	 390.78

23 	 91 	 500	 405.6

24 	 86 	 500	 412.67

25 	 81 	 500	 429.95

26 	 89 	 500	 431.46

27 	 84 	 500	 423.54

28 	 93 	 500	 437.7

29 	 88 	 500	 448.48

30 	 84 	 500	 452.05

31 	 84 	 500	 470.85

32 	 86 	 500	 456.84

33 	 84 	 500	 475.83

34 	 92 	 500	 457.2

35 	 89 	 500	 461.42

36 	 81 	 500	 459.49

37 	 92 	 500	 470.96

38 	 91 	 500	 460.97

39 	 88 	 500	 457.45

40 	 88 	 500	 464.49

Time Elapsed = 126.49325156211853

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042_CR0p8, meanFitnessValues_GA_1042_CR0p8 = logbook.select("

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042_CR0p8)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042_CR0p8)

Best solution: [-0.3228837696778911, -0.053312503649015824, 0.29497242129595

Best FitnessMin = 500.00000

History of maxFitnessValues_GA = [98.0, 228.0, 228.0, 228.0, 228.0, 310.0, 50

History of meanFitnessValues_GA = [14.05, 17.72, 24.53, 31.98, 30.83, 34.15,

P_CROSSOVER = 0.9

P_CROSSOVER = 0.9 # probability for crossover

Set the random seed

for reprodicibility of results:

RANDOM_SEED = 1042

random.seed(RANDOM_SEED)

Create the instance of the MountainCartPole class:

#car = MountainCar(RANDOM_SEED)

cartPole = CartPole(RANDOM_SEED)

create initial population (generation 0):

population = toolbox.populationCreator(n=POPULATION_SIZE)

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)

stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

define the hall-of-fame object:

hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

print('***************************')

start = time.time()

perform the Genetic Algorithm flow with hof feature added:

population, logbook = eaSimpleWithElitism(population,

 toolbox,

 cxpb=P_CROSSOVER,

 mutpb=P_MUTATION,

 ngen=MAX_GENERATIONS,

 stats=stats,

 halloffame=hof,

 verbose=True)

end = time.time()

time_1042_CR0p9 = end - start

print("Time Elapsed = ", time_1042_CR0p9)

gen	 nevals	 max	 avg

0 	 100 	 98 	 14.05

1 	 93 	 369	 20.27

2 	 90 	 369	 24.69

3 	 95 	 500	 37.39

4 	 90 	 500	 34

5 	 94 	 500	 36.67

6 	 90 	 500	 47.13

7 	 91 	 500	 58.5

8 	 95 	 500	 85.11

9 	 92 	 500	 81.75

10 	 94 	 500	 83.59

11 	 92 	 500	 98.02

12 	 94 	 500	 120.35

13 	 89 	 500	 136.98

14 	 87 	 500	 136.72

15 	 91 	 500	 134.35

16 	 93 	 500	 128.28

17 	 95 	 500	 140.19

18 	 93 	 500	 149.64

19 	 90 	 500	 161.43

20 	 95 	 500	 204.21

21 	 93 	 500	 208.19

22 	 91 	 500	 234.49

23 	 90 	 500	 283.42

24 	 93 	 500	 336.07

25 	 92 	 500	 339.78

26 	 89 	 500	 353.78

27 	 85 	 500	 360.43

28 	 88 	 500	 376.7

29 	 95 	 500	 374.63

30 	 88 	 500	 394.9

31 	 94 	 500	 357.41

32 	 90 	 500	 370.26

33 	 92 	 500	 378.91

34 	 89 	 500	 362.35

35 	 83 	 500	 402.14

36 	 89 	 500	 372.56

37 	 93 	 500	 393.47

38 	 96 	 500	 431.22

39 	 93 	 500	 402.09

40 	 85 	 500	 411.7

Time Elapsed = 107.74227976799011

print best solution found:

best = hof.items[0]

print("Best solution: ", best)

print("Best FitnessMin = %1.5f" % best.fitness.values[0])

#print("Best Fitness = ", best.fitness.values[0])

extract statistics:

maxFitnessValues_GA_1042_CR0p9, meanFitnessValues_GA_1042_CR0p9 = logbook.select("

print('History of maxFitnessValues_GA =',maxFitnessValues_GA_1042_CR0p9)

print('History of meanFitnessValues_GA =',meanFitnessValues_GA_1042_CR0p9)

Best solution: [0.5889028101863627, -0.7057154551790351, 0.42332444618582854

Best FitnessMin = 500.00000

History of maxFitnessValues_GA = [98.0, 369.0, 369.0, 500.0, 500.0, 500.0, 50

History of meanFitnessValues_GA = [14.05, 20.27, 24.69, 37.39, 34.0, 36.67, 4

Again ... for various P_CROSSOVER we can obtain different:

solutions :) ... of course,
performance (fitness function value),
history.

The reasons are

the stochastic manner of parameter change during evolution,

RESUME

BUT ... more important ... different levels of gene exchange.

(let's try it as a self-guided learning!)

It takes a small change in P_MUTATION variable.

... with various GA parameters ... like Mutation Probability

Comparison Plots

Random Seed Dependence

Fitness Function

sns.set_style("whitegrid")

Classic grid search solution

#plt.hlines(accuracy_classic_solution, 0, 5, linestyle = 'solid', label='Classic g

NN architecture

plt.plot(maxFitnessValues_GA_42, color='green', label='42 (max)')

plt.plot(meanFitnessValues_GA_42, color='green', linestyle = 'dotted', label='42 (

NN hyperparameter

plt.plot(maxFitnessValues_GA_666, color='blue', label='666 (max)')

plt.plot(meanFitnessValues_GA_666, color='blue', linestyle = 'dotted', label='666

NN architecture + hyperparameter

plt.plot(maxFitnessValues_GA_1042, color='red', label='1042 (max)')

plt.plot(meanFitnessValues_GA_1042, color='red', linestyle = 'dotted', label='1042

plt.xlabel('Generation')

plt.ylabel('Max / Average (fitness function value)')

plt.title('Random Seed Dependence of GA solutions')

plt.legend(title='Random Number Seed')

plt.show()

Time

import matplotlib.pyplot as plt

x = ['42','666','1042']

y = [time_42,time_666,time_1042]

plt.bar(x,y)

plt.ylabel('Time (sec)')

plt.title('Workflow Time vs Random Number Seed')

plt.show()

Crossover Probability Dependence

Fitness Function

sns.set_style("whitegrid")

Classic grid search solution

#plt.hlines(accuracy_classic_solution, 0, 5, linestyle = 'solid', label='Classic g

NN architecture

plt.plot(maxFitnessValues_GA_1042_CR0p1, color='green', label='0.1 (max)')

plt.plot(meanFitnessValues_GA_1042_CR0p1, color='green', linestyle = 'dotted', lab

