MINISTRY EDUCATION AND SCIENCES UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
"IGOR SIKORSKY KYIV
POLYTECHNIC INSTITUTE"

Gordienko Yu.G., Kochura Yu.P.

GENETIC ALGORITHMS

Synopsis of lectures

Tutorial
for master's degree holders
according to the educational program "Software engineering of computer systems»
specialties 121 "Software engineering"
according to the educational program "Computer systems and networks»
specialty 123 "Computer engineering"
according to the educational program "Information management systems and technologies»
specialties 126 "Information systems and technologies»

Electronic educational publication

APPROVED
at the meeting of Computer Engineering department,
protocol No. 10 on 05/25/2022

2022

[eHeTUYHI a/IropPUTMM

GENETIC ALGORITHMS

Lecture 01. Introduction

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

Recommended Sources - Books

(some of them are used here!)
Books (classic):

Holland, J. H. (1992). Adaptation in natural and artificial
systems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press. <- inventor of
GA(!), the highest number of citations for GA-publication
by Google Scholar!

Mitchell, M. (1998). An introduction to genetic algorithms.
MIT press. <- classic textbook, the highest number of
citations for GA-textbook by Google Scholar!

Books (with codes at github):
Wirsansky, E. (2020). Hands-On Genetic Algorithms with
Python. Packt Publishing
Sheppard, C. (2019). Genetic Algorithms with Python (self-
Dublished)

Recommended Sources - Papers
(some of them are used here!)

Holland, J. H. (1992). Genetic algorithms. Scientific
American, 267(1), 66-73. <- inventor of GA(!) <- Just
for Fun! ;)

Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review
on genetic algorithm: past, present, and future.
Multimedia Tools and Applications, 1-36.

Garcia-Martinez, C., Rodriguez, F. J., & Lozano, M.
(2018). Genetic Algorithms, Handbook of Heuristics,
2018, p. 431-464.

Content

" Recommended Sources

" What are Genetic Algorithms (GAs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

What are genetic algorithms?

Genetic algorithms (GA) are a family of search
algorithms inspired by the principles of natutral evolution.

Imitating the natural selection and reproduction, GAs
can produce high-quality solutions for various problems:
' search,

' optimization,

' learning.

Analogy to natural evolution allows GAs to overcome
some problems that are hard for traditional
algorithms, especially for cases with:

' large number of parameters and
' complex mathematical representations.

Theory behind GAs -
Darwinian evolution

GAs implement a
simplified version of the
Darwinian natural
evolution.
The principles of the
Darwinian evolution:
 Variation
" Inheritance
" Selection

Theory behind GAs -
Darwinian evolution

Variation:

The traits (attributes) of individual specimens
belonging to a population may vary.

As a result, the specimens differ from each other
to some degree,
for example, In:
' their behavior or
' their appearance.

Theory behind GAs -
Darwinian evolution

Inheritance:

Some traits are consistently passed on from
specimens to their offspring.

As a result, offspring resemble their parents
more than they resemble unrelated specimens.

Theory behind GAs -
Darwinian evolution
Selection:

Populations typically struggle for resources
within their given environment.

The specimens with traits that are better
adapted to the environment:
" will be more successful at surviving, and
" will contribute more offspring to the next
generation.

Theory behind GAs - Darwinian

evolution
Resume:
Evolution maintains a population of individual
specimens that vary from each other.

Those who are better adapted to their
environment have a greater chance of
surviving, breeding, and passing their traits to
the next generation.

his way, as generations go by, species become
more adapted to their environment and to the
challenges presented to them.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

GA analogy with IT

GAs should find the optimal solution for a problem.
Darwinian evolution maintains a population of
individual specimens,

BUT(!) ... GAs maintain a population of candidate
solutions (individuals), for that given problem.
The individuals are iteratively evaluated and used to
create a new generation of individuals.

Those who are better at solving this problem have a
greater chance of being selected and passing their
gualities to the next generation of individuals.
This way ... with generations ... individuals get better
at solving the problem at hand.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAS

"When to use GAs

GA analogy with IT -
Main Components

" Genotype
' Population
' Fitness function
' Selection
' Crossover

" Mutation

GA analogy with IT -

Main Components - Genotype

' In biology: genotype Is a collection of genes that
are grouped into chromosomes. If two specimens
breed to create offspring, each chromosome of the

offspring will carry a mix of genes from both
parents.

Chromosome (107 - 1010 bp)

Function

GA analogy with IT -
Main Components - Genotype

"In IT (GAS):

' each individual is represented by ‘IT-chromosome’
that can be expressed as a binary string, where
each bit represents a single gene.

W\
01/0[11/10]10

Main Components - Population

" GAs always maintain a population of individuals ->
a collection of candidate solutions for the problem.
Individual -> chromosome, population -> collection of

chromosomes.

The population
represents the
current generation
and
evolves over time
when the current
generation is replaced
by a new one.

Main Components - Fithess function

At each iteration of the GA, the individuals are
evaluated by a fithess function (also called the
target function). This iIs the function we seek to
optimize or the problem we attempt to solve.

Individuals who achieve a better fithness score
represent better solutions and are more likely to be
chosen to reproduce and be represented Iin the
next generation.

Over time, the quality of the solutions improves, the
fithess values increase. The process can stop once
a solution i1s found with a satisfactorv fithess value.

Main Components - Selection

Selection process Is used to determine which of the
iIndividuals in the population will get to reproduce and
create the offspring that will form the next
generation.

This Is based on the fithess score of the individuals.
Those with higher score values are more likely to be
chosen and pass their genetic material to the next
generation.

Individuals with low fithess values can still be
chosen, but with lower probability. This way, their
genetic material is not completely excluded.

Main Components - Crossover

To create a pair of new individuals, two parents are
usually chosen from the current generation, and parts
of their chromosomes are interchanged (crossover
or recombination) to create two new chromosomes

representing the offspring.

i y _ '“J /\
oo u w; i - ol1/011fojoilo OEEITAN0qT0

" Thomas Hunt Morgan's
(Nobel Prize - 1933) illustration of
crossing over (1916)

IT GA- version
of crossover (recombination)

Main Components - Mutation

The aim of mutation (as an operator) Is to periodically
and randomly refresh the population, introduce
new patterns into the chromosomes, and encourage
search in uncharted areas of the solution space.

A mutation can be as a random change in a gene,
for example, flipping a bit in a binary string.

0[1/0[1[1/1/0[1[0]

s
0101110010

Content

" Recommended Sources

" What are Genetic Algorithms (GAs)?

" GA Analogy with IT

" Components of GA

" Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

Main Hypothesis behind GAs

The building-block hypothesis -> the optimal solution to
the problem is assembled of small building blocks, and as
we bring more of these building blocks together, we get
closer to this optimal solution.

Individuals in the population with the desired building
blocks are identified by their superior scores.

The repeated selection/crossover result in the better

iIndividuals conveying these building blocks to the next

generations, while possibly combining them with other
successful building blocks.

This creates genetic pressure, thus guiding the population
toward having more individuals with the building blocks that

farm tha antimal ealiitinn

Main H Eothesis - Examﬁle
0 gs.

We have a ulation of 4-digit binary str
Aim: to find the string with the largest possible sum of digits.
Start: The digit 1 appearing at any of the 4 string positions will
be a good building block.

O[1[1[1 1/1[1/0
0[11fg 1117

The algorithm progresses will identify solutions that have
these building blocks and bring them together. Each new
generation will have more individuals with 1 values in various

positions, ultimately resulting in the string 1111, which
comhinec all the de<cired hinldina hlock<

Holland's Schema Theorem

Schema is a pattern (or template) that can be
found within the chromosomes.

It represents (as a regular expression with
wildcards) a subset of chromosomes that have
a certain similarity among them.
Example: if the set of chromosomes is
represented by binary strings of length 4, the
schema 1*01 represents all those chromosomes
that have a 1 in the leftmost position, 01 in the
rightmost two positions, and eithera 1 ora 0 In

the second from left position, since the *
ranracantc a wildeard vvaliia

John Henry Holland
(February 2, 1929 — August 9, 2015)

“He is a founding father of the

complex systems approach. In

particular, he developed genetic

algorithms and learning classifier
systems”.

He was a member of the Board of
Trustees and Science Board of the
Santa Fe Institute and a fellow of th
World Economic Forum.
He received the 1961 Louis E. Levy
Medal from The Franklin Institute, and WORLD
the MacArthur Fellowship (unofficially EC@IC

known as the "Genius Grant") in 1992. FORUM

Holland's Schema Theorem

For each schema, one can assign two metrics:

Order:

The number of digits that are fixed (not wildcards!)
An Introduction to Genetic Algorithms Chapter 1

The following table provides several examples of four-digit binary schemata and their
measurements:

Schema Order Defining Length
1101 4 3
1*01 3 3
*101 3 2
*1*1 2 2
**01 2 1
b 1 0
A% O O

Each chromosome in the population corresponds to multiple schemata in the same way
that a given string matches regular expressions. The chromosome 1101, for example,

Holland's Schema Theorem

The fundamental theorem of GAS:

The frequency of schemata of low order,
short defining length, and above-
average fitness Increases exponentially In
successive generations.

In other words: the smaller, simpler
building blocks that represent the attributes
that make a solution better will become
iIncreasingly present in the population as
the GA progresses.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and
Traditional Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

Differences GAs
from Traditional Algorithms

The key characteristics of GAs distinguishing
them from traditional algorithms are:

' Maintaining a population of solutions

" Using a genetic representation of the
solutions

' Utilizing the outcome of a fitness function

' Exhibiting a probabilistic behavior

Differences GAsS

from Traditional Algorithms -
Maintaining a Population of Solutions
GA operates over a population of candidate
solutions (individuals) rather than a single candidate.
GA works with a set of individuals that form the
current generation. Each iteration of the GA creates
the next generation of set of individuals.

In contrast, most other search algorithms maintain a
single solution and iteratively modify it in search of
the best solution.

Example: The gradient descent algorithm (widely
used in ML/DL) iteratively works with the current
solution (moves it in the direction of steepest descent,
defined by the negative of the function's gradient).

Differences GAsS

from Traditional Algorithms -
Genetic Representation of Solutions

Traditional algorithms: operate directly on candidate
solutions,
GAs: operate on their representations (or coding),
often referred to as chromosomes.
Example: a chromosome Is a fixed binary string.

The genetic operations are used for chromosomes.

" Crossover Is interchanging chromosome parts
between two parents.
" Mutation is modifying parts of the chromosome.
A side effect: GAs are not aware of what the
chromosomes represent and do not interpret them.

Differences GAsS

from Traditional Algorithms -
Result of Fithess Function

Fitness function (FF) represents (estimate) the
problem we would like to solve.
Aim of GAs: to find the individuals that yield the
highest score when this FF is calculated for them.

Traditional algorithms: use the derivatives or any
other information related to FF.
GAs: only consider the value obtained by the FF.
This allows to use FFs that are hard or impossible to
mathematically differentiate.

Differences GAsS

from Traditional Algorithms -

Probabilistic Behavior

Traditional algorithms: are deterministic.
GAs: the rules are probabilistic.

Example: when selecting the individuals that will be used to
create the next generation, the probability of selecting a
given individual increases with the individual's fithess, but
there is still a random element in making that choice.
Mutation is probability-driven, usually makes changes at
random location(s) in the chromosome.
Crossover can have a probabillistic element as well.
Despite the probabllistic nature, GA is not random; instead, it
uses the random aspect to direct the search toward areas in
the search space where there is a better chance to improve
the results.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

Advantages of GAs

" Global optimization capability
" Handling problems with a complex
mathematical representation
' Handling problems that lack mathematical
representation
' Resilience to noise
" Support for parallelism and distributed
processing
' Suitability for continuous learning

Advantages of GAs -
Global Optimization Capability

Traditional algorithms

a4 global maximum

(gradient-based): local maximum
may stuck in a local maximum ~ °| >\ i
rather than finding the global one ° p
- -9 >/ 4

local minimum

because near a local maximum, -at i

global minimum

any small change will degrade | :

I I I I I

the sc 06 08 1.2
GAs: are more P kely to find the global maximum due to:

1 - the use of a population of candidate solutions,
2 - crossover and mutation that will, in many cases, result in
candidate solutions that are distant from the previous ones.

This Is true If we maintain the diversity of the population and
avoid nremature converaence

Advantages of GAs -
Complex Problems

GAs need only the output of FF for each individual
and are not concerned with other aspects of the FF
such as derivatives.

" That Is why GAs can be effective for problems with
" complex mathematical representations or
' functions that are hard or impossible to
differentiate,

' problems with a large number of parameters,

' problems with a mix of parameter types
(combination of continuous and discrete
parameters).

Advantages of GAs - Problems without
Mathematical Representation

Assume that the FF score is based on human opinion.
Example:
to find the most attractive color palette for a website.
Solution:
- to try different color combinations and ask users
to rate the attractiveness of the site;

- to apply GAs to search for the best scoring
combination while using this opinion-based score as
the fitness function outcome.

GA will do it, despite FF has NO mathematical
representation and there is NO way to calculate the
score directly from a given color combination.

Advantages of GAs -
Resilience to Noise

Some problems present noisy behavior:
' even for similar input parameter values,
the output value may be somewhat different every
time it's measured.
Examples:
' data go from sensor outputs, or
" FF score Is based on human opinion.

