

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ
УКРАЇНИ

«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ
ІНСТИТУТ імені ІГОРЯ

СІКОРСЬКОГО»

Гордієнко Ю.Г., Таран В.І.
\

ХМАРНІ ОБЧИСЛЕННЯ
Конспект лекцій

Навчальний посібник
 для здобувачів ступеня магістра
за освітньою програмою «Інженерія програмного забезпечення комп'ютерних систем»

спеціальності 121 «Інженерія програмного забезпечення»
за освітньою програмою «Комп'ютерні системи та мережі»

спеціальності 123 «Комп'ютерна інженерія»
за освітньою програмою «Інформаційні управляючі системи та технології »

 спеціальності 126 «Інформаційні системи та технології»

Електронне мережне навчальне видання

 ЗАТВЕРДЖЕНО
на засіданні кафедри обчислювальної техніки

 протокол № 10 від 25.05.2022

2022

https://osvita.kpi.ua/121_OPPB_IPZKS
https://osvita.kpi.ua/126_ONPD_IST
https://osvita.kpi.ua/121_OPPB_IPZKS

**
Матеріали:

 • Слайди лекцій
 • Відеоверсії лекції

 • Рекомендовані книги
 • Теми для перспективних досліджень і розробок

 • Екзаменаційні запитання
 • Практичні запитання для самостійного навчання

 • Підручник (конспект лекцій)

за посиланням:
https://cloud.comsys.kpi.ua/s/37mEqx2HdKz8oro

**

https://cloud.comsys.kpi.ua/s/37mEqx2HdKz8oro

1

Cloud Computing
Lecture Manual

Volume 0

Module 0

Introduction to the Context of
Cloud Computing

2

Content
Lecture 0. Introduction to the Context of Cloud Computing 6

Current Challenges 7

Overview 7

Motivation and Definition 18

Comparison with Parallel Computing 22

Models 24

Advantages, Disadvantages, Pitfalls 31

Design 35

Types of Computing Systems 42

Cluster Computing 43

Grid Computing 47

GPU Computing 51

Client-Server Computing 60

Volunteer Computing 65

Desktop Grid Computing 71

Peer-to-Peer Computing 76

Cloud Computing 80

Ubiquitous Computing 84

Crowd Computing 87

3

The title of the course is “Cloud Computing”

This is the introductory lecture number 0 about the context of Cloud
Computing.

4

Let’s consider the main aims of this course:

The course is targeted on description of the latest advances in cloud computing
hardware and software, system architecture, new programming paradigms, and
ecosystems for the higher performance and efficiency.

The exercises and laboratory works are devoted to explanations how to create high-
performance clusters, scalable networks, automated data centers, and high-
throughput cloud/grid systems.

The course will learn how to transform traditional multiprocessor machines into clouds
for ubiquitous use in the real-life large-scale applications that are emerging rapidly in
recent years.

5

This course consists of the following modules.

0.Introduction to the Context of Cloud Computing
1.Parallel and Distributed Systems
2.Virtualization Technologies
3.Introduction to Cloud Computing
4.Cloud Computing Technologies
5.Distributed Data Processing Systems
6.Distributed Data Systems in Cloud Computing
7.Cloud Security and Trust Management

6

Lecture 0. Introduction to the
Context of Cloud Computing

7

Current Challenges

Overview

8

In response to the question “Why we need High Performance Computing”
let’s consider some examples from our life.
To resolve the current computing problems the available multiprocessor
personal computer is not enough anymore.
For example, if we would like to create high-quality cartoon movie. we
need to perform rendering operation. It include calculation of all
elements of characters, objects, their movements, colors, textures,
illumination, etc.
For example, for “Disney’s Cars 2” cartoon in 2011 the computing time to
render each frame was equal to ~11-90 hours.
For another cartoon movie, “Monsters University” in 2013 the computing
time to render each frame was equal to ~29 hours. And the total
computing time should be over than 100 million CPU hours! It is
impossible to render such movies by the one multiprocessor personal
computer, even the most powerful one.
The rendering task was resolved by the high-performance computing
system with 3000-5000 AMD processors connected by high-speed 10
Gbps networks.
Another example is Google search engine, which should process ~5.1
billion queries per day and index >50 billion web pages. For this purpose,
hundreds of thousands of servers should be used – namely, Cloud
Computing infrastructure should do this work!