NN hyperparameter

plt.plot(maxFitnessValues_GA_1042_CR0p2, color='blue', label='0.2 (max)')

plt.plot(meanFitnessValues_GA_1042_CR0p2, color='blue', linestyle = 'dotted', labe

NN architecture + hyperparameter

plt.plot(maxFitnessValues_GA_1042_CR0p4, color='red', label='0.4 (max)')

plt.plot(meanFitnessValues_GA_1042_CR0p4, color='red', linestyle = 'dotted', label

NN architecture + hyperparameter

plt.plot(maxFitnessValues_GA_1042_CR0p8, color='black', label='0.8 (max)')

plt.plot(meanFitnessValues_GA_1042_CR0p8, color='black', linestyle = 'dotted', lab

NN architecture + hyperparameter

plt.plot(maxFitnessValues_GA_1042_CR0p9, color='yellow', label='0.9 (max)')

plt.plot(meanFitnessValues_GA_1042_CR0p9, color='yellow', linestyle = 'dotted', la

plt.xlabel('Generation')

plt.ylabel('Max / Average (fitness function value)')

plt.title('Crossover Probability Dependence of GA solutions')

plt.legend(title='Crossover Probability', ncol=2)

plt.show()

Time

import matplotlib.pyplot as plt

x = ['0.1','0.2','0.4','0.8','0.9']

y = [time_1042_CR0p1, time_1042_CR0p2, time_1042_CR0p4, time_1042_CR0p8, time_1042

plt.bar(x,y)

plt.ylabel('Time (sec)')

plt.title('Workflow Time vs Crossover Probability')

plt.show()

Colab paid products
 -
 Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

based on (C) Google Brain, Yujin Tang, Yingtao Tian, David Ha
works

Brief Content:

EvoJAX installation (every time after start of Colab VM!),
components needed for the EA workflow,
Reinforcement Learning (RL) problem:

CartPole-v1

policy gradients with parameter-based exploration,
and others.

By the end of this lecture you will know:

again, how to use the DEAP framework's built-in algorithms to produce concise code
how to solve the Reinforcement Learning problem using a EA-based solutions for search
of solutions,
how to use policy gradients with parameter-based exploration,
how to experiment with various settings of the GA and interpret the differences in the
results.

Lecture 08 - Neuroevolution - EvoJAX

Before we start, we need to install EvoJAX from EvoJAX-github and import some libraries.

Note In our paper, we ran the experiments on NVIDIA V100 GPU(s). Your results can be different
from ours.

Pre-requisite

from IPython.display import clear_output, Image

!pip install evojax

clear_output()

import os

import numpy as np

import jax

import jax.numpy as jnp

from evojax.task.cartpole import CartPoleSwingUp

S d f ll

https://github.com/google/evojax
https://arxiv.org/abs/2202.05008

from evojax.policy.mlp import MLPPolicy

from evojax.algo import PGPE

from evojax import Trainer

from evojax.util import create_logger

Let's create a directory to save logs and models.

log_dir = './log'

logger = create_logger(name='EvoJAX', log_dir=log_dir)

logger.info('Welcome to the tutorial on Neuroevolution algorithm creation!')

logger.info('Jax backend: {}'.format(jax.local_devices()))

!nvidia-smi --query-gpu=name --format=csv,noheader

EvoJAX: 2022-02-11 02:06:40,128 [INFO] Welcome to the tutorial on Neuroevolut

absl: 2022-02-11 02:06:40,137 [INFO] Unable to initialize backend 'tpu_driver

absl: 2022-02-11 02:06:40,322 [INFO] Unable to initialize backend 'tpu': INVA

EvoJAX: 2022-02-11 02:06:40,324 [INFO] Jax backend: [GpuDevice(id=0, process_

Tesla K80

Introduction

EvoJAX has three major components: the task, the policy network and the neuroevolution
algorithm. Once these components are implemented and instantiated, we can use a trainer to
start the training process. The following code snippet provides an example of how we use
EvoJAX.

seed = 42 # Wish me luck!

We use the classic cart-pole swing up as our tasks, see

https://github.com/google/evojax/tree/main/evojax/task for more example tasks.

The test flag provides the opportunity for a user to

1. Return different signals as rewards. For example, in our MNIST example,

we use negative cross-entropy loss as the reward in training tasks, and the

classification accuracy as the reward in test tasks.

2. Perform reward shaping. It is common for RL practitioners to modify the

rewards during training so that the agent learns more efficiently. But this

modification should not be allowed in tests for fair evaluations.

hard = False

train_task = CartPoleSwingUp(harder=hard, test=False)

test_task = CartPoleSwingUp(harder=hard, test=True)

We use a feedforward network as our policy.

By default, MLPPolicy uses "tanh" as its activation function for the output.

policy = MLPPolicy(

 input_dim=train_task.obs_shape[0],

 hidden_dims=[64, 64],

 output_dim=train_task.act_shape[0],

 logger=logger,

)

Saved successfully!

S d f ll

We use PGPE as our evolution algorithm.

If you want to know more about the algorithm, please take a look at the paper:

https://people.idsia.ch/~juergen/nn2010.pdf

solver = PGPE(

 pop_size=64,

 param_size=policy.num_params,

 optimizer='adam',

 center_learning_rate=0.05,

 seed=seed,

)

Now that we have all the three components instantiated, we can create a

trainer and start the training process.

trainer = Trainer(

 policy=policy,

 solver=solver,

 train_task=train_task,

 test_task=test_task,

 max_iter=600,

 log_interval=100,

 test_interval=200,

 n_repeats=5,

 n_evaluations=128,

 seed=seed,

 log_dir=log_dir,

 logger=logger,

)

_ = trainer.run()

EvoJAX: 2022-02-11 02:06:43,518 [INFO] MLPPolicy.num_params = 4609

EvoJAX: 2022-02-11 02:06:43,687 [INFO] Start to train for 600 iterations.