Noisy behavior can ruin many traditional
algorithms, but GAs are generally resilient to it, due
to the repetitive operation of reassembling and
reevaluating the individuals.

Advantages of GAs -

~_Parallelism o
GAs by their definition are ready to parallelization

and distributed processing.

" FF Is independently calculated for each individual,
which means all the individuals in the population
can be evaluated concurrently.

' Genetic operations of selection, crossover, and
mutation can each be performed concurrently on
iIndividuals and pairs of individuals in the population.

That iIs why GAs are natural candidates for

Aicetrilhiitad "nAd Alanid haecad mnlamontatinn

Advantages of GAs -
Continuous Learning

In nature, evolution never stops.
But it is dubious ... ;) ... look around.

As the environmental conditions change, the
population will adapt to them.

Similarly, GAs can operate continuously in an ever-
changing environment, and at any point in time, the
best current solution can be fetched and used.

But what about time?
For GAs to be effective, the changes in the
environment need to be slow In relation to the
generation turnaround rate of the GA-based search.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

"When to use GAs

Limitations of GAs

" The need for special definitions
" The need for hyperparameter tuning
" Computationally-intensive operations
" The risk of premature convergence

" No guaranteed solution

Limitations of GASs -

Special Definitions
" To apply GAs to a given problem, we need to create
a suitable representation for GAs and define:
" FF and chromosome structure,
' genetic operators (selection, crossover, and
mutation) that will work for this problem.
" This is challenging and time-consuming process!

' BUT ... GAs have already been applied to
countless different types of problems, and many
of these definitions have been standardized.
" In other lectures some types of real-life problems will
be presented that can be solved using GAs.

Limitations of GASs -

Hyperparameter Tuning
The behavior of GAs Is controlled by a set of
hyperparameters, such as the population size and
mutation rate, etc.

When applying GAs to the problem,
there are no exact rules (!)
for making these choices.

However, this is true also for ... nearly all
traditional search and optimization algorithms!
After doing some experimentation of your own, you

will be able to make sensible choices for these values.

Limitations of GAs -
Computationally-Intensive

Operations

Operating on (potentially large and very large)
populations and the repetitive nature of GAs can be
computationally intensive, as well as
time consuming before a good result is reached.

These can be alleviated by:
" a good choice of hyperparameters,
" Implementing parallel processing,
' and caching the intermediate results (in some
cases).

Limitations of GAs -
Risk of Premature Convergence

If the fithess of one individual is much higher than the
rest of the population, it may be duplicated enough
that it takes over the entire population.

This can lead to the GA getting prematurely stuck In
a local extremum, instead of finding the global one.

To prevent this from occurring,
It IS Important to maintain the diversity of the
population.

Limitations of GAs -
No Guaranteed Solution

" The use of GAs does not guarantee that the global
extremum for the problem at hand will be found.

" However, this Is almost true for ... any traditional
search and optimization algorithm, unless it is an
analytical solution for a particular type of problem.

" Generally, GAs, when used appropriately,
are known to provide good solutions within a
reasonable amount of time.

Content

" Recommended Sources

"What are Genetic Algorithms (GASs)?

" GA Analogy with IT

" Components of GA

' Main Hypothesis behind GAs

' Differences between GAs and Traditional
Algorithms

" Advantages of GAs

' Limitations of GAs

'When to use GAs

Use Cases of GAs

" GAs are best suited for the following types of
problems:

" with complex mathematical representation
" with no mathematical representation

" Involving a noisy environment

" Involving an environment that changes over time

Lecture 1 - DEMO A - Introduction to Genetic Algorithms

(long version) based on (C) Eyal Wirsansky work

In this lecture we introduce DEAP — a powerful and flexible evolutionary computation
framework capable of solving real-life problems using genetic algorithms (GA).

Brief Content:

¢ introduction,

e installation,

e main modules: creator and toolbox,

e components needed for the GA workflow,

e the simplest example, the OneMax problem, so called the Hello World of genetic
algorithms.

By the end of this lecture you will know:

¢ the DEAP framework and its modules,

» the concepts of creator and toolbox in the DEAP framework,

e the simplest example of GA,

* how to create a GA solution using the DEAP framework,

e how to use the DEAP framework's built-in algorithms to produce concise code

e how to solve the OneMax problem using a GA coded with the DEAP framework,

e how to experiment with various settings of the GA and interpret the differences in the
results.

~ Installation and import of libraries

In these and other lectures, we will use various Python packages:

e NumPy
e Matplotlib
e Seaborn

They are already pre-installed in Colab. Let's import them by the following code.

Import all necessary standard libraries
import random
import numpy

https://colab.research.google.com/%E2%80%8B/matplotlib.%E2%80%8Borg
https://colab.research.google.com/%E2%80%8B/seaborn.%E2%80%8Bpydata.%E2%80%8Borg/

import matplotlib.pyplot as plt

Install DEAP by pip with the following code:

Install DEAP
Ipip install deap

Collecting deap
Downloading https://files.pythonhosted.org/packages/0Qa/eb/2bd0a32e3ce757fb2
| I | 163kB 8.7MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-package
Installing collected packages: deap
Successfully installed deap-1.3.1

Import DEAP

from deap import base

from deap import creator
from deap import tools

from deap import algorithms

~ Example: OneMax problem

~ Constants

Let's declare constants that set the parameters for the problem and control the

problem constants:
ONE_MAX LENGTH = 100 # length of bit string to be optimized

GA constants:

POPULATION SIZE = 200

P CROSSOVER = 0.9 # probability for crossover

P MUTATION = 0.1 # probability for mutating an individual
MAX GENERATIONS = 50

~ Reproducibility of Results
One important aspect of the GA is the use of probability, which introduces a random element to
the behavior of the algorithm.

However, for reproducibility of results, when experimenting with the code, we may want to be
able to run the same experiment several times and get repeatable results.

To accomplish this, we set the random function seed to a constant number of some value, as
shown in the following code:

https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb26264765abbaedd6d4d3640d90219a513aeabd08ee2b/deap-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl

set the random seed:
RANDOM SEED = 42
random.seed (RANDOM SEED)

Toolbox class

The Toolbox class is used as a container for functions (or operators), and enables us to create
new operators by aliasing and customizing existing functions.

toolbox = base.Toolbox()

For example, suppose we have a function, multiply() , defined as follows:
def multiply(a, b):
return a*b

Using toolbox, we can now create a new operator, incrementByFive(),
which customizes the sumOfTwo() function as follows:
toolbox.register("MultiplyBy", multiply, b=5)

examples:

A = toolbox.MultiplyBy(10)
print('toolbox.MultiplyBy(10) =', A)
B = multiply(10,5)
print(‘'multiply(10,5) =', B)

toolbox.MultiplyBy(10) = 50

multiply(10,5) = 50
Let's create the zeroOrOne operator, which customizes the random.randomint(a, b) function.
This function normally returns a random integer N such thata <N <b.

By fixing the two arguments, a and b, to the values 0 and 1 the zeroOrOne operator will randomly
return either the value 0 or the value 1 when called later in the code.

create an operator that randomly returns 0 or 1:
toolbox.register("zeroOrOne", random.randint, 0, 1)

examples:

A = toolbox.zeroOrOne()
print('zeroOrOne =', A)
B = toolbox.zeroOrOne()
print('zeroOrOne =', B)
C = toolbox.zeroOrOne()
print('zero0OrOne =', C)
D = toolbox.zeroOrOne()
print('zero0rOne =', D)

zeroOrOne = 0

zeroOrOne = 0
zeroOrOne =1
zeroOrOne = 0

~ Fithess class

Next, we need to create the Fitness class. Since we only have one objective here—the sum of
digits—and our goal is to maximize it, we choose the FitnessMax strategy, using a weights tuple
with a single positive weight, as shown in the following code.

define a single objective, maximizing fitness strategy:
creator.create("FitnessMax", base.Fitness, weights=(1.0,))

A = base.Fitness.weights
print(A)

None

In DEAP, the Individual class is used to represent each of the population's individuals. This class
is created with the help of the creator tool. In our case, list serves as the base class, which is
used as the individual's chromosome. The class is augmented with the fitness attribute,
initialized to the FitnessMax class that we defined earlier

create the Individual class based on list:
creator.create("Individual", 1list, fitness=creator.FitnessMax)
#creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMa:

Next, register the individualCreator operator, which creates an instance of the Individual class,
filled up with random values of either 0 or 1 . This is done by customizing the previously defined
zeroOrOne operator.

Since the objects generated by the zeroOrOne operator are integers with random values of either
0 or 1, the resulting individualCreator operator will fill an Individual instance with 100 randomly
generated values of 0 or 1.

create the individual operator to fill up an Individual instance:

toolbox.register("individualCreator", # Register the individualCreator operator,
tools.initRepeat, # The initRepeat operator is customized he
creator.Individual, # The container type (Individual) in which
toolbox.zeroOrOne, # The function used to generate objects (=
ONE_MAX LENGTH) # The number of objects we want to generat

Register the populationCreator operator that creates a list of individuals.

create the population operator to generate a list of individuals:

toolbox.register("populationCreator", # Register the populationCreator operator,
tools.initRepeat, # The initRepeat operator is customized he
list, # The container type (list) in which the r

toolbox.individualCreator) # The function used to generate object

Define the function oneMaxFitness that computes the number of 1s in the individual.

fitness calculation:
compute the number of 'l's in the individual
def oneMaxFitness(individual):
return sum(individual), # return a tuple,
fitness values in DEAP are represented as tuples,
and therefore a comma needs to follow when a single

Define the evaluate operator as an alias to the oneMaxfitness() function we defined earlier.

create the evaluate alias for calculating the fitness (by a DEAP convention)
toolbox.register("evaluate"”, oneMaxFitness)

v Genetic operators

The genetic operators are typically created by aliasing existing functions from the tools module
and setting the argument values as needed.

Note: The mutFlipBit function iterates over all the attributes of the individual, a list with values of
1s and Os in our case, and for each attribute will use the argument value (indpb parameter) as
the probability of flipping (applying the not operator to) the attribute value. This value is
independent of the mutation probability, which is set by the P_MUTATION constant that we
defined earlier and has not yet been used. The mutation probability serves to decide if the
mutFlipBit function is called for a given individual in the population.

genetic operators:

Tournament selection with tournament size of 3:
toolbox.register("select", tools.selTournament, tournsize=3)

Single-point crossover:
toolbox.register("mate", tools.cxOnePoint)

Flip-bit mutation:

indpb: Independent probability for each attribute to be flipped
toolbox.register("mutate", tools.mutFlipBit, indpb=1.0/0NE MAX LENGTH)

+ GA workflow

create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION SIZE)
generationCounter = 0

Long version

calculate fitness tuple for each individual in the population:

fitnessValues = list(map(toolbox.evaluate, population)) # use map() to apply the e

for individual, fitnessValue in zip(population, fitnessValues):
individual.fitness.values = fitnessValue

extract the first value out of each fitness for gathering statistics:
fitnessValues = [individual.fitness.values[0] for individual in population]

initialize statistics accumulators:
maxFitnessValues = []
meanFitnessValues = []

main evolutionary loop:

stop if max fitness value reached the known max value

OR if number of generations exceeded the preset value:

while max(fitnessValues) < ONE MAX LENGTH and generationCounter < MAX GENERATIONS:
update counter:
generationCounter = generationCounter + 1

apply the selection operator, to select the next generation's individuals:
offspring = toolbox.select(population, len(population))

clone the selected individuals:

offspring = list(map(toolbox.clone, offspring))

apply the crossover operator to pairs of offspring:
for childl, child2 in zip(offspring[::2], offspring[1l::2]):
if random.random() < P_CROSSOVER:
toolbox.mate(childl, child2)
del childl.fitness.values
del child2.fitness.values

for mutant in offspring:
if random.random() < P_MUTATION:
toolbox.mutate(mutant)
del mutant.fitness.values

calculate fitness for the individuals with no previous calculated fitness valu

freshIndividuals = [ind for ind in offspring if not ind.fitness.valid]

freshFitnessValues = list(map(toolbox.evaluate, freshIndividuals))

for individual, fitnessValue in zip(freshIndividuals, freshFitnessValues):
individual.fitness.values = fitnessValue

replace the current population with the offspring:

population(:]

offspring

collect fitnessValues into a list, update statistics and print:

fitnessValues

maxFitness =
meanFitness =

maxFitnessValues.append(maxFitness)

max (fitnessValues)

[ind.fitness.values[0] for ind in population]

sum(fitnessValues) / len(population)

meanFitnessValues.append(meanFitness)

print("- Generation {}: Max Fitness

find and print best individual:

best index =

print("Best Individual =

- Generation 1:
Best Individual

- Generation 2:
Best Individual

- Generation 3:
Best Individual

- Generation 4:
Best Individual

- Generation 5:
Best Individual

- Generation 6:
Best Individual

- Generation 7:
Best Individual

- Generation 8:
Best Individual

- Generation 9:
Best Individual = 1

- Generation 10: Max
Best Individual = 11111

- Generation 11: Max
Best Individual = 1 0

- Generation 12: Max
Best Individual = 1 0

- Generation 13: Max
Best Individual = 1

- Generation 14: Max
Best Individual = 1

Max Fitness = 62
= 0111111

Max Fitness = 64
= 0111000

Max Fitness = 67
= 1101110

Max Fitness = 71
= 1110110

Max Fitness = 69
= 0011111

Max Fitness = 73
= 1111111

Max Fitness = 73
= 1111010

Max Fitness = 74
= 1101001

Max Fitness = 74
011111

[l

1

=
(o]
=
=

1

1

=
(o]
=
=

(o}
=
=
=
=

1

=
(o}
(o]
=
=

1

74.0, Avg

= 75.0, Avg

= 75.0, Avg

= 78.0, Avg

= 80.0, Avg

= {}, Avg Fitness = {}".format(generationCou

fitnessValues.index(max(fitnessValues))
, *population[best index], "\n")