9

Another example is the current problem of Big Data related with processing of the
high volume of data generated by Internet of People, Internet of Things, and
Internet of Everything.
This problem will be considered later in details.
But at this stage, please, find the following overview of the Big Data problem.
Big Data are characterized by 4 V:
velocity, volume, variety, variability.
The major drivers are:
• velocity at which you have to ingest data, along with the latency until it’s

usable, and
• volume of data you have to store and do something with.

But it’s not a big data problem, if you have:
• a high peak load of messages for a couple of hours a day, and you don’t need

to see them frequently later
• terabytes of archival data that you don’t need to analyze, (they are just stored

for some regulatory reason)

10

When the first big data problem appeared?

The first big data problem occurred in the 1880s.

In the late 1800s, the processing of the U.S. census was beginning to take close to
10 years. The census runs every 10 years and the population, and thus the amount
of information was increasing — problem!

In 1886, Herman Hollerith started a business to rent machines that could read and
tabulate census data on punch cards. The 1890 census took <2 years to complete
and handled a larger population (62 million people) and more data points than the
1880 census.

Later Hollerith’s business merged with three others to form what became IBM!

11

Here you can see Moore’ Law:
Dependence of the number of transistors inside CPU versus dates of
introduction.
The line corresponds to exponential growth with transistor count doubling
every two years.

You can see that this dependence is saturated during the last years due to
physical limitations on the size of elements.

Gordon Moore said in 2005:
“In terms of size [of transistors] you can see that we're approaching the
size of atoms which is a fundamental barrier, but it'll be two or three
generations before we get that far—but that's as far out as we've ever
been able to see. We have another 10 to 20 years before we reach a
fundamental limit. By then they'll be able to make bigger chips and have
transistor budgets in the billions.”
But now the current development of single Central Processing Unit (CPU)
computing is not enough to response to the current challenges.

12

Now there are several other formulations of laws for caharacterization of technology growth:

Moore’s Law – Individual computers double in processing power every 18 months

Storage Law – disk storage capacity doubles every 12 Months

Gilder’s Law – Network bandwidth doubles every 9 months (but is harder to install)
This exponential growth profoundly changes the landscape of Information technology

More and more data created (because sensors are smaller and processors are
cheaper) and stored (because disks are cheaper and more reliable than tape etc) and
accessed remotely (because networking is cheaper).

Note that the time needed to fill available storage in increasing (i.e. the speed of
writing data to disk is not increasing as quickly as the storage capacity)

13

This is logarithmic plot of these laws.

14

Raymond Kurzweil is an American author, computer scientist, inventor and
futurist.

Aside from futurism, he is involved in fields such as optical character recognition
(OCR), text-to-speech synthesis, speech recognition technology, and electronic
keyboard instruments.

He has written books on health, artificial intelligence (AI), singularity.

Kurzweil's first book, The Age of Intelligent Machines, presented his ideas about
the future in 1990. Kurzweil extrapolated trends in the improvement of computer
chess software performance to predict that computers would beat the best
human players "by the year 2000". In May 1997, chess World Champion Garry
Kasparov was defeated by IBM's Deep Blue computer in a well-publicized chess
match.

15

He analyzed the evolution of crucial events of our civilization and proposed the commonly
accepted belief that the primary anatomical difference between humans and other
primates that allowed for superior intellectual abilities was the evolution of a larger
neocortex.

According to Kurzweil, technologists will be creating synthetic neocortexes based on the
operating principles of the human neocortex with the primary purpose of extending our
own neocortexes.

16

In his 1999 book The Age of Spiritual Machines, Kurzweil proposed "The Law of
Accelerating Returns", according to which the rate of change in a wide variety
of evolutionary systems (including the growth of technologies) tends to
increase exponentially.

He proposed an extension of Moore's law to a wide variety of technologies, and
used this to argue in favor of concept of a technological singularity.