EvoJAX: 2022-02-11 02:07:10,038 [INFO] Iter=100, size=64, max=712.8441, avg=6

EvoJAX: 2022-02-11 02:07:29,392 [INFO] Iter=200, size=64, max=782.5107, avg=7

EvoJAX: 2022-02-11 02:07:31,972 [INFO] [TEST] Iter=200, #tests=128, max=816.3

EvoJAX: 2022-02-11 02:07:51,419 [INFO] Iter=300, size=64, max=920.6417, avg=8

EvoJAX: 2022-02-11 02:08:10,756 [INFO] Iter=400, size=64, max=921.8397, avg=8

EvoJAX: 2022-02-11 02:08:10,907 [INFO] [TEST] Iter=400, #tests=128, max=934.5

EvoJAX: 2022-02-11 02:08:30,258 [INFO] Iter=500, size=64, max=932.7117, avg=8

EvoJAX: 2022-02-11 02:08:49,644 [INFO] [TEST] Iter=600, #tests=128, max=955.2

EvoJAX: 2022-02-11 02:08:49,652 [INFO] Training done, best_score=935.1467

Let's visualize the learned policy.

def render(task, algo, policy):

 """Render the learned policy."""

 task_reset_fn = jax.jit(test_task.reset)

 policy_reset_fn = jax.jit(policy.reset)

 step_fn = jax.jit(test_task.step)

 act_fn = jax.jit(policy.get_actions)

 params = algo.best_params[None, :]

 task_s = task_reset_fn(jax.random.PRNGKey(seed=seed)[None, :])

 policy_s = policy_reset_fn(task_s)

Saved successfully!

S d f ll

 images = [CartPoleSwingUp.render(task_s, 0)]

 done = False

 step = 0

 reward = 0

 while not done:

 act, policy_s = act_fn(task_s, params, policy_s)

 task_s, r, d = step_fn(task_s, act)

 step += 1

 reward = reward + r

 done = bool(d[0])

 if step % 3 == 0:

 images.append(CartPoleSwingUp.render(task_s, 0))

 print('reward={}'.format(reward))

 return images

imgs = render(test_task, solver, policy)

gif_file = os.path.join(log_dir, 'cartpole.gif')

imgs[0].save(

 gif_file, save_all=True, append_images=imgs[1:], duration=40, loop=0)

Image(open(os.path.join(log_dir, 'cartpole.gif'),'rb').read())

Saved successfully!

S d f ll

reward=[940.53296]

This tutorial walks you through the process of creating a new neuroevolution algoritm.

To contribute an algorithm implementation to EvoJAX, all you need to do is to implement the
NEAlgorithm interface.

The interface is defined as the following and you can see the related Python file here:

class NEAlgorithm(ABC):

 """Interface of all Neuro-evolution algorithms in EvoJAX."""

 pop_size: int

 @abstractmethod

 def ask(self) -> jnp.ndarray:

 """Ask the algorithm for a population of parameters.

 Returns

 A Jax array of shape (population_size, param_size).

 """

 raise NotImplementedError()

 @abstractmethod

 def tell(self, fitness: Union[np.ndarray, jnp.ndarray]) -> None:

 """Report the fitness of the population to the algorithm.

 Args:

 fitness - The fitness scores array.

 """

 raise NotImplementedError()

 @property

 def best_params(self) -> jnp.ndarray:

 raise NotImplementedError()

 @best_params.setter

 def best_params(self, params: Union[np.ndarray, jnp.ndarray]) -> None:

 raise NotImplementedError()

Wrap an existing implementation

NEAlgorithm adopts the well-known “ask” and “tell” interfaces, where the former requests the
algorithm to generate a population of parameters and the latter reports the parameters' fitness
scores so that the algorithm can update its internal states. We think the conventional interface
for the neuroevolution algorithms brings familiarity to the developers and thus reduces the

Saved successfully!

S d f ll

https://github.com/google/evojax/blob/main/evojax/algo/base.py

required learning effort. Moreover, the interface is also used by many existing algorithms, it is
therefore possible for the practitioners to quickly plug in existing algorithms for sanity checks.
In the first part of this tutorial, we will create an implementation that wraps CMA-ES. Please take
a look at this wonderful tutorial for more information about CMA-ES.

import cma

from evojax.algo.base import NEAlgorithm

class CMAWrapper(NEAlgorithm):

 """This is a wrapper of CMA-ES."""

 def __init__(self, param_size, pop_size, init_stdev=0.1, seed=0):

 self.pop_size = pop_size

 self.params = None

 self._best_params = None

 # We create CMA-ES in a simplest form.

 self.cma = cma.CMAEvolutionStrategy(

 x0=np.zeros(param_size),

 sigma0=init_stdev,

 inopts={

 'popsize': pop_size,

 'seed': seed if seed > 0 else 42,

 'randn': np.random.randn,

 },

)

 # We jit-compile some utility functions.

 self.jnp_array = jax.jit(jnp.array)

 self.jnp_stack = jax.jit(jnp.stack)

 def ask(self):

 self.params = self.cma.ask()

 return self.jnp_stack(self.params)

 def tell(self, fitness):

 # CMA-ES minimizes, so we negate the fitness.

 self.cma.tell(self.params, -np.array(fitness))

 self._best_params = np.array(self.cma.result.xfavorite)

 @property

 def best_params(self):

 return self.jnp_array(self._best_params)

 @best_params.setter

 def best_params(self, params):

 self._best_params = np.array(params)

Saved successfully!

S d f ll

https://github.com/CMA-ES/pycma
https://arxiv.org/abs/1604.00772

Notice that our implementation above is extremely simple, we haven't used many options or
functions provided by CMA-ES.

But let's plug in this implementation to our cart-pole earlier example and see how it works.

Alert Depending on your CPUs, running the following cell may take some time.

Instead of PGPE, we use our CMAWrapper now.

solver = CMAWrapper(

 pop_size=64,

 param_size=policy.num_params,

 seed=seed,

)

trainer = Trainer(

 policy=policy,

 solver=solver,

 train_task=train_task,

 test_task=test_task,

 max_iter=600,

 log_interval=100,

 test_interval=200,

 n_repeats=5,

 n_evaluations=128,

 seed=seed,

 log_dir=log_dir,

 logger=logger,

)

_ = trainer.run()

EvoJAX: 2022-02-11 02:08:59,845 [INFO] Start to train for 600 iterations.

(32_w,64)-aCMA-ES (mu_w=17.6,w_1=11%) in dimension 4609 (seed=42, Fri Feb 11

EvoJAX: 2022-02-11 02:14:31,792 [INFO] Iter=100, size=64, max=643.9105, avg=4

EvoJAX: 2022-02-11 02:20:00,840 [INFO] Iter=200, size=64, max=692.3575, avg=5

EvoJAX: 2022-02-11 02:20:01,894 [INFO] [TEST] Iter=200, #tests=128, max=751.8

EvoJAX: 2022-02-11 02:25:27,575 [INFO] Iter=300, size=64, max=718.8022, avg=5

EvoJAX: 2022-02-11 02:31:06,983 [INFO] Iter=400, size=64, max=747.0325, avg=5

EvoJAX: 2022-02-11 02:31:07,139 [INFO] [TEST] Iter=400, #tests=128, max=706.6

EvoJAX: 2022-02-11 02:36:32,660 [INFO] Iter=500, size=64, max=725.8452, avg=6

EvoJAX: 2022-02-11 02:41:55,297 [INFO] [TEST] Iter=600, #tests=128, max=764.3

EvoJAX: 2022-02-11 02:41:55,305 [INFO] Training done, best_score=743.6188

The simple CMA-ES wrapper worked! However, we also notice that the training time increased
significantly.