.59
10100110111

.0, Avg Fitness = 52
1101110011

.0, Avg Fitness = 55.205
111010011010060611111001
.0, Avg Fitness = 56.88

101101011110010011110

.0, Avg Fitness = 58.
0110010111

.0, Avg Fitness = 59.
1111100110111 11111011

.0, Avg Fitness = 61.
111110011011111111011

.0, Avg Fitness = 62.
1011011011

.0, Avg Fitness = 63.
1111100110111 11111011

76
11111111111

.0, Avg Fitness = 63.
1111110110

= 64.165
101000111111

-
=
~+
=]
)
w0
wn
|

111101

=
(o)
=

= 64.23
010111111111

-
=
f-|'
>
)
0
n
|

11111

=
(o]
=
=

= 64.83
©106111111111

-
=
~+
]
)
w0
wn
|

01111

=
(o]
=
=

65.225
©11111111001

Fitness =

1111

(o}
[
(o}
=
=

65.355
0106111111111

Fitness =

11101111

=

65.87
100111111111

-
=
~+
>
D
2]
wn
|

- Generation 15: Max = 75.0, Avg Fitness
Best Individual = 06 11111111111111

=

- Generation 16: Max Fitness 65.705

76.0,

>
<
Q«
-
|_|.
—~+
>
D
[72]
0
ol

Best Individual = 06011101110111011 011101100101
- Generation 17: Max Fitness = 75.0, Avg Fitness = 65.845
Best Individual = 1111111001111 0000611111110111
- Generation 18: Max Fitness = 79.0, Avg Fitness = 66.02
Best Individual = 101601110111 11010111111111111
- Generation 19: Max Fitness = 80.0, Avg Fitness = 66.44
Best Individual = 1 001601111111110160111111111111

You should get the following output:

-- Generation 1: Max Fitness = 62.0, Avg Fitness = 52.59 Best Individual=0111111110111
00111010011011110011010100010100011011110011101011011
01011711101001101011101010011111010

-- Generation 50: Max Fitness = 79.0, Avg Fitness = 68.43 Best Individual=011111110110
171111111011111111111111110110111110111101011

Plot statistics:

sns.set style("whitegrid")

plt.plot(maxFitnessValues, color='red', label='Max')
plt.plot(meanFitnessValues, color='green', label='Mean')
plt.xlabel('Generation')

plt.ylabel('Max / Average Fitness')

plt.title('Max and Average Fitness over Generations')
plt.legend()

plt.show()
Max and Average Fitness over Generations
go - —— Max
—— Mean
.15
i
[E)
=
= 70
i
=]
a
-E E5
=
= 60
55
0 10 20 30 40 50

You should get the following output:

Max [Average Fitness

a0

75

55

Max and Average Fitness over Generations

— Max
—— Mean

=
=

20 30 A0]
Generation

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

Lecture 1 - DEMO B - Introduction to Genetic Algorithms

(short version of code implementation) based on (C) Eyal
Wirsansky work

In this lecture we introduce DEAP — a powerful and flexible evolutionary computation
framework capable of solving real-life problems using genetic algorithms (GA).

Brief Content:

e introduction,

¢ installation,

e main modules: creator and toolbox,

e components needed for the GA workflow,

» the simplest example, the OneMax problem, so called the Hello World of genetic
algorithms.

By the end of this lecture you will know:

e the DEAP framework and its modules,

» the concepts of creator and toolbox in the DEAP framework,

e the simplest example of GA,

e how to create a GA solution using the DEAP framework,

e how to use the DEAP framework's built-in algorithms to produce concise code

e how to solve the OneMax problem using a GA coded with the DEAP framework,

e how to experiment with various settings of the GA and interpret the differences in the
results.

~ Installation and import of libraries

In these and other lectures, we will use various Python packages:

e NumPy
e Matplotlib
e Seaborn

They are already pre-installed in Colab. Let's import them by the following code.

Import all necessary standard libraries
import random
import numpy

https://colab.research.google.com/%E2%80%8B/matplotlib.%E2%80%8Borg
https://colab.research.google.com/%E2%80%8B/seaborn.%E2%80%8Bpydata.%E2%80%8Borg/

import matplotlib.pyplot as plt
import seaborn as sns

Install DEAP by pip with the following code:

Install DEAP
I'pip install deap

Collecting deap
Downloading https://files.pythonhosted.org/packages/0Qa/eb/2bd0a32e3ce757fb2
| I | 163kB 8.2MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-package
Installing collected packages: deap
Successfully installed deap-1.3.1

Import DEAP

from deap import base

from deap import creator
from deap import tools

from deap import algorithms

Example: OneMax problem

Constants

Let's declare constants that set the parameters for the problem and control the

problem constants:
ONE_MAX LENGTH = 100 # length of bit string to be optimized

GA constants:

POPULATION SIZE = 200

P CROSSOVER = 0.9 # probability for crossover

P MUTATION = 0.1 # probability for mutating an individual
MAX GENERATIONS = 50

Reproducibility of Results
One important aspect of the GA is the use of probability, which introduces a random element to
the behavior of the algorithm.

However, for reproducibility of results, when experimenting with the code, we may want to be
able to run the same experiment several times and get repeatable results.

https://files.pythonhosted.org/packages/0a/eb/2bd0a32e3ce757fb26264765abbaedd6d4d3640d90219a513aeabd08ee2b/deap-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl

To accomplish this, we set the random function seed to a constant number of some value, as
shown in the following code:

set the random seed:
RANDOM SEED = 42
random.seed (RANDOM SEED)

Toolbox class

The Toolbox class is used as a container for functions (or operators), and enables us to create
new operators by aliasing and customizing existing functions.

toolbox = base.Toolbox()

For example, suppose we have a function, multiply() , defined as follows:
def multiply(a, b):
return a*b

Using toolbox, we can now create a new operator, incrementByFive(),
which customizes the sumOfTwo() function as follows:
toolbox.register("MultiplyBy", multiply, b=5)

examples:

A = toolbox.MultiplyBy(10)
print('toolbox.MultiplyBy(10) =", A)
B = multiply(10,5)
print('multiply(10,5) =', B)

toolbox.MultiplyBy(10) = 50
multiply(10,5) = 50

Let's create the zeroOrOne operator, which customizes the random.randomint(a, b) function.
This function normally returns a random integer N such thata <N <b.

By fixing the two arguments, a and b, to the values 0 and 1 the zeroOrOne operator will randomly
return either the value 0 or the value 1 when called later in the code.

create an operator that randomly returns 0 or 1:
toolbox.register("zeroOrOne", random.randint, 0, 1)

examples:

A = toolbox.zeroOrOne()
print('zero0rOne ="', A)
B = toolbox.zeroOrOne()
print('zero0rOne ="', B)
C = toolbox.zero0OrOne()
print('zero0rOne ="', ()

D = toolbox.zeroOrOne()
print('zero0OrOne =', D)

zeroOrOne
zeroOrOne
zeroOrOne
zeroOrOne

(||
[l NoNo]

+ Fitness class

Next, we need to create the Fitness class. Since we only have one objective here—the sum of
digits—and our goal is to maximize it, we choose the FitnessMax strategy, using a weights tuple
with a single positive weight, as shown in the following code.

define a single objective, maximizing fitness strategy:
creator.create("FitnessMax", base.Fitness, weights=(1.0,))

A = base.Fitness.weights
print(A)

None

In DEAP, the Individual class is used to represent each of the population's individuals. This class
is created with the help of the creator tool. In our case, list serves as the base class, which is
used as the individual's chromosome. The class is augmented with the fitness attribute,
initialized to the FitnessMax class that we defined earlier

create the Individual class based on list:
creator.create("Individual", list, fitness=creator.FitnessMax)
#creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMa

Next, register the individualCreator operator, which creates an instance of the Individual class,
filled up with random values of either 0 or 1. This is done by customizing the previously defined
zeroOrOne operator.

Since the objects generated by the zeroOrOne operator are integers with random values of either
0 or 1, the resulting individualCreator operator will fill an Individual instance with 100 randomly

generated values of 0 or 1.

create the individual operator to fill up an Individual instance:

toolbox.register("individualCreator", # Register the individualCreator operator,
tools.initRepeat, # The initRepeat operator is customized he
creator.Individual, # The container type (Individual) in which
toolbox.zeroOrOne, # The function used to generate objects (=

ONE_MAX LENGTH) # The number of objects we want to generat

Register the populationCreator operator that creates a list of individuals.

create the population operator to generate a list of individuals:

toolbox.register("populationCreator", # Register the populationCreator operator,
tools.initRepeat, # The initRepeat operator is customized he
list, # The container type (list) in which the r

toolbox.individualCreator) # The function used to generate object
Define the function oneMaxFitness that computes the number of 1s in the individual.

fitness calculation:
compute the number of 'l's in the individual
def oneMaxFitness(individual):
return sum(individual), # return a tuple,
fitness values in DEAP are represented as tuples,
and therefore a comma needs to follow when a single

Define the evaluate operator as an alias to the oneMaxfitness() function we defined earlier.

create the evaluate alias for calculating the fitness (by a DEAP convention)
toolbox.register("evaluate", oneMaxFitness)

v Genetic operators

The genetic operators are typically created by aliasing existing functions from the tools module
and setting the argument values as needed.

Note: The mutFlipBit function iterates over all the attributes of the individual, a list with values of
1s and Os in our case, and for each attribute will use the argument value (indpb parameter) as
the probability of flipping (applying the not operator to) the attribute value. This value is
independent of the mutation probability, which is set by the P_MUTATION constant that we
defined earlier and has not yet been used. The mutation probability serves to decide if the
mutFlipBit function is called for a given individual in the population.

genetic operators:

Tournament selection with tournament size of 3:
toolbox.register("select", tools.selTournament, tournsize=3)

Single-point crossover:
toolbox.register("mate", tools.cxOnePoint)

Flip-bit mutation:
indpb: Independent probability for each attribute to be flipped
toolbox.register("mutate", tools.mutFlipBit, indpb=1.0/0NE_MAX LENGTH)

+ GA workflow

create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION SIZE)

+~ Short version

prepare the statistics object:

stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)

stats.register("avg", numpy.mean)

perform the Genetic Algorithm flow:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P CROSSOVER, m

stats=stats, verbose=True)

Genetic Algorithm is done - extract statistics:

maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")

gen nevals max avg

0 200 60 49,705
1 190 68 53.56
2 175 67 56.87
3 179 69 60.21
4 175 72 62.825
5 184 71 65.45
6 178 76 67.68
7 187 80 69.865
8 189 81 72.055
9 184 84 74.765
10 185 85 77.515
11 181 86 79.485
12 190 87 81.49
13 181 89 83.27
14 184 89 84.94
15 189 90 86.22
16 176 90 87.725
17 176 91 88.79
18 182 92 89.485
19 185 93 90.065
20 182 94 90.765
21 170 94 91.535
22 179 94 92.28
23 178 95 92.985
24 181 95 93.545
25 189 95 93.855
26 174 96 94.125
27 179 96 94.36
28 186 96 94.78
29 185 96 95.055

30 185 97 95.43

31 186 97 95.775

32 187 97 96.075
33 179 97 96.435
34 176 98 96.745
35 187 98 96.885
36 186 98 96.93
37 190 98 97.015
38 175 98 97.245
39 171 98 97.515
40 179 98 97.78
41 188 98 97.845
42 188 98 97.87
43 178 99 97.925
44 174 99 97.95
45 176 99 97.87
46 185 99 98.04
47 184 99 98.14
48 184 99 98.37
49 187 99 98.79
50 185 99 98.885

Plot statistics:

sns.set style("whitegrid")

plt.plot(maxFitnessValues, color='red', label='Max')
plt.plot(meanFitnessValues, color='green', label='Mean')
plt.xlabel('Generation')

plt.ylabel('Max / Average Fitness')

plt.title('Max and Average Fitness over Generations - Short Version')
plt.legend()

plt.show()

Max and Average Fitness over Generations - Short Version

oo Max

—— Mean
90

80

70

Max [Average Fitness

50

Max and Average Fitness over Generations - Short Version

100 — Max

—— Mean
40

Max [Average Fitness

0 10 20 30 40 50

You should get the following output: Generation

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

OcHOBM eBONMOUIMHUX OOUYUCTIeHDb

Evolutionary Computing Basics

Lecture 02. Overview

(based on Alan Turing, Holland, Khaled Rasheed, Ben
Phillips, Eyal Wirsansky, and others works)

... In previous lecture ...

Content

* Recommended Sources

*What are Genetic Algorithms (GAs)?

* GA Analogy with IT

* Components of GA

*Main Hypothesis behind GAs

*Differences between GAs and Traditional
Algorithms

* Advantages of GAs

*Limitations of GAs

*\When to use GAs

Content — this lecture

*Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

Recommended Sources - Books

(the same as for GAl)
Books (classic):

Holland, J. H. (1992). Adaptation in natural and artificial
systems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press. <- inventor of
GA(!), the highest number of citations for GA-publication
by Google Scholar!