Perhaps most significantly, Kurzweil foresaw the explosive growth in worldwide
Internet use that began in the 1990s. At the time of the publication of The Age
of Intelligent Machines, there were only 2.6 million Internet users in the
world,[62] and the medium was unreliable, difficult to use, and deficient in
content. He also stated that the Internet would explode not only in the number
of users but in content as well, eventually granting users access "to
international networks of libraries, data bases, and information services".
Additionally, Kurzweil claims to have correctly foreseen that the preferred
mode of Internet access would inevitably be through wireless systems, and he
was also correct to estimate that the latter would become practical for
widespread use in the early 21st century.

17

Kurzweil suggests that this exponential technological growth is counter-
intuitive to the way our brains perceive the world—since our brains were
biologically inherited from humans living in a world that was linear and local—
and, as a consequence, he claims it has encouraged great skepticism in his
future projections.

In the context of the before mentioned challenges and Big Data problems, the
need of the new paradigms for high-perfomance computing is very high and
important.

18

Motivation and Definition

for Distributed Computing

19

How to increaze the Computing Power?

Here you can see the ananlogy with the increase of Human Weight.

To some extent any young human can increase the weight with the increase of
height. But after childhood this opportunity is finished, and adult people can
increase the weight with the increase of WIDTH only.

The same situation with computing power.
To some extent we can increase the computing power with the increase of the
number of transistors. But after Moore'Law limit this opportunity is finished, and
we can increase the weight with the increase of the number of processors only.

20

What is Distributed Computing?
“A collection of independent computers that appears to its users as a single coherent system” (C)
Tannenbaum, van Steen
… are networked together
… appear to the user as a one computer
… work together to achieve a common goal

We should emphasize the following important aspects of this definition:
• from system architecture point of view: the machines are autonomous; this means
they are computers which, in principle, could work independently;
• from user point of view: the distributed system is perceived as a single system solving
a certain problem (even though, in reality, we have several computers placed in different
locations).

By running a distributed system software the computers are enabled to:
- coordinate their activities
- share resources: hardware, software, data.

21

It means that:
- differences between the various computers, the ways in which they communicate,
and the internal organization of the distributed system are hidden from users;
- users and applications can interact with a distributed system in a consistent and
uniform way, regardless of where and when interaction takes place.

22

Comparison with Parallel Computing

23

Connectivity - The degree of coupling among a set of modules, whether hardware or software, is
measured in terms of the interdependency and binding and/or homogeneity among the modules.
When the degree of coupling is high (low), the modules are said to be tightly (loosely) coupled.

Memory -Shared memory systems are those in which there is a (common) shared address space
throughout the system. Communication among processors takes place
via shared data variables, and control variables for synchronization among
the processors. Semaphores and monitors that were originally designed for
shared memory uniprocessors and multiprocessors are examples of how synchronization can be
achieved in shared memory systems. All multicomputer systems that do not have a shared address
space provided by the underlying architecture and hardware – distributed memory systems –
necessarily communicate by message passing. The abstraction called shared memory is sometimes
provided to simulate a shared address space. For a distributed system, this abstraction is called
distributed shared memory systems.
Granularity – The ratio of the amount of computation to the amount of communication within the
parallel/distributed program is termed as granularity. If the degree of parallelism is coarse-grained
(fine-grained), there are relatively many more (fewer) productive CPU instruction executions,
compared to the number of
times the processors communicate either via shared memory or message passing
and wait to get synchronized with the other processors. Programs with
fine-grained parallelism are best suited for tightly coupled systems.

.

24

Models

25

Models of Distributed Computing are divided in the following categories:

1. Architectural Models
2. Interaction Models
3. Fault Models

26

Flynn's taxonomy is a classification of computer architectures, proposed by
Michael J. Flynn in 1966.
This classification is based upon the number of concurrent Instruction streams and
Data streams available in the architecture: Single or Multiple.

Flynn’s Taxonomy includes:

• SISD: traditional uniprocessor computers
• MISD: Space Shuttle flight control computer
• SIMD: array processor, GPU.
• MIMD: parallel systems, distributed systems (cloud computing).