Although the task and the policy networks are accelerated by GPUs, the
cma.CMAEvolutionStrategy implementation we used in the code above relies on CPUs, and
that is why we see the drop in training speed.

Nevertheless, being able to wrapper an existing algorithm and plug that in EvoJAX's training
pipeline serves as sanity checks and helps debugging when you migrate algorithms to EvoJAX.
Next, we will show you how to implement an algorithm in JAX from scratch.

Saved successfully!

S d f ll

Simple PGPE in JAX

We are going to implement a very simple version of PGPE, users interested in the algorithm can
take a look at the paper and also check out some popular implementations (example1,
example2).

In a nutshell, PGPE samples the policy network parameters from Gaussian distributions. It
maintains the means and the standard deviations of the Gaussian distributions, and then
estimates the gradients of these parameters using the following formulae:

 ,

where is the learning rate and is a baseline from the reward .

The following code snippet provides a sample implementation of PGPE.

Note This simplified version ignores popular tricks such as converting the rewards to ranks,
using modern optimizers for parameter update, etc.

θ

μ σ

Δ = α(r − b)(−)μi θi μi Δ = α(r − b)σi
(− −θi μi)

2
σi

2

σi

α b r

from evojax.algo.base import NEAlgorithm

class SimplePGPE(NEAlgorithm):

 """A simplified version of PGPE."""

 def __init__(self, param_size, pop_size,

 lr_mu=0.05, lr_sigma=0.1, init_stdev=0.1, seed=0):

 self.pop_size = pop_size

 assert pop_size % 2 == 0, "pop_size must be a multpile of 2."

 n_directs = pop_size // 2

 self.noises = jnp.zeros(param_size)

 self.params = jnp.zeros(param_size)

 self.mu = jnp.zeros(param_size)

 self.sigma = jnp.ones(param_size) * init_stdev

 self.rand_key = jax.random.PRNGKey(seed=seed)

 def ask_fn(key, mu, sigma):

 next_key, sample_key = jax.random.split(key=key, num=2)

 perturbations = jax.random.normal(

 key=sample_key, shape=(n_directs, param_size)) * sigma[None, :]

 params = jnp.vstack([perturbations, -perturbations]) + mu[None, :]

 return params, perturbations, next_key

 self.ask_fn = jax.jit(ask_fn)

 def tell_fn(rewards, mu, sigma, perturbations):

 fitness = jnp.array(rewards).reshape([2, n_directs])

 # To map to the formulae above:

 # (r - b) = (avg_fitness - b) and (theta - mu) = perturbations

Saved successfully!

S d f ll

https://people.idsia.ch/~juergen/icann2008sehnke.pdf
https://github.com/hardmaru/estool/blob/b0954523e906d852287c6f515f34756c550ccf42/es.py#L352
https://github.com/nnaisense/pgpelib

 avg_fitness = fitness.mean(axis=0)

 b = jnp.mean(fitness)

 # Update the means.

 grad_mu = (

 (avg_fitness - b)[:, None] * perturbations

).mean(axis=0)

 new_mu = mu + lr_mu * grad_mu

 # Update the sigmas.

 # We constrain the change of sigma to prevent numerical errors.

 grad_sigma = (

 (avg_fitness - b)[:, None] *

 (perturbations ** 2 - (sigma ** 2)[None, :]) / sigma[None, :]

).mean(axis=0)

 new_sigma = jnp.clip(

 sigma + lr_sigma * grad_sigma, 0.8 * sigma, 1.2 * sigma)

 return new_mu, new_sigma

 self.tell_fn = jax.jit(tell_fn)

 def ask(self):

 self.params, self.noises, self.rand_key = self.ask_fn(

 self.rand_key, self.mu, self.sigma)

 return self.params

 def tell(self, fitness):

 self.mu, self.sigma = self.tell_fn(

 fitness, self.mu, self.sigma, self.noises)

 @property

 def best_params(self):

 return self.mu

 @best_params.setter

 def best_params(self, params):

 self.mu = jnp.array(params)

Let's test our simple PGPE.

solver = SimplePGPE(

 pop_size=64,

 param_size=policy.num_params,

 seed=seed,

)

trainer = Trainer(

 policy=policy,

 solver=solver,

 train_task=train_task,

 test_task=test_task,

 max_iter=1000,

 log_interval=100,

 test_interval=200,

 n_repeats=5,

n evaluations 128

Saved successfully!

S d f ll

 n_evaluations=128,

 seed=seed,

 log_dir=log_dir,

 logger=logger,

)

_ = trainer.run()

EvoJAX: 2022-02-11 02:41:55,585 [INFO] Start to train for 1000 iterations.

EvoJAX: 2022-02-11 02:42:16,350 [INFO] Iter=100, size=64, max=413.9725, avg=1

EvoJAX: 2022-02-11 02:42:35,561 [INFO] Iter=200, size=64, max=512.9973, avg=3

EvoJAX: 2022-02-11 02:42:36,577 [INFO] [TEST] Iter=200, #tests=128, max=556.6

EvoJAX: 2022-02-11 02:42:55,783 [INFO] Iter=300, size=64, max=523.7679, avg=4

EvoJAX: 2022-02-11 02:43:14,984 [INFO] Iter=400, size=64, max=567.3138, avg=5

EvoJAX: 2022-02-11 02:43:15,137 [INFO] [TEST] Iter=400, #tests=128, max=585.5

EvoJAX: 2022-02-11 02:43:34,341 [INFO] Iter=500, size=64, max=586.1516, avg=5

EvoJAX: 2022-02-11 02:43:53,552 [INFO] Iter=600, size=64, max=567.7144, avg=5

EvoJAX: 2022-02-11 02:43:53,705 [INFO] [TEST] Iter=600, #tests=128, max=636.5

EvoJAX: 2022-02-11 02:44:13,604 [INFO] Iter=700, size=64, max=592.1466, avg=4

EvoJAX: 2022-02-11 02:44:32,814 [INFO] Iter=800, size=64, max=603.3476, avg=5

EvoJAX: 2022-02-11 02:44:32,966 [INFO] [TEST] Iter=800, #tests=128, max=665.1

EvoJAX: 2022-02-11 02:44:52,172 [INFO] Iter=900, size=64, max=632.6639, avg=5

EvoJAX: 2022-02-11 02:45:11,339 [INFO] [TEST] Iter=1000, #tests=128, max=643.

EvoJAX: 2022-02-11 02:45:11,346 [INFO] Training done, best_score=592.5771

Despite its simplicity, the training and test scores rise steadily. You can see our complete
implementation of PGPE here.