Mitchell, M. (1998). An introduction to genetic algorithms.
MIT press. <- classic textbook, the highest number of
citations for GA-textbook by Google Scholar!

Books (with codes at github):
Wirsansky, E. (2020). Hands-On Genetic Algorithms with
Python. Packt Publishing
Sheppard, C. (2019). Genetic Algorithms with Python (self-
published)

Recommended Sources - Papers
(the same as for GAl)

Holland, J. H. (1992). Genetic algorithms. Scientific
American, 267(1), 66-73. <- inventor of GA(!) <- Just
for Fun! :)

Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review
on genetic algorithm: past, present, and future.
Multimedia Tools and Applications, 1-36.

Garcia-Martinez, C., Rodriguez, F. J., & Lozano, M.
(2018). Genetic Algorithms, Handbook of Heuristics,
2018, p. 431-464.

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

What is Evolutionary Computing (EC)?

EVOLUTION IT

Environment <> Problem
Individual «=—— Candidate Solution (Individual)

Fitness <—— Quality

Fithess — Quality —
chances for chance for
survival and seeding

reproduction new solutions

What is EC — Metaphor (nature-IT)

A population of individuals exists in an environment with
limited resources.

Competition for those resources causes selection of those
fitter individuals that are better adapted to the environment.

These individuals act as seeds for the new generation of
individuals through some variation operations
(for example, GA like recombination and mutation).

The new individuals have their fithess evaluated and
compete (possibly also with parents) for survival.

Natural selection causes a rise in the fithess of the

D Y

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

EC — History — Founders
1948, Turing:

“genetical or evolutionary search”

1962, Bremermann

optimization through evolution and
recombination

1964, Rechenberg

evolution strategies

1965, L. Fogel, Owens and Walsh

evolutionary programming

1975, Holland

genetic algorithms

1992, Koza

genetic programming

EC — History — Community

1985:
first international conference (ICGA)

1990:

first international conference in Europe
(PPSN)

1993:
first scientific EC journal (MIT Press)

1997:

launch of European EC Research
Network EvoNet

EC — History — NOW!

* 3 major EC conferences
+ 10 small related ones

* 3 scientific core EC journals
* 750-1000 papers published in 2003
* numerous applications

* humerous consultancy and R&D firms

EC — History — Lessons

Nature has always served as a source of inspiration for engineers
and scientists

The best problem solver known in nature is:

* the (human) brain that created “the wheel, New York, wars
and so on” (after Douglas Adams’ Hitch-Hikers Guide)

* the evolution mechanism that created the human brain
(after Darwin’s Origin of Species)

Answer 1 € neurocomputing

Answer 2 € evolutionary computing

EC — Current Needs

Developing, analyzing, applying
problem solving methods (algorithms)
is a central theme
In mathematics and computer science.
Why?
* Time for careful problem analysis decreases

* Complexity of the current problems increases

Resume:

Robust problem solving technology needed!

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

EC — Problem Types

We have
a model, inputs and outputs
of our system
and look for different entities:
- optimization,
- modeling,

- simulation.

Problem Types — Optimization

We have the model of our system and
seek inputs that give us a specified goal:

Black Box
INPUT OUTPUT
Input is converted
into output
Input? The model is known!

We look for inputs to reach the specified goal, for example:
- time table for KPI (rozklad.kpi.ua - fantastic!),
- software/hardware design specifications,
- etc.

Problem Types — Modeling

We have the corresponding input/output sets of our system
and seek model that give us a specified goal:

Black Box
INPUT OUTPUT
Input is converted
into output
The input is known! Model? The output is known!

The model should deliver the correct output for every known input,
for example:
- machine learning models,
- deep learning models.

Problem Types — Simulation

We have the model of our system and look for the outputs that
will appear under different inputs:

Black Box
INPUT OUTPUT
Input is converted
into output
The input is known! The model is known! Output?

It is used to investigate scenarios the evolving dynamic environments:
- evolutionary economics,
- geo-politics,
- military planning,
- artificial lifa

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)
* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

Again:
What is EC — Metaphor (nature-IT)

EVOLUTION IT

Environment <+—> Problem
Individual <=——= Candidate Solution (Individual)

Fitness <—— Quality

Fithness — Quality —
chances for chance for
survival and seeding

reproduction new solutions

What is Evolutionary Algorithms (EA) —
Metaphor (nature-IT)

EAs is the category of “generate and test” algorithms.
They are stochastic, population-based algorithms.

Variation (genetic?) operators (recombination and
mutation) create the necessary diversity and thereby
facilitate novelty.

Selection reduces(!) diversity
and
acts as a force pushing quality.

EA — History and Types

Different types of EAs have been associated with different
representations:

* Binary strings : Genetic Algorithms (GA)

* Real-valued vectors : Evolution Strategies (ES)

* Finite state Machines: Evolutionary Programming (EP)

*LISP trees: Genetic Programming (GP)

* These differences are largely irrelevant, best strategy
* choose representation to suit problem
* choose variation operators to suit representation

* Selection operators only use fithess
*and so
* are independent of representation.

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

EA — General Scheme ...

Parent selection
>[Parents]

Initialization
|
Recombination
Population .
Mutation
v 1 !
Termination

Survivor selection

[Offspring]

.. and ...

EA — General Scheme ...

Parent selection

Parents
Initialization
|
Recombination
Population .
Mutation

v '

Termination

Offspring

Survivor selection

... and Workflow ===eccccmaaaaa>

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

I

Selection

Il

Crossover

Il

Mutation

I

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

Choose the Individual with
the Highest Fitness Value

EA — Workflow — Terminology

Create Initial Population
|'Generation Zero’)

Candidate solutions (individuals) exist in phenotype (e
space.

They are encoded in chromosomes, which exist in
genotype space.

Encoding: phenotype->genotype (not always 1-to-1).

Calculate Fitness for each
Individual in Population

Decoding: genotype->phenotype (must be 1-to-1).

Chromosomes contain genes, which are in (usually *
fixed) positions called loci (sing. locus) and have a

value (allele). l

the Highest Fitness Value

To find the global optimum, every feasible solution
must be representable in genotype space!

EA — Workflow — Population

Create Initial Population
['Generation Zero')

Has (representations of) possible solutions. A

Individual in Population

Usually has a fixed size and is a multi-set of
genotypes.

Some sophisticated EAs also assert a spatial
structure on the population e.g., a grid.

Calculate Fitness for each
Individual in Population

Selection operators work with whole
population into account i.e., reproductive
probabilities are relative to current generation.

Diversity of a population refers to the number of l

different fitnesses / phenotypes / genotypes
present (note not the same thing).

EA — Workflow — Fitness

Represents the requirements that the
population should adapt to some criteria like
quality function or objective function.

Assigns a single real-valued fitness to each
phenotype which forms the basis for
selection.

So the more diversity (different values)
the better.

Typically fitness is assumed to be maximized,
but ... some problems can be formulated as
minimization problems.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

EA — Workflow — Selection

Assigns variable probabilities of individuals
acting as parents depending on their fitnesses.

Usually probabilistic:
higher quality solutions more likely to become
parents than lower quality, but ... not
guaranteed.
Even worst in current population usually has
non-zero probability of becoming a parent.

This stochastic nature
can aid escape from local optima!

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

EA — Workflow —

Variation Operators

The main aim is
to generate new candidate solutions.

Usually divided into types according to their
arity (number of inputs):
¢ arity = 1 -> mutation operators
¢ arity > 1 -> recombination operators
* arity = 2 -> crossover operators

The relative importance of recombination and
mutation is debated intensively now, but
most EAs use both of them.

Choice of particular variation operators is
renresentation denendant

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

Workflow - Variation Operators -
Crossover = EE S

Crossover or Recombination coculste Fitess foreach

Individual in Population

Merges information from parents into
offspring.

Choice of what information to merge is
stochastic.

Most offspring may be worse or the same as
the parents.
Hypothesis: some can be better by combining
elements of genotypes that lead to good traits.

topping

Choose the Individual with
the Highest Fitness Value

Metaphor from nature:
it has been successfully used by breeders of
plants and livestock!

Workflow - Variation Operators -

Mutation

Operates on one genotype and delivers another.

Element of randomness is essential and
differentiates it from other unary heuristic operators.

It depends on representation and dialect:

* Binary GAs — background operator responsible for
preserving and introducing diversity,

* EP for FSM’s/ continuous variables — only search
operator,

* GP - hardly used.

May guarantee connectedness of search space and
hence convergence proofs.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Selection

!

Crossover

L3
' Mutation l

5

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

Choose the Individual with
the Highest Fitness Value

EA — Workflow — Start/Stop

Start
Initialization usually done at random.

It should be even spread and mixture of possible
allele values.

It can include existing solutions, or use problem-
specific heuristics, to “seed” the population (care
should be taken!)

Stop
Termination condition checked every generation:
* some planned (known/assumed) fithess,
* some maximum allowed number of generations,
* some minimum level of diversity,

* some specified number of generations without
fitness improvement.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Stopping
— Conditions

‘fes

Choose the Individual with
the Highest Fitness Value

EA — Workflow — End

Choose
the individual
with
the highest fitness value.

Il

Create Initial Population
['Generation Zero')

I

Calculate Fitness for each
Individual in Population

I

Selection

Il

Crossover

Il

Mutation

I

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

)

Choose the Individual with
the Highest Fitness Value

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

*Selection — in details now

* Crossover

* Mutation

*Real-coded EA

EA — Workflow —
Selection Methods

* Roulette wheel selection
(fitness proportionate selection — FPS)

* Stochastic universal sampling (SUS)
* Rank-based selection

* Tournament selection

Calculate Fitness for each
Individual in Population

EEEEEEEE

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

Workflow —
Roulette Wheel Selection

Probability for selecting an individual is directly
proportionate to its fithess value.

This is comparable to using a roulette wheel in a

casino and assigning each individual a portion of

thAa wihaAal nrAanArtiAnnAal A it fitnAace vialhnia

Individual Fitness Relative portion
A 8 7%
B 12 11%
C 27 24%
D 4 3%
E 45 40%
F 17 15%
Wheel
Rotation

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

Workflow —

Stochastic Universal Sampling

Instead of a single selection point and turning
the roulette wheel N times until all needed N

individuals have been selected, we turn the

wheel only 1 time and use N selection points

thAat Aara Anr11AllhWr enAan~rAaAd ArAailinA thAa wihAaAl

Individual Fitness Relative portion
A 8 7%
B 12 11%
C 27 24%
D 4 3%
E 45 40%
F 17 15%
Wheel
Rotation

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

EEEEEEEE

Calculate Fitness for each

Individual in Population

Choose the Individual with

the Highest Fitness Value

Workflow —

Rank-based Selection s

i . L]
The fithess is used to sort the individuals: each Calculate Fitness for each

individual is given a rank for its position and
wheel-portion, and the roulette probabilities are

calculated based on these ranks.
Individual Fitness Rank Relative portion
A 8 2 9%
B 12 3 14%
C 27 5 24%
D 4 1 5%
E 45 6 29%
F 17 4 19% Calculate Fitness for each

Individual in Population
Wy L BC WD WE BF

Wheel
Rotation

Choose the Individual with
the Highest Fitness Value

Workflow —
Tournament Selection

In each round of the tournament selection caculate itness for e

Individual in Population

method, two or more individuals are randomly
picked from the population, and the one with
the highest fithess score wins and gets
selected.
The number of individuals participating at each
tournament selection round (three in this figure)
Is suitably called tournament size. The larger T
the tournament size, the higher the chances
that the best indiyiduals will be selected.

A 8
12

2? Choose the Individual with
4 F the Highest Fitness Value

45
17

m m| O O o

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

*Crossover — in details now

* Mutation

*Real-coded EA

Workflow - Variation Operators -
Crossover = EE S

Crossover or Recombination coculste Fitess foreach

Individual in Population

Merges information from parents into
offspring.

Choice of what information to merge is
stochastic.

Most offspring may be worse or the same as
the parents.
Hypothesis: some can be better by combining
elements of genotypes that lead to good traits.

topping

Choose the Individual with
the Highest Fitness Value

Metaphor from nature:
it has been successfully used by breeders of
plants and livestock!

Workflow - Variation Operators -
Crossover - Sinlge-point

The crossover point (or cut point) on the
chromosomes of both parents is selected
randomly.Genes to the right of that point are
swapped between the two parent chromosomes.
As a result, we get two offsprings, where each
of them carry some genetic information from
both parents.

010111010 |[011]11/0010

Workflow - Variation Operators -
Crossover - K-point

For example, in 2-point crossover 2 points on
the chromosomes of both parents are selected
randomly. The genes residing between these
points are swapped between the two parent
chromosomes.

A generalization of this method is the k-
point crossover, where k represents a positive

|

0101110/10 |011]1100[10

Calculate Fitness for each
Individual in Population

topping

Choose the Individual with

the Highest Fitness Value

Workflow - Variation Operators -

Crossover - Uniform

Each gene is independently determined by
randomly choosing one of the parents.

If the random distribution is 50%, each parent
has the same chance of influencing the
offspring.

NOTE: Below, integer-based chromosomes
are shown, but it is the same for binary ones.