27

Architectural-Service Models of Distributed Computing are divided in the
following categories:

• Centralized (highly-coupled, cluster computing): mainframe, cluster
• Client-server: mail, banking, scientific computations
• Multi-tier: grid systems, domain name servers (DNS)
• Peer-to-peer: file exchange, scientific computations

28

• An asynchronous execution is an execution in which

(i) there is no processor synchrony and there is no bound on the drift rate of processor
clocks,

(ii) message delays (transmission + propagation times) are finite but unbounded, and

(iii) there is no upper bound on the time taken by a process to execute a step.

An example asynchronous execution with four processes P0 to P3 is shown in this Figure.

The arrows denote the messages; the tail and head of an arrow mark the send and
receive event for that message, denoted by a circle and vertical line, respectively. Non-
communication events, also termed as internal events, are shown by shaded circles.

29

A synchronous execution is an execution in which

(i) processors are synchronized and the clock drift rate between any two

processors is bounded,

(ii) message delivery (transmission + delivery) times are such that they occur in

one logical step or round, and

(iii) there is a known upper bound on the time taken by a process to execute a

step.

An example of a synchronous execution with four processes P0 to P3 is shown in

this Figure.

30

The faults model define failures that may occur in distributed systems. Hadzilacos
and Toueg provide the following taxonomy of fault models.

Process omission failures: The chief omission failure of a process is to crash. When
we say that a process has crashed we mean that it has halted and will not execute
any further steps of its program ever.
Communication omission failures: The communication channel produces an
omission failure if it does not transport a message from p’s outgoing message buffer
to q’s incoming message buffer. This is known as ‘dropping messages’ and is generally
caused by lack of buffer space at the receiver or at an intervening gateway, or by a
network transmission error, detected by a checksum carried with the message data.

Timing failures: They are applicable in synchronous distributed systems where time
limits are set on process execution time, message delivery time and clock drift rate.
Any one of these failures may result in responses being unavailable to clients within a
specified time interval.

Arbitrary failures: The term arbitrary or Byzantine failure is used to describe the worst
possible failure semantics, in which any type of error may occur. For example, a
process may set wrong values in its data items, or it may return a wrong value in
response to an invocation.

31

Advantages, Disadvantages, Pitfalls

32

Performance: very often a collection of processors can provide higher performance
(and better price/performance ratio) than a centralized computer. Enhanced
performance through load distributing.

Distribution: many applications are inherently distributed - involve, by their nature,
spatially separated machines (banking, commercial, automotive system).

Reliability (fault tolerance): no single point of failure, if some of the machines crash,
the system can survive.

Incremental growth (scalability): as requirements on processing power grow, new
machines can be added incrementally.

Sharing of computations/data/resources/management: complex computations can
be shared; shared data is essential to many applications (banking, computer
supported cooperative work, reservation systems); other resources can be also
shared (e.g. expensive printers).

Communication: facilitates human-to-human communication.

Economics (green computing): lower (price/performance) ratio, efficient power
consumption.

Flexibility: load balancing, spreading workload over many components.

33

Difficulties of developing distributed software: how should operating systems,
programming languages and applications look like? Developing a distributed system
software is hard.

Networking problems: several problems are created by the network infrastructure,
which have to be dealt with: loss of messages, overloading, etc. When network is
overloaded/messages lost, rerouting/rewiring the network is costly/difficult.

Security problems: sharing generates the problem of data security. More sharing
leads to less security especially in the issues of confidentiality & integrity.

Incremental growth: is hard in practice due to changing of hardware and software.

34

Distributed systems differ from traditional software because components are
dispersed across a network. Not taking this dispersion into account during
design time is what makes so many systems needlessly complex and results in
mistakes that need to be patched later on.

Peter Deutsch, when he worked at Sun Microsystems company, formulated
these mistakes as the following false assumptions that everyone makes when
developing a distributed application for the first time.

35

Design

36

In this section we enlist several and consider 4 important chracteristics that should be
taken into account to design and build an efficient distributed system.

A distributed system should

- make resources easily accessible;
- reasonably hide the fact that resources are distributed across a network;
- be open;
- be scalable;
- and others.