We hope this tutorial helps. Please let us (evojax-dev@google.com) know if you have any
problems or suggestions, thanks!

Saved successfully!

S d f ll

https://github.com/google/evojax/blob/main/evojax/algo/pgpe.py
mailto:evojax-dev@google.com

Colab paid products
 -
 Cancel contracts here
Saved successfully!

S d f ll

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Lecture 08 - Neuroevolution – EvoJAX – Additional Materials

Neuroevolution
https://en.wikipedia.org/wiki/Neuroevolution

EvoJAX

Paper:
https://arxiv.org/abs/2202.05008
https://arxiv.org/pdf/2202.05008.pdf

Codes + notebooks:
EvoJAX: Hardware-Accelerated Neuroevolution
https://github.com/google/evojax

Blogs:
EvoJAX: A Great Framework For Most Deep Tasks
https://rezayazdanfar.medium.com/evojax-a-great-framework-for-most-deep-tasks-10adf685c152
6 min read

Google Brain’s EvoJAX Hardware-Accelerated Toolkit Significantly Improves Neuroevolutionary
Computation
https://medium.com/syncedreview/google-brains-evojax-hardware-accelerated-toolkit-significantly-
improves-neuroevolutionary-7943f92adb
4 min read

Presentation from co-author with reviewers:
EvoJAX: Hardware-Accelerated Neuroevolution
https://www.youtube.com/watch?v=vfz0XfZ_AbM
1:22:08

EvoJAX: Hardware-Accelerated Neuroevolution
Yujin Tang

yujintang@google.com
Google Brain

Yingtao Tian
alantian@google.com

Google Brain

David Ha
hadavid@google.com

Google Brain

ABSTRACT
Evolutionary computation has been shown to be a highly effective
method for training neural networks, particularly when employed
at scale on CPU clusters. Recent work have also showcased their
effectiveness on hardware accelerators, such as GPUs, but so far
such demonstrations are tailored for very specific tasks, limiting ap-
plicability to other domains. We present EvoJAX, a scalable, general
purpose, hardware-accelerated neuroevolution toolkit. Building on
top of the JAX library, our toolkit enables neuroevolution algo-
rithms to work with neural networks running in parallel across
multiple TPU/GPUs. EvoJAX achieves very high performance by
implementing the evolution algorithm, neural network and task all
in NumPy, which is compiled just-in-time to run on accelerators.
We provide extensible examples of EvoJAX for a wide range of
tasks, including supervised learning, reinforcement learning and
generative art. Since EvoJAX can find solutions to most of these
tasks within minutes on a single accelerator, compared to hours or
days when using CPUs, our toolkit can significantly shorten the
iteration cycle of evolutionary computation experiments.
EvoJAX is available at https://github.com/google/evojax

ACM Reference Format:
Yujin Tang, Yingtao Tian, andDavidHa. 2022. EvoJAX:Hardware-Accelerated
Neuroevolution. In 2022 Genetic and Evolutionary Computation Conference
(GECCO ’22), July 9–13, 2022, Boston, USA.ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3520304.3528770

1 INTRODUCTION
Hardware accelerators have played an important role in advancing
the state-of-the-art for deep learning (DL), enabling rapid training
of neural networks and shorter research iteration cycles for their
development [12]. But much of this progress is restricted to systems
that rely on gradient descent, a highly effective optimizationmethod
when we provide it with a well-defined objective function. But
in areas such as artificial life, complex systems, computational
biology, and even classical physics [18], much of the interesting
behaviors we observe take place near the chaotic states, where
a system is constantly transitioning between order and disorder.
It can be argued that intelligent life and even civilization are all
complex systems operating at the edge of chaos [3, 16]. If we wish
to study these systems, we need efficient methods to simulate and
find solutions in complex systems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22, July 9–13, 2022, Boston, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528770

ConvNet Prediction: “5”(A) (B)

(C) (D)

(E) (F)

Encoder

“012+345”

Decoder

“=357”

Figure 1: EvoJAX Examples. (A) MNIST classification. (B)
Seq2Seq learning. (C) Robotic control. (D) Cart-pole swing
up. (E) Left: WaterWorld wherein the agent (yellow) tries
to get food (green) while avoiding poison (red). Right: A
version of WaterWorld with multiple agents. (F) Abstract
paintingwith only triangles. Left: Painting a concrete image.
Right: Painting the concept “Walt Disney World”.

Neural networks are a promising approach for modeling complex
systems [9, 19], and neuroevolution has made great progress in
developing methods for evolving neural networks to solve a wide
range of problems. Evolution-based methods have been shown to
find state-of-the-art solutions for reinforcement learning (RL) [8,
13, 22, 25, 29]. A policy with non-differentiable operations can solve
many more tasks than one that is fully differentiable [20, 27, 28, 33].
More importantly, the removal of the requirement of a differentiable
policy also liberates the researchers’ mind, enabling higher levels
of creativity for looking at problems and directions differently from
the mainstream. In a sense, enabling researchers to use neural
networks beyond gradient-based methods also enables the broader
machine learning (ML) research community to explore in a way
that is also less “grad student descent” [7]-based.

However, the progress of hardware-accelerated computational
methods for evolution has not kept pace with ML, or even RL.
Much of computational evolution is still conducted using CPU
clusters, largely ignoring the recent breakthroughs in hardware
accelerators such as GPUs/TPUs. Recent work started to demon-
strate effectiveness of GPUs for neuroevolution [25], but so far
such demonstrations are tailored for specific tasks [24], limiting
their applicability to other domains. To enable greater access to
hardware accelerators for neuroevolution researchers, we devel-
oped EvoJAX, a scalable, general purpose, neuroevolution toolkit.
Building on the JAX library [1], our toolkit enables neuroevolution
algorithms to work with neural networks running in parallel across
multiple TPU/GPUs. EvoJAX achieves very high performance by
implementing the evolution algorithm, neural network and task all
in NumPy, which is compiled just-in-time to run on accelerators.

ar
X

iv
:2

20
2.

05
00

8v
2

 [
cs

.N
E

]
 5

 A
pr

 2
02

2

https://github.com/google/evojax
https://doi.org/10.1145/3520304.3528770
https://doi.org/10.1145/3520304.3528770

GECCO ’22, July 9–13, 2022, Boston, USA Yujin Tang, Yingtao Tian and David Ha

JAX

Neuroevolution
Algorithm

Evaluation Process #1

Policy Task

Apply actions

Feedback observations & fitness

…

Conventional Method

EvoJAX

Neuroevolution
Algorithm

Global
Policy

Vectorized
Task

Hardware Accelerators

Parameter
dissemination

Parameter
evaluation

Evaluation Process #N

Policy Task

Apply actions

Feedback observations & fitness

Parameter
dissemination

Figure 2: Architectural Overview of EvoJAX.