5|7(2/3/1/6/9/8|0

6/8/3/4(2{1/0|9|7

Calculate Fitness for each
Individual in Population

topping

Choose the Individual with

the Highest Fitness Value

Workflow - Variation Operators -
Crossover — Ordered Lists e

The ordered crossover (OX1) method strives to e s
preserve the relative ordering of the parent's
genes as much as possible.

112(3/4/5/6 6|31
4/2|6/3(1|5 348 |l
1(2]3|4|5|6 6(3|1|2
4(2/6(3|1|5 34|52
Calculate Fitness for each
112 3@5 6 4 63112 Individual in Population
4/2/6[3/1]5 6| (3]4/52
1/12|3(4(5]6 4/5(6(3(1|2
4|2|6(3]1]5 6/1/3(4(5(2
11213/4/5|6 4/5(6(3(1/2 Chuusuf:the]nfiividuaiwith
' the Highest Fitness Value
4|12/6/3|1(5 6(1/3/4/5|2

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation — In details now
*Real-coded EA

Workflow - Variation Operators -

Mutation

Operates on one genotype and delivers another.

Element of randomness is essential and
differentiates it from other unary heuristic operators.

It depends on representation and dialect:

* Binary GAs — background operator responsible for
preserving and introducing diversity,

* EP for FSM’s/ continuous variables — only search
operator,

* GP - hardly used.

May guarantee connectedness of search space and
hence convergence proofs.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Selection

!

Crossover

L3
' Mutation l

5

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

Choose the Individual with
the Highest Fitness Value

Workflow — Mutation -
Fli P bit e

For a binary chromosome, Caic e Prtete o aneh

Individual in Population

1 gene is randomly
selected and its value is flipped (complemented).

1/0({1(1] 01| =) [1/0[1/0| 0|1

This can be extended to several random genes
being flipped instead of just one. it n poutaion

Choose the Individual with
the Highest Fitness Value

Workflow — Mutation -
Swap

For a binary or integer-based chromosomes,
2 genes are randomly selected
and their values are swapped.

1/2|3]|4|5(6l| mmp (1/2(6(4|5/3

This mutation operation is suitable
for the chromosomes of ordered lists,
as the new chromosome
still carries the same genes as the original one.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Selection

!

Crossover

L3
' Mutation l

5

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

Choose the Individual with
the Highest Fitness Value

Workflow — Mutation -
Inversion

For a binary or integer-based chromosomes,
a random sequence of genes is selected and

the order of the genes in that sequence is reversed.

1|2|3]4]5/ 6| mmp |1]2|6]|5/4|3

Similar to the swap mutation,
the inversion mutation operation is suitable
for the chromosomes of ordered lists.

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

5

Calculate Fitness for each
Individual in Population

Stopping
Conditions
Apply?

Choose the Individual with
the Highest Fitness Value

Workflow — Mutation -
Scramble

For a binary or integer-based chromosomes,
a random sequence of genes is selected and

and the order of the genes in that sequence
Is shuffled (or scrambled).

1

2

4

5

6

m) |1/2/4]6]3]5]

Create Initial Population
['Generation Zero')

Calculate Fitness for each
Individual in Population

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

Content

* Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)

* EA Workflow

* Selection

* Crossover

* Mutation

*Real-coded EA

Workflow - Variation Operators -
Real-coded

The selection methods will work just the same Cote s r
as they only depend on the fitness of the
iIndividuals and not their representation.

But the crossover and mutation methods will
not be suitable and so specialized ones need to
be used.

They should be applied separately for each
dimension of the array that forms the real-
coded chromosome.

topping

Choose the Individual with
the Highest Fitness Value

Workflow - Variation Operators -
Real-coded — Blend Crossover g==3

Blend crossover (BLX) - each offspring is Cote s r
randomly selected from the interval created by
its parent values by some formulae:

lparent; — a(parents — parenty), parents + a(parenty — parenty)]

BBBBBBB

The parameter a is a constant, whose value lies
between 0 and 1. With larger values of q, the

pl p2 Calculate Fitness for each
=0 - - Individual in Population
T
—4 -2 0 2 4 6 8 10
pl p2
i=10.5 = =
T
—4 -2 0 2 4 6 8 10
Choose the Individual with
the Highest Fitness Value
pl p2
=1 — = - —_—

Workflow - Variation Operators -
Real-coded — Simulated Binary ===

Simulated binary crossover (SBX) - each e s o
offspring is randomly selected from the interval
created by its parent values by formula:

, 1
of fspring; = 5[(1 + B)parent, + (1 — B)parents|
, 1
of fspring; = 5[(1 — B)parent; + (1 + B)parents]
pl p2
f=038 > *—o
0l 02 Calculate Fitness for each
T T T Individual in Population
2 4 ¥]
pl p2
=1 & ®
ol 02
2 4 6
Choose the Individual with
the Highest Fitness Value
pl p2
=12 *—o *—e
ol 02

Workflow - Variation Operators -
Real-coded — Simulated Binary

In the preceding cases, the average value of the Cote s r
two offspring is 3.525, which is equal to the s
average value of the two parents.
We need to preserve is the similarity between
offspring and parents.

For this, the probability of B should be much
higher for values near 1, where the offspring
are similar to the parents.

That is why, the [3 value is calculated using
another random value, denoted by u, that is
uniformly distributed over the interval [0, 1]:

B = (2u)

<=0.5 i’
u - . 1 Choose the Individual with

1 m the Highest Fitness Value
u>0.5 b= 2(1 — u) :

topping

Workflow - Variation Operators -
Real-coded — Real Mutation o

Another approach is to generate a random real Cote s r
number that resides in the vicinity of the e
original individual.

Example: the normally distributed (or
Gaussian) mutation -> a random number is
generated using a normal distribution with a
mean = 0 and some predetermined standard

deviation. TR

Individual in Population

Choose the Individual with
the Highest Fitness Value

Workflow - Variation Operators -
Real-coded — Real Mutation o

Another approach is to generate a random real Cote s r
number that resides in the vicinity of the e
original individual.

Example: the normally distributed (or
Gaussian) mutation -> a random number is
generated using a normal distribution with a
mean = 0 and some predetermined standard

deviation. TR

Individual in Population

Choose the Individual with
the Highest Fitness Value

Content

*Recommended Sources

*What is Evolutionary Computing (EC)
*EC History

*Problem Types for EC

*What is Evolutionary Algorithm (EA)
*EA Workflow

* Selection

*Crossover

* Mutation

*Real-coded EA

*Elitism, Niching, Sharing

Workflow -
Elitism Strategy

We want to guarantee that the best individual(s)
always make it to the next generation, we can
apply the optional elitism strategy.

This means that the top n individuals (nis a
predefined parameter) are duplicated into the
next generation before we fill the rest of the
available spots with offspring that are created
using selection, crossover, and mutation. The
elite individuals that were duplicated are still
eligible for the selection process so they can
still be used as the parents of new individuals.
Elitism can sometimes have a significant positive

impact on the algorithm's performance as it S
avoids the potential time waste needed for re-
discovering good solutions that were lost.

Calculate Fitness for each
Individual in Population

Workflow -
Niching and Sharing s ol ot

When several different species coexist in the PR —
same niche, they all compete over the same
resources, and a tendency is to search for new, .
unpopulated niches and populate them.
This can be used to maintain the diversity of the
population and to find several optimal solutions
-> several niches.

Calculate Fitness for each
Individual in Population

Choose the Individual with
the Highest Fitness Value

For this we should offer resources in the amount
proportional to a niche height by sharing
fithess depended on distance to others.

OcHOBM eBONMIOUIMHUX OOUYUCTIeHDb

Evolutionary Computing Basics

Lecture 03. EC for Machine Learning

— Feature Selection

(based on Alan Turing, Holland, Khaled Rasheed, Ben
Phillips, Eyal Wirsansky, and others works)

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

Recommended Sources
— Books

Books (scientific):
Guyon, |., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.).
(2008). Feature extraction: foundations and applications (Vol.
207). Springer.

Dong, G., & Liu, H. (Eds.). (2018). Feature engineering for
machine learning and data analytics. CRC Press.

Books (with codes at github):
Soledad Galli (2020). Python Feature Engineering
Cookbook. Packt Publishing
Alice Zheng and Amanda Casari (2018). Feature Engineering
for Machine Learning (O'Reilly)

Recommended Sources -
Papers and Datasets

Regression Problem (F1RP):

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of
Statistics 19 (1), pages 1-67.

Classification Problem

UCI Zoo dataset (http://archive.ics.uci.edu/ml/datasets/Zo0)
Eibe Frank and Stefan Kramer. Ensembles of nested dichotomies for multi-class
problems. ICML. 2004.
Huan Liu and Hiroshi Motoda and Lei Yu. Feature Selection with Selective
Sampling. ICML. 2002.

http://archive.ics.uci.edu/ml/datasets/Zoo

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

Evolutionary Computing (EC) —
for Feature Selection — why?

Supervised learning:

Workflow: the model receives a set of inputs, called features, and
maps them to a set of outputs.

Assumption: the information described by the features is useful for
determining the value of the corresponding outputs.

Common sense: the more information we can use as input, the better
our chances of predicting the output(s) correctly.
Reality: in many cases the opposite is true ... if some of the features we
use are irrelevant or redundant, the consequence could be a
(sometimes significant) decrease in the accuracy of the models.

That is why we need feature selection:
the process of selecting the most beneficial set of features out of the
entire set of features to reach the better solution.

EC for Feature Selection —
Benefits

* Decreasing the errors (the lost function) of the model
* Increasing the accuracy of the model
* Training times of the models are shorter.
* Trained models are simpler and easier to interpret.
* Trained resulting models are likely to provide better generalization,

that is, they perform better with new input data that is dissimilar to the
data that was used for training.

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection —
Problem Types

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

— regression (use case of Friedman-1 Regression Problem)
and
— classification (use case of UCI-dataset animal classification)

for
— feature selection
or
— dimensionality reduction

with the purpose of:
— decrease of MSE
or
— increase of mean accuracy.

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
Friedman-1 Regression Problem (F1RP)

F1RP was described by Friedman (1991) and Breiman (1996).
Inputs: n_features independent variables uniformly distributed on the
interval [0,1], only 5 out of these n_features are actually used.
Outputs: are created according to the formula:

y(xo, 1, s, 23, 24) = 10 - sin(m- xg - 1) + 20(x2 — 0.5)% + 103 + 5z4 + noise - N(0,1)

The last component in the formula is the randomly generated noise. The
noise is normally distributed and multiplied by the constant noise, which
determines its level.

Various implementations in programming languages:

Python: make_friedman1() function in scikit-learn (sklearn) library
R: friedman1() function in mlbench library

Why F1RP is useful for us?

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of

g—

EC for Feature Selection — Example:
why F1RP is useful for us?

If n_features = 15, we will get a dataset with the original 5 input variables
(or features) that were used to generate y values by the formula and 10
features that are completely irrelevant to the output.

Why: F1RP is used to test various regression models as to presence of
noise and irrelevant features in the dataset.

Example:

Aim: test EC (GA) as a feature selection mechanism.
Workflow: use make_friedman1() function to create a dataset with 15
features and use GA to search for the subset of features that provides

the best performance.

Hypothesis: EC (GA) will pick the first 5 features and drop the rest,
assuming that the model's accuracy is better when only the relevant
features are used as input.

EC (GA) role: The fitness function (FF) will use a regression model
that, for each potential solution — a subset of the feature to use — will
be trained using the dataset containing onlv the selected features.

EC for Feature Selection — Example:
Individual Representation by EC (GA)

An individual solution (genotype) should indicate which features are
selected and which are dropped:

> Each individual solution is a list of binary values

> Every entry in the list (O or 1) is one of the features in the dataset:
“ 1 - the corresponding feature WAS selected,
7 0 - the feature has NOT been selected.

This is very similar to the knapsack 0-1 problem from LabO01.

IMPORTANT:

Each 0 in the individual solution means
->

dropping the corresponding feature's data column from the dataset.

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
F1RP — Classic Solution

1) Create the dataset by Friedman formula
using make_friedman1() function in scikit-learn (sklearn) library.

2) Divide the data into two subsets — a training set and a validation set
— using model _selection.train_test split() function in the scikit-learn.

3) Create the regression model ... various can be used ... Gradient
Boosting Regressor (GBR) in this example.

4) Determine the performance of the used regression model for a set of
selected features by getMSE() function-metric™.

5) Then the new training subset (with the selected features only!) is
used to train the model, while the new validation subset - to evaluate it.

*) The mean square error (MSE) = the average squared difference between the
model's predicted values and the actual values. A lower value of this

EC for Feature Selection — Example:
F1RP — Classic Solution — Results...

As far as we add the first 5 features one by one, the performance
improves. However, later each additional feature degrades
the performance of the model:

1 first features:
2 first features:
3 first features:
4 first features:
5 first features:
6 first features:
7 first features:
8 first features:
9 first features:

score = 47.553993
score = 26.121143
score = 18.509415
score = 7.322589
score = 6.702669
score = 7.677197
score = 11.614536
score = 11.294010
score = 10.858028

10 first features: score = 11.602919
11 first features: score = 15.017591
12 first features: score = 14.258221
13 first features: score = 15.274851
14 first features: score = 15.726690
15 first features: score = 17.187479

3

MSE
5 &

=

15

10

MSE over Features Selected

5 & 7 8 9 1m0 11 12 13 14 15
n First Features

EC for Feature Selection — Example:
F1RP — Classic Solution — DEMO...