In this paper, we describe the design of EvoJAX and show how
one can use and extend EvoJAX for neuroevolution research. We
showcase several extensible examples of EvoJAX for a wide range
of tasks, including supervised learning (image classification, seq-to-
seq), RL (cart-pole swing-up [6], Brax locomotion [5], multi-agent
water world), and generative art (image approximation with shapes,
CLIP-guided abstract art [30]). We show that EvoJAX can find solu-
tions tomost of these taskswithinminutes onGPU/TPUs, compared
to hours or days when using CPUs. We believe our toolkit can sig-
nificantly shorten the experimental iteration cycle for researchers
working with evolutionary computation. We have also created sev-
eral tutorials and notebooks as part of this open-source project to
make adapting EvoJAX for novel use cases straightforward.

2 SYSTEM DESIGN
EvoJAX aims to improve the neuroevolution training efficiency by
implementing the entire pipeline in modern ML frameworks that
support hardware acceleration. We choose JAX[1] in our current
implementation due to its wide variety of hardware support and
its matured features of auto-vectorization, device-parallelism, just-
in-time compilation, etc. As we will see in Section 4, as long as
the component interfaces are properly implemented, EvoJAX also
allows user extensions with other frameworks.

Figure 2 gives an overview of howEvoJAXworks. There are three
major components – the neuroevolution algorithm, the policy and
the task. Although these components are common in conventional
neuroevolution implementations, we highlight the key differences
that make EvoJAX much more efficient:

Modern ML Optimizers Researchers and practitioners in the
field of DL have been focusing on inventing optimization algo-
rithms [21] and techniques [15, 32, 34] that are both fast and effec-
tive. Although these techniques were tailored for gradient-based
optimizations, they can be directly applied to gradient estimation-
based evolutionary algorithms [17, 23] too. By leveraging JAX-based
libraries [1, 10, 11], EvoJAX not only achieves significant speed-up
but also provides the users with the tools and the interfaces to
develop their own implementations in a mature framework.

Global Policy In conventional neuroevolution implementa-
tions, it is a common practice to spawn multiple processes for
parameters evaluation. To achieve hardware acceleration, the im-
plementation adopts one of the DL frameworks and then each
of the evaluation processes maintains a separate computational
graph for the same policy. Unfortunately, most DL frameworks

are not designed for multi-process training scenarios and often
cause difficulties. Moreover, when these processes are run on the
same accelerator, maintaining identical copies of the computational
graph is a waste of resource. Conforming to the “Single-Program,
Multiple-Data” (SPMD) model [4], EvoJAX solves this by building
a global policy and treat both the task observations and the policy
parameters as data for the computational graph. This global policy
design is easy to implement as it is consistent with DL frameworks,
and in the experiments we observe high data-throughput.

Vectorized Tasks Same as the policies, conventional methods
also create copies of the tasks in the spawned processes for indepen-
dent parameters evaluations. To be compliant with EvoJAX’s global
policy design, we propose to group these tasks in a vectorized form.
In terms of implementation, this can be achieved by either creating
the task in auto-vectorizaton supported frameworks or by creating
a task observations collector on top of all the evaluation processes.
EvoJAX adopts the first method.

Device Parallelism Thanks to the device-parallelism support
in JAX, EvoJAX is capable of scaling its training procedure almost
linearly to the available hardware accelerators. Utilizing EvoJAX’s
training pipeline, this device parallelism is automatically managed
and is transparent to the users. As we will see in Section 3, together
with the previously mentioned features, EvoJAX significantly short-
ens the training time for novel and non-trivial tasks.

EvoJAX defines simple yet functionally complete interfaces for
the three components, any implementations that are compliant
with the interfaces can be seamlessly integrated (see Section 4).

Finally, in addition to the mentioned major components, Evo-
JAX also comes with a trainer and a simulation manager that help
orchestrate and manage the training process. They contain detailed
implementations of task roll-out seeds generation, efficient training
loops, time profiling and logistics operations such as logging, test-
ing and periodic model saving. Convenient as they are, we point
out that EvoJAX is a flexible toolkit, where it is possible to use any
component independently (e.g., using a custom training loop).

3 EVOJAX EXAMPLES
We provide a total of six examples (see Figure 1) to showcase the
capacity, efficiency and the usage of EvoJAX online in the format
of Python scripts and notebooks. The examples are designed to
feature different aspects of EvoJAX and are in three categories:
Supervised Learning Tasks, Control Tasks and Novel Tasks. As
the experimental setups, “Robotic Control” was trained with TPUs,
“Concrete and Abstract Painting” was trained with 8 NVIDIA V100
GPUs, and the rest were trained with 1 NVIDIA V100 GPU.

Supervised Learning Tasks They provide both the data and
the ground-truth labels to train the policy. In EvoJAX, supervised
learning tasks are modelled as single-step tasks, the examples in
this category are thus isolated from other factors to prove the
correctness and efficiency of our algorithms’ implementation.

• MNIST Classification. Here, we train a convolutional neural net-
work (ConvNet) with 10K parameters with EvoJAX. Although
MNIST is a solved problem in DL, it is non-trivial for neuroevolu-
tion in terms of achieving high test accuracy within a short time
(e.g., in minutes). We show that EvoJAX can train the ConvNet
to reach > 98% test accuracy within 5 minutes.

https://github.com/google/evojax/blob/main/examples/train_mnist.py

EvoJAX: Hardware-Accelerated Neuroevolution GECCO ’22, July 9–13, 2022, Boston, USA

• Seq2Seq Learning. It has recently been shown that genetic al-
gorithms (GA) can train large models [20]. Here, we show that
EvoJAX is also capable of training a large network with hundreds
of thousands of parameters. We adopt a seq-to-seq task where the
policy is required to output a sequence after observing a query
sequence. Concretely, the query is a sequence that represents the
addition of two randomly generated integers (e.g., “012+345=”,
we pad the numbers with leading 0’s so that they have equal
lengths) and the result is a sequence representing the answer. Us-
ing an LSTM-based seq2seq [26] model, EvoJAX achieves > 99%
test accuracy within tens of minutes.

While one would obviously use gradient-descent for such tasks
in practice, the point is to show that neuroevolution can also solve
them to some degree of accuracy within a short amount of time,
which will be useful when these models are adapted within a more
complicated task where gradient-based approaches may not work.

Control Tasks The purpose of including control tasks are two-
fold: 1) Unlike supervised learning tasks, control tasks in EvoJAX
have undetermined number of steps, we thus use these examples
to demonstrate the efficiency of our task roll-out loops. 2) We wish
to show the speed-up benefit of implementing tasks in JAX and
illustrate how to implement one from scratch.

• Robotic Control. Brax [5] is a differentiable physics engine im-
plemented in JAX that simulates environments made up of rigid
bodies, joints, and actuators. We show that it is easy to wrap Brax
tasks in EvoJAX, and it takes EvoJAX tens of minutes to solve a
robotic locomotion task on Colab TPUs.

• Cart-Pole Swing Up. Through this classic control task, we illustrate
how a task is implemented from scratch in JAX and integrated
into EvoJAX’s training pipeline. In our implementation, a user
can command the initial states to be randomly sampled from a
narrow (easy version) or a wide (hard version) range of possible
settings, with the latter being much harder to solve. EvoJAX
solves both versions within minutes.

Novel Tasks In this last category, we go beyond simple illustra-
tions and show examples of novel tasks that are more practical and
attractive to researchers in the genetic and evolutionary computa-
tion area, with the goal of helping them try out ideas in EvoJAX.

• WaterWorld. In this task [14], an agent tries to get as much food
as possible while avoiding poisons. EvoJAX is able to train the
agent in tens of minutes. Furthermore, we demonstrate that multi-
agents training in EvoJAX is possible. Here, we spawn the entire
population in the same task roll-out and directly measure each
agent’s performance in a multi-agent world. This training scheme
automatically generates task complexity beyond human design,
and is beneficial for learning policies that can deal with interac-
tions between agents and environmental uncertainties.

• Concrete and Abstract Painting. We reproduce the results from a
computational creativity work [30]. The original work, whose
implementation requires multiple CPUs and GPUs, could be accel-
erated on a single GPU efficiently using EvoJAX, which was not
possible before. Moreover, with multiple GPUs/TPUs, EvoJAX
can further speed up the mentioned work almost linearly. We also
show that the modular design of EvoJAX allows its components
be used independently – in this case it is possible to use only the

Table 1: Time Comparisons. We report the training time for
both methods to achieve widely accepted test scores.

Baseline EvoJAX
MNIST 36 min 3 min
Cart-Pole Swing Up (Hard Version) 37 min 2 min
Locomotion (Ant)1 201 min 9 min

neuroevolution algorithms from EvoJAX while leveraging one’s
own training loops and environment implantation.
We summarize EvoJAX’s benefit via these examples. First of all,

EvoJAX brings significant training speed up. In Table 1 we show the
time costs of training some popular tasks with both a conventional
setup and EvoJAX.1 On modest hardware accelerators, EvoJAX
trains 10 ∼ 20 times faster which leads to quicker idea iterations.
Secondly, the capability of training multi-agents in a complex set-
ting that is beyond human design supplies training environmental
richness. And finally, EvoJAX puts the entire pipeline on unified
hardware setups and that allows the practitioners to simplify com-
plex hardware arrangements. As an example, for the substantial
load of computation in our Abstract Painting example, the baseline
needs to use both GPUs and CPUs, while EvoJAX only uses GPUs.

4 EXTENDING EVOJAX
A goal of EvoJAX is to provide researchers with an infrastructure
that allows fast idea iterations. With EvoJAX it is possible to devise
more effective neuroevolution algorithms, to explore novel policy
architectures, and to experiment with new tasks. EvoJAX has care-
fully defined interfaces, as long as these interfaces are properly
implemented, a user extended module can be integrated into the
pipeline seamlessly.

import jax.numpy as jnp

class TaskState: obs: jnp.ndarray
class PolicyState: keys: jnp.ndarray
class NEAlgorithm:
 def ask(self) -> jnp.ndarray: pass
 def tell(self, fitness: jnp.ndarray) -> None: pass
class PolicyNetwork:
 def reset(self, states: TaskState) -> PolicyState: pass
 def get_actions(self, t_states: TaskState, params: jnp.ndarray,
 p_states: PolicyState) \
 -> Tuple[jnp.ndarray, PolicyState]: pass
class VectorizedTask:
 def reset(self, key: jnp.ndarray) -> TaskState: pass
 def step(self, state: TaskState, action: jnp.ndarray) \
 -> Tuple[TaskState, jnp.ndarray, jnp.ndarray]: pass

Figure 3: Major Component Interfaces in EvoJAX.

Devising New Algorithms Users interested in inventing new
neuroevolution algorithms should implement NEAlgorithm in Fig-
ure 3, which serves as the base class for all neuroevolution algo-
rithms in EvoJAX. Being consistent with most conventional im-
plementations, NEAlgorithm adopts the “ask” and “tell” interfaces,
where the former requests the algorithm to generate a population
of parameters and the latter reports the parameters evaluation re-
sults back to the algorithm for internal states update. Taking on the
conventional interfaces for the neuroevolution algorithms not only
brings familiarity to the developers and thus reducing the required

1We use the code from [27] as the baseline. For the Locomotion task, we use PyBullet
Ant in the baseline and Brax Ant in EvoJAX. The baseline is trained with 96 CPUs.

https://github.com/google/evojax/blob/main/examples/train_seq2seq.py
https://github.com/google/evojax/blob/main/examples/notebooks/BraxTasks.ipynb
https://github.com/google/evojax/blob/main/examples/train_cartpole.py
https://github.com/google/evojax/blob/main/examples/train_waterworld.py
https://github.com/google/evojax/blob/main/examples/train_waterworld_ma.py
https://github.com/google/evojax/blob/main/examples/train_waterworld_ma.py
https://github.com/google/evojax/blob/main/examples/notebooks/AbstractPainting01.ipynb
https://github.com/google/evojax/blob/main/examples/notebooks/AbstractPainting02.ipynb

GECCO ’22, July 9–13, 2022, Boston, USA Yujin Tang, Yingtao Tian and David Ha

learning effort, but also allows the practitioners to quickly plug in
existing algorithms for sanity checks by writing a simple wrapper.

Exploring Novel Policy Architectures PolicyNetwork in Fig-
ure 3 defines the policy interface, all policies in EvoJAX implement
the get_actions method. The method puts no restrictions on what
the policy network should be or how it should behave, giving full
freedom for neural architecture search (NAS). Because EvoJAX con-
forms to the SPMDmodel, get_actions accepts three parameters: the
vectorized task states, the population parameters and the policy’s
internal states. At the beginning of a roll-out, each individual in the
population sees identical observations, they will then diverge due
to the population’s different behaviors. Because JAX requires pure
functions, the policy’s states (e.g., random seeds, LSTM cell states,
etc) are passed to get_actions via a Flax [10] dataclass p_states, which
is initialized by PolicyNetwork.reset. The method returns the actions
and the updated policy states. At runtime, calling get_actions is
equivalent to passing a batch of data through the model.