Try to reproduce these results:

1 first features: score = 47.553993 MSE over Fealures Salectad
2 first features: score = 26.121143

3 first features: score = 18.509415

4 first features: score = 7.322589

5 first features: score = 6.702669

6 first features: score = 7.677197

7 first features: score = 11.614536

8 first features: score = 11.294010

9 first features: score = 10.858028

10 first features: score = 11.602919

11 first features: score = 15.017591

12 first features: score = 14.258221

13 first features: score = 15.274851

14 first features: score = 15.726690 % 8 8 S5 % 1 orE v P
15 first features: score = 17.187479 n First Features

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
FIRP — EC (GA) Solution

The differences from classic solution:
1) Chromosomes - binary lists of selected features
2) Fitness Function (FF) - returns the regression model's MSE

3) Selection
- tournament selection with a tournament size of 2
- elitism, where the hall of fame (HOF) members — the current best
iIndividuals — are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover
and
- mutation operators
that are specialized for binary list chromosomes

EC for Feature Selection — Example:
FIRP — EC (GA) Solution — Results

After 30 generations of EC (GA):

Best Ever Individual =1[1,1,1,1,1,0,0,0,0,0, 0,0, 0, 0, 0]
Best Ever Fithess = 6.702668910463287

What does it mean?
The best MSE (about 6.7) is provided by the first five features.

IMPORTANT:
EA (GA) makes no assumptions about the set of features.
EA (GA) does not know about the first or last n features.
EA (GA) simply searched for the best possible subset of features.

EC for Feature Selection — Example:
FIRP — EC (GA) Solution — DEMO

Try to reproduce these results:

After 30 generations of EC (GA):

Best Ever Individual =[1,1,1,1,1,0,0,0,0, 0,0, 0,0, 0, 0]
Best Ever Fithess = 6.702668910463287

What does it mean?

The best MSE (about 6.7) is provided by the first five features.

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

*Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
Animals Classification Problem

It is the classic example of classification problem.

<« c © | & archive.ics.uci.edu/ml/datasets/Zoo B | e w

UCI 7%

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Zoo Data Set

Download: Data Folder, Data Set Description

Abstract: Artificial, 7 classes of animals

Data Set Characteristics: Multivariate Number of Instances: || 101 || Area: Life
Attribute Characteristics: || Categorical, Integer || Number of Attributes: || 17 Date Donated 1990-05-15
Associated Tasks: Classification Missing Values? No || Number of Web Hits: || 346207

UCI Zoo dataset (http://archive.ics.uci.edu/ml/datasets/Z0o).

EC for Feature Selection — Example:
Animals Classification — Dataset

Dataset General Information:
A simple database containing 17 Boolean-valued attributes.
The "type" attribute appears to be the class attribute. Here is a breakdown of
which animals are in which type: (I find it unusual that there are 2 instances
of "frog" and one of "girl™!)

Class# -- Set of animals:

1 -- (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin,
elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink,
mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat,
raccoon, reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf
2 -- (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,
penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren
3 -- (5) pitviper, seasnake, slowworm, tortoise, tuatara
4 -- (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse,
sole, stingray, tuna
5 -- (4) frog, frog, newt, toad
6 -- (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
7 -- (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish,

\VY.V/aVaaal

EC for Feature Selection — Example:
Animals Classification — Dataset

Attribute (Feature) Information:
1. animal name: Unique for each instance
2. hair: Boolean
3. feathers: Boolean
4. eggs: Boolean
5. milk: Boolean
6. airborne: Boolean
/. aquatic: Boolean
8. predator: Boolean
9. toothed: Boolean
10. backbone: Boolean
11. breathes: Boolean
12. venomous: Boolean
13. fins: Boolean
14. legs: Numeric (set of values: {0,2,4,5,6,8})
15. tail: Boolean
16. domestic: Boolean
17. catsize: Boolean

EC for Feature Selection — Example:
Animals Classification — Problem

Origin: it is the classic example of classification problem, where the
input features need to be mapped into two or more categories/labels.

Inputs: features 2-17 (hair, feathers, fins, and so on), mostly features
are Boolean (value of 1 or 0) meaning the presence or absence of a
certain attribute, such as hair, fins, and so on.

Note: The 1st feature - animal name - is just to provide us with some
information and does not participate in the learning.

Outputs: the last feature — type — represents 7 categories.
For instance, type 5 represents a category with: frog, newt, and toad.

Aim: train a classification model on this dataset with features 2-17
(hair, feathers, fins, and so on) to predict the value of feature 18
(animal type).

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

*Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
Animals Classification — Classic Way

1) Load the UCI-Zoo dataset by the standard read_csv function.

2) Divide the data into input features (first remaining 16 columns) and
the resulting output category (last column). Then instead of separating
the data into 1 training set and 1 test set, like we did in the previous
section, we're using k-fold cross-validation -> The data is split into k
equal parts and the model is evaluated k times:

(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
Decision Tree Classifier (DCT) in this example.

4) Determine the performance of the used regression model for a set of
selected features by getMeanAccuracy() function-metric”.

*) Accuracy — the portion of the cases that were classified correctly. A higher
value of this measurement indicates better performance of the model.

EC for Feature Selection — Example:
Classification — Classic Way — DEMO...

After training/testing:
the model - DTC-classifier
5-fold cross-validation
all 16 features
the classification accuracy was about 91%.

Try to reproduce these results:

All features selected:
,1,1,1,1,1,111,1,1,1,1,1,1, 1]

Accuracy = 0.9099999999999999

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

*Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection — Example:
Classification — EC (GA) Solution

The differences from classic solution:
1) Chromosomes - binary lists of selected features
2) Fitness Function (FF) - returns the model's mean accuracy

3) Selection
- tournament selection with a tournament size of 2
- elitism, where the hall of fame (HOF) members — the current best
iIndividuals — are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover
and
- mutation operators
that are specialized for binary list chromosomes

EC for Feature Selection — Example:
Classification — EC (GA) — Results

After 50 generations of EC (GA) and HOF size of 5:

Best solutions are:

0:[0,1,01,1,1,0,0,1,0,0,1,0,0,0, 0] fitness =0.964 accuracy = 0.97 features =6
1:00,1,0,1,1,1,0,1,1,0,0,1,0,0,0, 0] fitness =0.963 accuracy = 0.97 features =7
2:(1,1,0,1,1,1,0,0,1,0,0,1,0,0,0, 0] fitness =0.963 accuracy = 0.97 features =7
3:[00,101,1,1,0,0,1,0,0,1,0,0, 1, 0] fitness =0.963 accuracy = 0.97 features =7
4:.10,1,0,1,1,1,0,0,1,0,0,1,0,0,0, 1] fitness = 0.963 accuracy = 0.97 features =7

The top solution is the set of 6 features, which are as follows:
feathers, milk, airborne, backbone, fins, tail

By selecting these particular features out of the 16 given in the dataset:
1 - we reduced the dimensionality of the problem,
2 - we also improved our model accuracy from 91% to 97%.

IMPORTANT: It is not very large increase of an absolute accuracy,
BUT a great (TRIPLE!) reduction of the error rate from 9% to 3% — a

verv <ianificant imnrovement in terme of claccification nerformance

EC for Feature Selection — Example:
Classification — EC (GA) — DEMO

Try to reproduce these results:

Best solutions are:

0, 0, 0] fitness = 0.964 accuracy = 0.97 features =6
, 0,0, 0, 0] fitness =0.963 accuracy = 0.97 features =7
0, 0, 0] fitness = 0.963 accuracy = 0.97 features =7
, 0,0, 1, 0] fitness =0.963 accuracy = 0.97 features =7
, 0,0, 0, 1] fitness = 0.963 accuracy = 0.97 features =7

Max and Average fitness over Generations

_// /

0
1:
2
3.
4

1
1
1
1
1

Max [/ Average Fitness

Content

*Recommended Sources
*EA (GA) for Feature Selection — Why?
*Problem Types for Feature Selection:

*Regression: Friedman-1 Problem

* Classic Solution
*EA (GA) Solution

* Classification: Animals Problem

* Classic Solution
*EA (GA) Solution

* Resume

EC for Feature Selection —
Resume

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

— regression (use case of Friedman-1 Regression Problem)
and
— classification (use case of UCI-dataset animal classification)

for
— feature selection
or
— dimensionality reduction

with the purpose of:
— decrease of MSE
or
— increase of mean accuracy.

OcHOBM eBONMIOUIMHUX OOUYUCTIeHb

Evolutionary Computing Basics

Lecture 04. EC for Machine Learning

— Hyperparameter Tuning

(based on Holland, Khaled Rasheed, Ben Phillips, Eyal
Wirsansky, and others works)

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

Recommended Sources
— Books

Books (scientific):
Goodfellow, |., Bengio, Y., Courville, A., & Bengio, Y. (2016).
Deep learning. Cambridge: MIT press
LintToBaHo B 23692 pnxepenax.

Books (with codes at github):
Alan Fontaine (2018) Mastering Predictive Analytics with
scikit-learn and TensorFlow. Packt Publishing.

Tanay Agrawal (2021). Hyperparameter Optimization in
Machine Learning: Make Your Machine Learning and Deep
Learning Models More Efficient, Apress

Recommended Sources -
Papers and Datasets

Example Problem and Dataset

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

S. Aeberhard, D. Coomans and O. de Vel,
Comparison of Classifiers in High Dimensional Settings,

Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.
The data was used for comparing various classifiers.

(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))
(All results using the leave-one-out technique)

Mikhail Bilenko (Head of Al and Research, Yandex) and Sugato Basu and
Raymond J. Mooney. Integrating constraints and metric learning in semi-
supervised clustering. ICML. 2004.

Kamal Ali and Michael J. Pazzani. Error Reduction through Learning Multiple
Descriptions. Machine Learning, 24. 1996

https://archive.ics.uci.edu/ml/datasets/wine

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

Evolutionary Computing (EC) —
for Hyperparameter Tuning — why?

Supervised learning:

Workflow: the model receives a set of inputs, called features, and
maps them to a set of outputs.
Assumption: the information described by the features is useful for
determining the value of the corresponding outputs.
Model: learning is adjusting (or tuning) the internal parameters of a
model to produce the desired outputs in response to given inputs.
For this, each type of supervised learning model is accompanied by a
learning algorithm that iteratively adjusts its internal parameters
during the learning (or training) phase.
Reality: BUT ... most models have another set of hyperparameters that
are set before the learning and they affect the way the learning is done!
Usually: hyperparameters have some default values that will take effect
iIf we don't specifically set them and they are not optimal!
That is why we need hyperparameter tuning!

EC for Hyperparameter Tuning —
Benefits and Overheads

Benefits:
® Decreasing the errors (the lost function) of the model

* Increasing the accuracy of the model
* Training times of the models are shorter.
Overheads:
* The possible number of hyperparameter combinations can

be very-very huge.

* Search for the best hyperparameter combinations
(hyperparameter tuning) takes significant amounts of time.

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

EC for Hyperparameter Tuning —
Problem Type - Classification

EC (GA) can be effectively applied to
the classic supervised machine learning probles:

— classification (use case of UCI-dataset Wine classification)

for
— hyperparameter tuning

with the purpose of:
— decrease of MSE
or
— increase of mean accuracy.

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

EC for Hyperparameter Tuning —
Example: Wine Classification Problem

It is the classic example of classification problem.

UCI x>

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Data Set

Download: Data Folder, Data Set Description

Abstract: Using chemical analysis determine the origin of wines

Data Set Characteristics: Multivariate Number of Instances: | 178 || Area: Physical

Attribute Characteristics: || Integer, Real || Number of Attributes: || 13 Date Donated 1991-07-01

Associated Tasks: Classification || Missing Values? No || Number of Web Hits: || 1602802
Source:

Original Owners:

Forina, M. et al, PARVUS -
An Extendible Package for Data Exploration, Classification and Correlation.

Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
16147 Genoa, ltaly.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Dataset General Information:
These data are the results of a chemical analysis of wines grown in the same
region in ltaly but derived from 3 different cultivars.

The analysis determined the quantities of 13 constituents found in each of
the 3 types of wines.

®|n a classification context, this is a well posed problem with "well behaved"
class structures.

® A good data set for first testing of a new classifier, but not very challenging.

\ 4

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Attribute (Feature) Information:
1) Alcohol
2) Malic acid
3) Ash
4) Alcalinity of ash
5) Magnesium
6) Total phenols
7) Flavanoids
8) Nonflavanoid phenols
9) Proanthocyanins
10) Color intensity
11) Hue
12) OD280/0D315 of diluted wines
13) Proline

Class identifier: One (Oth) attribute is class identifier (1,2,3)

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Workflow and Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

EC for Hyperparameter Tuning —
Wine Classification — Problem

Origin: it is the classic example of classification problem, where
the input features need to be mapped into 3 categories/labels.

Inputs: all features (wine properties) are continuous.

Outputs: the one feature — class —
represents 3 categories (cultivars).

Aim: train a classification model on this dataset with 13 features
to predict the value of feature 0 (cultivar).

Wine Classification —
Workflow

1) Load the UCI Wine dataset by the standard read_csv function (with url =
'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data').

2) Divide the data into input features (first remaining 13 columns) and the
resulting output category (the first column). Then instead of separating the
data into 1 training set and 1 test set, like we did in the previous example,
we're using k-fold cross-validation -> The data is split into k equal parts and
the model is evaluated k times:
(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
AdaBoostClassifier in this example.