Experimenting with More Tasks In Figure 3, VectorizedTask
forms the base for all EvoJAX tasks. Similar to OpenAI’s Gym envi-
ronments [2], the interface defines the reset and the step methods.
Following the pure-function principle of JAX, one major difference
between EvoJAX tasks and Gym environments is that EvoJAX’s
tasks do not keep internal states. Instead, these states are encap-
sulated in a TaskState instance and carried over the roll-out steps.
Similar to PolicyState, users can inherit TaskState and create one’s
own task specific state to encapsulate arbitrary information besides
the environment observations. In most tasks, the initial states are
generated via a procedure of randomness. The reset method thus
accepts key’s that act as seeds for the random process.

5 LIMITATIONS AND FUTUREWORKS
EvoJAX is based on the JAX framework, which is based on the
familiar NumPy and is thus friendly to researchers accustomed to
such tools. However, practitioners may have to take effort to under-
stand the subtleties of JAX in order to maximize its performance.
The time spent on learning the JAX framework may translate to
a delayed adoption of EvoJAX, hence much of our focus so far
has been on creating examples and tutorials that others can use
as templates to build upon. Another limitation of EvoJAX is the
compatibility with existing non-parallelizable tasks. Although it is
possible to create an observation collector on top of the evaluation
processes to mimic the behavior of VectorizedTask, the operation
involves inter-process communications that becomes a bottleneck,
preventing such tasks from the benefit of hardware-acceleration.

In the future, we plan to release more neuroevolution algorithm
implementations to EvoJAX in addition to PGPE [23, 31] in the
current release. We will add more policies and tasks to both demon-
strate a wider variety of examples in order to encourage greater
adoption of EvoJAX, with the goal of further enhancing the com-
putation tools available in evolutionary computation research.

REFERENCES
[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba. 2016. Openai gym. arXiv:1606.01540 (2016).

[3] Leon Chua, Valery Sbitnev, and Hyongsuk Kim. 2012. Neurons are poised near
the edge of chaos. International Journal of Bifurcation and Chaos 22, 04 (2012).

[4] Frederica Darema. 2001. The spmd model: Past, present and future. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. Springer.

[5] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. 2021. Brax - A Differentiable Physics Engine for Large Scale Rigid
Body Simulation. http://github.com/google/brax

[6] Daniel Freeman, David Ha, and Luke Metz. 2019. Learning to Predict Without
Looking Ahead: World Models Without Forward Prediction. In Advances in
Neural Information Processing Systems, Vol. 32. Curran Associates, Inc.

[7] Oguzhan Gencoglu, Mark van Gils, Esin Guldogan, Chamin Morikawa, Mehmet
Süzen, Mathias Gruber, Jussi Leinonen, and Heikki Huttunen. 2019. HARK Side
of Deep Learning–From Grad Student Descent to Automated Machine Learning.
arXiv:1904.07633 (2019).

[8] David Ha. 2020. Slime Volleyball Gym Environment.
[9] David Ha and Yujin Tang. 2021. Collective Intelligence for Deep Learning: A

Survey of Recent Developments. arXiv:2111.14377 (2021).
[10] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Ronde-

pierre, Andreas Steiner, and Marc van Zee. 2020. Flax: A neural network library
and ecosystem for JAX. http://github.com/google/flax

[11] Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca, Eren Sezener, and Tom
Hennigan. 2020. Optax: composable gradient transformation and optimisation, in
JAX! http://github.com/deepmind/optax

[12] Sara Hooker. 2021. The hardware lottery. Commun. ACM 64, 12 (2021), 58–65.
[13] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff

Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
et al. 2017. Population based training of neural networks. arXiv:1711.09846 (2017).

[14] Andrej Karpathy. 2015. REINFORCEjs. https://cs.stanford.edu/people/karpathy/
reinforcejs/waterworld.html

[15] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv:1609.04836 (2016).

[16] Roger Lewin. 1999. Complexity: Life at the edge of chaos. University of Chicago.
[17] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search

of static linear policies is competitive for reinforcement learning. In The 32nd
Conference on Neural Information Processing Systems. 1805–1814.

[18] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. 2021.
Gradients are Not All You Need. arXiv:2111.05803 (2021).

[19] Sebastian Risi. 2021. The Future of Artificial Intelligence is Self-Organizing and
Self-Assembling. https://sebastianrisi.com/self_assembling_ai.

[20] Sebastian Risi and Kenneth O Stanley. 2019. Deep neuroevolution of recurrent
and discrete world models. In Proceedings of GECCO. 456–462.

[21] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 (2016).

[22] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
2017. Evolution strategies as a scalable alternative to reinforcement learning.
arXiv:1703.03864 (2017).

[23] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters,
and Jürgen Schmidhuber. 2010. Parameter-exploring policy gradients. Neural
Networks 23, 4 (2010), 551–559.

[24] Felipe Such. 2018. Accelerating Deep Neuroevolution: Train Atari in Hours on a
Single Personal Computer. https://eng.uber.com/accelerated-neuroevolution/

[25] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv:1712.06567 (2017).

[26] I. Sutskever, O. Vinyals, and Q. Le. 2014. Sequence to sequence learning with
neural networks. In Advances in NIPS. 3104–3112.

[27] Yujin Tang and David Ha. 2021. The Sensory Neuron as a Transformer:
Permutation-Invariant Neural Networks for Reinforcement Learning. In The
35th Conference on Neural Information Processing Systems.

[28] Yujin Tang, Duong Nguyen, and David Ha. 2020. Neuroevolution of Self-
Interpretable Agents. In Genetic and Evolutionary Computation Conference.

[29] Yujin Tang, Jie Tan, and Tatsuya Harada. 2020. Learning agile locomotion via
adversarial training. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 6098–6105.

[30] Yingtao Tian and David Ha. 2021. Modern Evolution Strategies for Creativity:
Fitting Concrete Images and Abstract Concepts. arXiv:2109.08857 (2021).

[31] Nihat Engin Toklu, Paweł Liskowski, and Rupesh Kumar Srivastava. 2020. ClipUp:
A Simple and Powerful Optimizer for Distribution-Based Policy Evolution. In
International Conference on Parallel Problem Solving from Nature. 515–527.

[32] Twan Van Laarhoven. 2017. L2 regularization versus batch and weight normal-
ization. arXiv:1706.05350 (2017).

[33] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. 2019. Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex and diverse
learning environments and their solutions. arXiv:1901.01753 (2019).

[34] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. 2019. How
does learning rate decay help modern neural networks? arXiv:1908.01878 (2019).

http://github.com/google/jax
http://github.com/google/brax
http://github.com/google/flax
http://github.com/deepmind/optax
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://sebastianrisi.com/self_assembling_ai
https://eng.uber.com/accelerated-neuroevolution/