4) Determine the performance of the used regression model for a set of
selected hyperparameters by accuracy metric*.

*) Accuracy — the portion of the cases that were classified correctly. A higher value
of this measurement indicates better performance of the model.

Wine Classification —
Hyperparameter Tuning

Let’s consider in details this stage:
3) Create the classification model ... various models can be used ...
AdaBoostClassifier in this example.

The adaptive boosting algorithm (AdaBoost)
is a powerful ML model that combines the outputs of multiple instances of
a simple ML algorithm (weak learner) using a weighted sum. AdaBoost adds
instances of the weak learner during the learning process, each of which is
adjusted to improve previously misclassified inputs.
We'll use sklearn library's implementation of AdaboostClassifier
with some hyperparameters:

.. Default
T D
Name ype escription Value
n_estimators |[int The maximum number of estimators 50
. Can be used to shrink the contribution of each
learning_rate|float e 1
classifier
, {'SAMME ', "SAMME .R' —uses a real boosting algorithm,
algorithm \ : : : 2
SAMME.R'} "SAMME ' —uses a discrete boosting algorithm

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
* Resume

Wine Classification — Classic Way

Let’s start from 2 classic approaches:

® default values of model hyperparameters:
{'algorithm'. 'SAMME.R’, 'learning_rate". 1.0, 'n_estimators': 50,
'random_state': 42},

® grid search of the best values of model hyperparameters:

Algorithm — 2 possible values 'SAMME' and 'SAMME.R',
learning_rate - 10 values logarithmically spaced
between 0.01 (102) and 1 (10°),
n_estimators -> 10 values linearly spaced between 10 and 100,

Total: 200 = (10x10x2) different combinations of the grid parameters.

Wine Classification —
Classic Way — DEMO 1 and 2

Results:

DEMO 1 - Default values:
Default Classifier Hyperparameter values:
{'algorithm". 'SAMME.R', 'base_estimator': None, 'learning_rate': 1.0,
'n_estimators': 50, random_state': 42}
Score (with default values) = 0.6457142857142857
Time Elapsed = 0.4167492389678955

DEMO 2 - After gridSearch:
Best parameters: {'algorithm'. 'SAMME.R’, 'learning_rate".
0.3593813663804626, 'n_estimators': 70}
Score (after gridSearch): 0.9325842696629213
Time Elapsed = 74.51628732681274

Try to reproduce these results!

Wine Classification —
Classic Way — DEMO 1 and 2

After training/testing - see test.gridTest() function in the DEMO code:
€ the model is AdaBoostClassifier-classifier
€ 5_fold cross-validation

Results:
DEMO 1 - Default values:
Model hyperparameter values:
{'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 50,
'random_state': 42}
Accuracy: 0.65%
Time Elapsed = 0.42 seconds

DEMO 2 - After gridSearch:
Best hyperparameter values:
{'algorithm': 'SAMME.R', 'learning_rate': 0.359, 'n_estimators'. 70}
Accuracy: 0.93%
Time Elapsed = 74 seconds
Try to reproduce these results!

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
*DEMO 3 — GA-driven Grrid Search
*DEMO 4 — Direct GA
* Resume

Wine Classification — EC (GA) Ways
Difference from Classic Ways

The differences from classic solution:
1) Chromosomes — heterogeneous sets of selected values of
hyperparameters:
® n_estimators values - a list of 10 integers
¢ learning_rate - an ndarray of 10 floats,
¢ algorithm - a list of 2 strings

2) Fitness Function (FF) - returns the model's mean accuracy

3) Selection
- tournament selection with a tournament size of 2
- elitism, where the hall of fame (HOF) members — the current best
Individuals — are always passed untouched to the next generation

4) Evolution (genetic) operators
- crossover and
- mutation operators
that are specialized for chromosomes

Wine Classification — EC (GA) Ways
— Grid and Direct

The possible EC-GA-based approaches:

¢ GA-based grid search:
to search among the initially selected 200 grid combinations only,

¢ direct GA:
to search directly the entire parameter space,
where each hyperparameter can be represented
as a variable participating in the search,
and the chromosome can be a combination of all these variables.

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

3) GA-based grid search:
--- Evolve in 200 possible combinations ---
gen nevalsavg min max std
20 0.708427 0.117978 0.910112 0.265992
13 0.865169 0.662921 0.926966 0.0717915
15 0.887921 0.646067 0.926966 0.0571676
12 0.896348 0.679775 0.926966 0.0526256
16 0.918539 0.88764 0.926966 0.0110233
5 9 0.911517 0.730337 0.926966 0.0425958
Best individual is: {'n_estimators': 60, 'learning_rate': 0.59948425031894009,
‘algorithm': 'SAMME.R'}
with fitness: 0.9269662921348315
Time Elapsed = 24.287983655929565

Try to reproduce these results!

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

3) GA-based grid search:
to search among the initially selected 200 grid combinations only
GA-parameters:
population_size=20,
gene_mutation_prob=0.30,
tournament_size=2,
generations_number=5

Results:
Model hyperparameter values:
{"algorithm': 'SAMME.R', 'learning_rate'. 0.5995, 'n_estimators': 60,
'random_state': 42}
Accuracy: 0.93%
Time Elapsed = 24 secs for 6 generations (compare with gridSearch: 74
sec, but it takes only 2 generations - 8 secs! - to reach Max Accuracy)
Try to reproduce these results!

Wine Classification — EC (GA) Ways
3.GA-based Grid Search — DEMO 3

Conclusions:
GA-driven grid search can find the same best result
(found by the classic search),
but in a 6 times(!) faster — about 12 seconds (2 generations).

BUT ... in real-life situations:
¢ datasets are much larger,
* models are more complex, and
¢ hyperparameter grids are larger!

¢ That is why exhaustive classic grid search can be prohibitively
lengthy, while the GA-driven grid search can reach good results
within a reasonable time.

BUT here ... GAs are limited to the subset of hyperparameter
values that are defined by the grid.
Let’s search outside the grid of a subset of predefined values?

Wine Classification — EC (GA) Ways
4.Direct GA — DEMO 4

4) Direct GA:
to search directly the entire parameter space,
where each hyperparameter can be represented
as a variable participating in the search,
and the chromosome can be a combination of all these variables.

We need to represent each hyperparameter as a floating-point number,
regardless of its actual type:

¢ n_estimators - originally an integer — it will be represented by a float
value in the range of [1, 100],

¢ learning_rate - already a float, so no conversion is needed — it will be

bound to the range of [0.01, 1.0],
¢ algorithm - have one of two string values, 'SAMME' or 'SAMME.R" —
it and will be represented by a float number in the range of [0, 1].

Wine Classification — EC (GA) Ways
4.Direct GA— DEMO 4

4) Direct GA - Results:

kkkkkkkkkkkkkkkkkkkkkkkkkkk

gen nevals max avg
20 0.92127 0.841024
14 0.943651 0.900603
13 0.943651 0.912841
14 0.943651 0.922476
15 0.949206 0.929468
13 0.949206 0.938563
Time Elapsed = 46.62226867675781
- Best solution is:
params = 'n_estimators'= 69, 'learning_rate'=0.628, 'algorithm'=SAMME.R
Accuracy = 0.94921

Try to reproduce these results!

Wine Classification — EC (GA) Ways
4.Direct GA— DEMO 4

4) Direct GA with GA-parameters:
population_size=20,
gene_mutation_prob=0.50,
probability for crossover = 0.90,
tournament_size=2,
generations_number=5
hall_of fame size=5

Results:
Model hyperparameter values:
{"algorithm': 'SAMME.R', 'learning_rate'. 0.628, 'n_estimators': 69,
'random_state': 42}
Accuracy: 0.95%
Time Elapsed = 46 secs for 6 generations (compare with gridSearch: 74
sec, but it takes only 2 generations - 16 secs! - to > GA-grid Accuracy)
Try to reproduce these results!

Wine Classification — EC (GA) Ways
4.Direct GA— DEMO 4

Conclusions:
¢ Direct GA can find the better accuracy 95%
than classic (65-93%) and GA-driven grid search (93%),

¢ and in 4-5 times(!) faster (8 secs for 2 generations) than classic and
the same time for GA-driven grid search.
NOTE: the best hyperparameter values (for n_estimators and
learning_rate) were found outside the grid values!

BUT ... again! ... in real-life situations:
¢ datasets are much larger,
* models are more complex, and
¢ hyperparameter grids are larger!

®That is why exhaustive classic grid search can be prohibitively
lengthy, while the GA-driven grid search can reach good results
within a reasonable time.

Content

* Recommended Sources
*EA (GA) for Hyperparameter Tuning — Why?
* Problem Types for Feature Selection
* Classification Problem Example
* UCI Wine Dataset
* Hyperparameter Tuning
* Classic Solutions
* DEMO 1 - Default Values
* DEMO 2 - Extensive Grid Search
*EA (GA) Solutions
* DEMO 3 — GA-driven Grrid Search
* DEMO 4 — Direct GA
*Resume

EC for Feature Selection —
Classification — Comparative Plot

Max and Average Accuracy (fitness) over Generations

— GA-gnid (sklearn) {max)
GA-gnd (sklearn) (mean}
— Direct GA (DEAP) {max]
Direct GA (DEAP) {mean)
= (Classic grid search

]
i
ru
=
L
—
.
o
&
=]
bt
[
=]
W
o
B
5
<[
=
o
=

2 3 4
Generation

Try to reproduce these results!

EC for Feature Selection —
Resume

EC (GA) can be effectively applied to
the classic supervised machine learning problems:

— regression (use case of Friedman-1 Regression Problem)
and
— classification (use case of UCI-dataset animal classification)

for
— feature selection
or
— dimensionality reduction

with the purpose of:
— decrease of MSE
or
— increase of mean accuracy.

OcHoBM eBONMIOUIMHUX OOUYUCTIEHDb

Evolutionary Computing Basics
Lecture 05. EC for Neural Networks
— Architecture and Hyperparameter

Tuning
(based on Varoquaux, Grobler, Rasheed, Phillips,
Wirsansky, and others works)

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

Recommended Sources
— Books

Books (scientific):
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016).
Deep learning. Cambridge: MIT press
LintToBaHo B 23692 pxepenax.

Books (with codes at github):
Alan Fontaine (2018) Mastering Predictive Analytics with
scikit-learn and TensorFlow. Packt Publishing.

Tanay Agrawal (2021). Hyperparameter Optimization in
Machine Learning: Make Your Machine Learning and Deep
Learning Models More Efficient, Apress

Recommended Sources -
Papers and Datasets

Example Problem and Dataset

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)
S. Aeberhard, D. Coomans and O. de Vel,
Comparison of Classifiers in High Dimensional Settings,
Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.

UCI Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)
Fisher,R.A. The use of multiple measurements in taxonomic problems, Annual
Eugenics, 7, Part Il, 179-188 (1936); also in "Contributions to Mathematical
Statistics" (John Wiley, NY, 1950).

UCI Breast Cancer dataset
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))
W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for
breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic
Imaging: Science and Technology, volume 1905, 861-870, San Jose, CA, 1993.

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

Evolutionary Computing (EC) —
MLP/Neural Network (NN) — Intro

Multi-layer Perceptron (MLP) is a supervised
learning algorithm (artifical neural netwrork -
NN) that learns a function f(X) by training on a
dataset. Given a set of features X and a target y,
it can learn a non-linear function approximator
for classification or regression.

Between the input and the output layer, there
can be one or more non-linear layers, called
hidden layers.

Features

The weight matrix W, at some index i (X) Output

represents the weights between layer i and layer
i+1. The bias b, at index i represents the bias

values added to layer i+1.

MLP uses backpropagation for training.
It can distinguish not linearly separable data.

NN Tuning —
What are Tuning Objects?

Supervised learning:

Workflow: the model (NN here) receives a set of inputs, called
features, and maps them to a set of outputs.
Assumption: the information described by the features is useful for
determining the value of the corresponding outputs.

Model: learning is adjusting (or tuning) the internal parameters
(weights in NN layers here) of a model to produce the desired outputs
in response to given inputs. Each type of supervised learning model is
accompanied by a learning algorithm that iteratively adjusts its
internal parameters (weights in NN layers here) during the learning.
AND ... most models (NN here) have structure (NN architecture here:
layers, blocks, and connections between them) + hyperparameters
(learning rate, ...) that are set before the learning and they affect it!
Usually: EC can be applied for search of optimal: a) weights, b)
hyperparameters (like in the previous lecture for ML), c) architecture.

IMPORTANT: Weights tuning by EC is NOT considered here, because
it is performed by gradient-based methods.

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

NN Tuning —
What Types of Tuning?

Tuning Types ... for various parts of NN:
¢ internal parameters:
weights in NN - is NOT considered here, because it is performed by
gradient-based methods;

¢ external parameters:
1) NN architecture (layers and nodes in layers here)
+ influence of various ...
- RANDOM_SEEDs,
- datasets,
- MAX number of layers.

2) NN hyperparameters (learning rate, activation function, optimization
solver, and regularization, here),

3) NN architecture + NN hyperparameters.

EC for Hyperparameter Tuning —
Benefits and Overheads

Benefits:

® Decreasing the errors (the lost function) of the model
® Increasing the accuracy of the model
® Training times of the models are shorter.

Overheads:

* The possible number of NN architectures and NN
hyperparameter combinations can be very-very huge.
* Search for the best NN architectures and NN
hyperparameter combinations (hyperparameter tuning)
takes significant amounts of time.

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

EC for Hyperparameter Tuning —
Problem Type - Classification

EC (GA) can be effectively applied to
the classic supervised machine learning probles:

— classification (use case of UCI-dataset Wine classification)

for
— NN tuning

with the purpose of:
— decrease of MSE
or
— increase of mean accuracy.

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem: Dataset + Workflow
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

EC for Hyperparameter Tuning —
Example: Wine Classification Problem

It is the classic example of classification problem.

UCI x>

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Data Set

Download: Data Folder, Data Set Description

Abstract: Using chemical analysis determine the origin of wines

Data Set Characteristics: Multivariate Number of Instances: | 178 || Area: Physical

Attribute Characteristics: || Integer, Real || Number of Attributes: || 13 Date Donated 1991-07-01

Associated Tasks: Classification || Missing Values? No || Number of Web Hits: || 1602802
Source:

Original Owners:

Forina, M. et al, PARVUS -
An Extendible Package for Data Exploration, Classification and Correlation.

Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
16147 Genoa, ltaly.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Dataset General Information:
These data are the results of a chemical analysis of wines grown in the same
region in ltaly but derived from 3 different cultivars.

The analysis determined the quantities of 13 constituents found in each of
the 3 types of wines.

® |n a classification context, this is a well posed problem with "well behaved"
class structures.

® A good data set for first testing of a new classifier, but not very challenging.

\ 4

EC for Hyperparameter Tuning —
Wine Classification — Dataset

Attribute (Feature) Information:
1) Alcohol
2) Malic acid
3) Ash
4) Alcalinity of ash
5) Magnesium
6) Total phenols
/) Flavanoids
8) Nonflavanoid phenols
9) Proanthocyanins
10) Color intensity
11) Hue
12) OD280/0D315 of diluted wines
13) Proline

Class identifier: One (Oth) attribute is class identifier (1,2,3)

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem: Dataset + Workflow
* DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

EC for Hyperparameter Tuning —
Wine Classification — Workflow

Origin: it is the classic example of classification problem, where
the input features need to be mapped into 3 categories/labels.

Inputs: all features (wine properties) are continuous.

Outputs: the one feature — class —
represents 3 categories (cultivars).

Aim: train a classification model on this dataset with 13 features
to predict the value of feature 0 (cultivar).

NN Tuning —
Wine Classification — Workflow

1) Load the UCI Wine dataset by the standard read_csv function (with url =
'https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data').

2) Divide the data into input features (first remaining 13 columns) and the
resulting output category (the first column). Then instead of separating the
data into 1 training set and 1 test set, like we did in the previous example,
we're using k-fold cross-validation -> The data is split into k equal parts and
the model is evaluated k times:
(k-1) parts for training and 1 remaining part for testing (or validation).

3) Create the classification model ... various models can be used ...
Multi-layer Perceptron (MLP) in this example.

4) Determine the performance of the used regression model for a set of
selected hyperparameters by accuracy metric*.

*) Accuracy — the portion of the cases that were classified correctly. A higher value
of this measurement indicates better performance of the model.

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
*DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

DEMO — Part1: NN Architecture Tuning
— Layers and Nodes

We limit NN to 4 hidden layers, the chromosome will be:
[n,,n,, n,n,]
Here, n i denotes the number of nodes in the layer i from 1 to 4.
To control the number of hidden layers in NN, some of n. may be

0 or <0 ... it means -> no more layers will be added to NN.
Example of some chromosomes:

[10, 20, -5, 15] -> tuple (10, 20) since -5 ends the layer count.
[10, 0, -5, 15] -> tuple (10,) since 0 ends the layer count.
[10, 20, 5, -15] -> tuple (10, 20, 5) since -15 ends the count.
[10, 20, 5, 15] > tuple (10, 20, 5, 15).

DEMO — Part1: NN Architecture Tuning
— Layers and Nodes

We limit NN to 4 hidden layers, the chromosome will be:
[n,, n, n, n|]

Here, n i denotes the number of nodes in the layer i from 1 to 4.
To control the number of hidden layers in NN, some of n. may be

0 or <0 ... it means -> no more layers will be added to NN.
Example of some chromosomes:

[10, 20, -5, 15] -> tuple (10, 20) since -5 ends the layer count.
[10, O, -5, 15] -> tuple (10,) since 0 ends the layer count.
[10, 20, 5, -15] -> tuple (10, 20, 5) since -15 ends the count.
[10, 20, 5, 15] > tuple (10, 20, 5, 15).

To guarantee that there is at least 1 hidden layer, the 1st
parameter (10 here) is always >0.
The other layer parameters can have varying distributions
around 0 ... why ... to control their chances of being the
terminating parameters.

DEMO - Part 1:
NN Architecture Tuning Solution

Results:

DEMO 1 - Default MLP Hyperparameter values.

kkkkkkokkkkkkkkkkkkkkkkkkkkxk

gen nevals max avg

20

17

15

16

17

14

17

14

16

17

10 15
Time Elapsed =
Best solution 1is:
Accuracy = 0.76984

o~Nou ks WNEREO
(o]

o

0
0
0
0
0
0
0
0
0
0
8

Try to reproduce these results!

. 769841
. 769841
. 769841
. 769841
. 769841
. 769841
. 769841
. 769841
. 769841
.769841

769841

2.1906521320343
‘hidden layer sizes'=(13, 4, 7)

(o Mo Mo No RO RO NN RN o RO RN o)

.284063
.473413
.606905
839238
.673444
.703746
139619
. 70954
.686921
.689833
.680286

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
*DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

DEMO - Part 1: NN Architecture Tuning
Solution

What is Influence of ...
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)

* Max NN Layer Number

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

dataset = 'wine'
RANDOM SEED = 42

gen nevals max avg

20 0.769841 0.284063
17/ 0.769841 0.473413
15 0.769841 0.606905
16 0.769841 0.659238
17 0.769841 0.673444
14 0.769841 0.703746
17 0.769841 0.739619
14 0.769841 0.70954
16 0.769841 0.686921
17 0.769841 0.689833
10 15 0.769841 0.680286
Best solution is: ‘'hidden layer sizes'=(13, 4, 7)
Accuracy = 0.76984

0O~ U pkE WNE=EO

(]

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

dataset = 'wine'
RANDOM SEED = 666

2 5K 3K K ok 3k ok sk koK ok sk ok ok ok ok ok ok ok ok Kk ok Rk ok ok

_ gen nevals max avg

dataset = 'wine’ 0 20 .647937 0.31354
RANDOM SEED = 42 17 .647937 0.41869
15 .647937 0.478095
16 .647937 0.418651
17 .647937 ©.503325
12 .647937 0.492421
17 .647937 0.435524
16 .647937 ©.503032
16 .647937 0.466016
16 .647937 0.51246
10 17 .647937 ©.572524
17 -769841 0.739619 1;.. Elapsed = 93.69340062141418

14 . 769841 - 70954 Best solution is: ‘'hidden layer sizes'=(14, 3, 4, 4)
16 . 769841 .686921 Accuracy = 0.64794

17 .769841 .689833

10 15 .769841 0.680286

Best solution is: ‘'hidden layer sizes'=(13, 4, 7)
Accuracy = 0.76984

gen nevals max avg

20 .769841 .284063
17 .769841 .473413
L5 .769841 .606905
16 .769841 .659238
iy .769841 .673444
14 .769841 .703746

[clololo oo NolNo oMol

1
2
3
4
5
6
7
8
9

O 00 ~NO Uk WNREOO

O 000000 00 OO0 Q@

0000000 0 O
(ol <l oo oo o B oo <M o]

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds?

Results for various RANDOM_SEEDs:

dataset = 'wine'

RANDOM SEED = 1042

ok o ok ok sksk ook ok oK ok sk sk sk sk sk sk Rk ock sk ko koK sk sk ok sk

gen nevals max avg

0 20 .520159 .289151

15 .520159 .322095

12 .520159 42246

17 .541587 .419079

14 .541587 A LH2 T

iz .541587 .471929

15 .541587 .457198

16 .541587 .472865

15 .647937 0.478095 17 . 241587 .493143

17 .647937 0.503325 10 13 .541587 0.488968

12 -647937 0.492421 Time Elapsed = 84.34443235397339
g :gj;g;; ::’323;;’ Best solution is: 'hidden layer sizes'=(9, 9, 5)
16 .647937 0.466016 Accuracy = 0.54159

16 .647937 .51246
17 769841 739619 10817 .647937 0.572524
’ ' Time Elapsed = 93.69340062141418

14 . 769841 - 70954 Best solution is: ‘'hidden layer sizes'=(14, 3, 4, 4)
16 . 769841 .686921 Accuracy = 0.64794

17 .769841 .689833
0 15 .769841 0.680286
Best solution is: ‘'hidden layer sizes'=(13, 4, 7)
Accuracy = 0.76984

dataset = 'wine'
RANDOM SEED = 666

2 K oK K oK oK ok ok R oK oK R oK K R R R K ROk R ROk R ROk K

gen nevals max avg

dataset = 'wine’ 0 20 .647937 0.31354
RANDOM SEED = 42 17 .647937 0.41869

©

o
OO0 00000000 00O

O 0 ~JOoO U B WN K-

gen nevals max avg

20 .769841 .284063
17 .769841 .473413
L5 .769841 .606905
16 .769841 .659238
iy .769841 .673444
14 .769841 .703746

OO0 00000 o000 oo

1
2
3
4
5
6
7
8

OO0 000000 O

= O o0 ~-Noun ks WNEFEOO
O 000000 00 OO0 Q@
0000000 0 O
o
O 0000000000

Try to reproduce these results!

DEMO - Part 1: NN Architecture Tuning
Solution — Various Random Seeds - Resume

Resume for various RANDOM_SEEDs:

For various RANDOM_SEED we can obtain NNs with the very different:
performance (accuracy),
® the number of nodes in layers,
® the number of layers.

The possible reason is
the stochastic (so-called non-gradient) manner of parameter change
during evolution.
There is some possibility that
all these models for different RANDOM_SEEDs can reach the different
local (NOT global) the maximum value of fithess function (accuracy
here).
Try to reproduce these results!

Content

* Recommended Sources
*EA (GA) for Neural Network (NN) Tuning
* Types of NN Tuning
* Classification Problem Example: Dataset + \Workflow
*DEMO - Part 1: NN Architecture Tuning Solution
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)
* Max NN Layer Number
* DEMO - Part 2: NN Hyperparameter Tuning Solution
* DEMO - Part 3: NN Architecture + Hyperparameter
Tuning Solution
* Resume

DEMO - Part 1: NN Architecture Tuning
Solution

What is Influence of ...
* Random Seed
* Dataset (Wine, Iris, Breast Cancer)

* Max NN Layer Number

NN Tuning Example:
Wine Dataset

It is the classic example of classification problem.

UCI

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Data Set

Download: Data Folder, Data Set Description

Abstract: Using chemical analysis determine the origin of wines

Data Set Characteristics: Multivariate Number of Instances: | 178 || Area: Physical

Attribute Characteristics: || Integer, Real || Number of Attributes: || 13 Date Donated 1991-07-01

Associated Tasks: Classification || Missing Values? No || Number of Web Hits: || 1602802
Source:

Original Owners:

Forina, M. et al, PARVUS -
An Extendible Package for Data Exploration, Classification and Correlation.

Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
16147 Genoa, ltaly.

UCI Wine dataset (https://archive.ics.uci.edu/ml/datasets/wine)

NN Tuning Example:
Iris Dataset

It is the classic example of classification problem.

UCI x>

Machine Learning Repository

Center for Machine Learning_and Intelligent Systems

Iris Data Set

Download- Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936

Data Set Characteristics: Multivariate Number of Instances: || 150 || Area: Life
Attribute Characteristics: Real Number of Attributes: || 4 Date Donated 1988-07-01
Associated Tasks: Classification || Missing Values? No || Number of Web Hits: | 3847949

UCI Iris dataset (https://archive.ics.uci.edu/ml/datasets/iris)

NN Tuning Example:
Breast Cancer Dataset

It is the classic example of classification problem.

UCI >

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Breast Cancer Wisconsin (Diagnostic) Data Set
Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics: Multivariate Number of Instances: || 569 || Area: Life
Attribute Characteristics: Real Number of Attributes: | 32 Date Donated 1995-11-01
Associated Tasks: Classification || Missing Values? No || Number of Web Hits: || 1444676

UCI Breast Cancer dataset
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets?

Results for various RANDOM_SEEDs:

wine
RANDOM SEED = 42

gen nevals max avg
20 0.769841 0.284063
17 0.769841 0.473413
15 0.769841 0.606905
16 0.769841 0.659238
17 0.769841 0.673444
14 0.769841 0.703746
17 0.769841 0.739619
14 0.769841 0.70954
16 0.769841 0.686921
17 0.769841 0.689833

B 15 0.769841 0.680286

Best solution is: ‘'hidden_ layer sizes'=(13, 4, 7) , accuracy = 0.7698412698412699

Try to reproduce these results!

= O 0O~NOO U WN RO

DEMO - Part 1: NN Architecture Tuning
Solution — Various Datasets?

Results for various RANDOM_SEEDs:

##H# i