37

Access transparency: local and remote resources are accessed using identical
operations.
Location transparency: users cannot tell where hardware and software resources
(CPUs, files, data bases) are located; the name of the resource shouldn’t encode the
location of the resource.
Migration (mobility) transparency: resources should be free to move from one
location to another without having their names changed.
Replication transparency: the system is free to make additional copies of files and
other resources (for purpose of performance and/or reliability), without the users
noticing. Example: several copies of a file; at a certain request that copy is accessed
which is the closest to the client.
Concurrency transparency: the users will not notice the existence of other users in
the system (even if they access the same resources).
Failure transparency: applications should be able to complete their task despite
failures occurring in certain components of the system.
Performance transparency: load variation should not lead to performance
degradation. This could be achieved by automatic reconfiguration.

38

Scalability of a system can be measured along at least three different dimensions
(Neuman, 1994):

1.First, a system can be scalable with respect to its size, meaning that we can easily
add more users and resources to the system.

2.Second, a geographically scalable system is one in which the users and resources
may lie far apart.

3.Third, a system can be administratively scalable, meaning that it can still be easy to
manage even if it spans many independent administrative organizations.

Unfortunately, a system that is scalable in one or more of these dimensions often
exhibits some loss of performance as the system scales up.

39

How to predict/control performance?

 The performance of individual workstations.
 The speed of the communication infrastructure.
 Extent of reliability (fault tolerance) (replication and preservation of coherence

imply large overheads).
 Flexibility in workload allocation: for example, idle processors (workstations) could

be allocated automatically to a user’s task.

40

41

42

Types of Computing Systems
Before starting to discuss the principles of distributed systems, let us first take a
closer look at the various types of distributed systems. In the following we make a
distinction between distributed computing systems, distributed information systems,
and distributed embedded systems.

One can make a very rough distinction between two subgroups.

The closely connected computers:
for example, in cluster computing, the underlying hardware consists of a collection of
similar workstations or PCs, closely connected by means of a high-speed local-area
network, where each node runs the same operating system.

The loosely connected computers:
for example, in grid computing, the underlying hardware consists of a federation of
computer systems, where each system may fall under a different administrative
domain, and may be very different when it comes to hardware, software, and
deployed network technology

43

Cluster Computing

Let’s consider the cluster computing paradigm...

44

Cluster computing systems became popular when the price/performance ratio of
personal computers and workstations improved. At a certain point, it became financially
and technically attractive to build a supercomputer using off-the-shelf technology by
simply hooking up a collection of relatively simple computers in a high-speed network.
In virtually all cases, cluster computing is used for parallel programming in which a single
(compute intensive) program is run in parallel on multiple machines.

45

The typical example of a cluster computer is shown in this Figure.

Each cluster consists of a collection of compute nodes that are controlled and accessed
by means of a single master node.

The master node typically handles the allocation of nodes to a particular parallel
program, maintains a batch queue of submitted jobs, and provides an interface for the
users of the system.

The master node actually runs the middleware, i.e. software needed for the execution
of programs and management of the cluster, while the compute nodes often need
nothing else but a standard operating system.

It should be noted that an important part of this middleware is based on the libraries for
executing parallel programs, which effectively provide advanced message-based
communication facilities only, but are not capable of handling faulty processes,
security, etc.

46

Tianhe-2 or TH-2 ("Milky Way 2") is a 33.86-petaflop supercomputer located in
National Supercomputer Center in Guangzhou, China. It was developed by a team of
1,300 scientists and engineers.

The development of Tianhe-2 was sponsored by the 863 High Technology Program,
initiated by the Chinese government, the government of Guangdong province, and
the government of Guangzhou city. It was built by China's National University of
Defense Technology (NUDT) in collaboration with the Chinese IT firm Inspur. Inspur
manufactured the printed circuit boards and helped with the installation and testing
of the system software. It was the world's fastest supercomputer according to the
TOP500 lists from 2013 to 2015. The record was surpassed in June 2016 by the
Sunway TaihuLight.

The Sunway TaihuLight (Chinese: 神威·太湖之光, Shénwēi·tàihú zhī guāng) is a
Chinese supercomputer which, as of March 2018, is ranked number one in the
TOP500 list as the fastest supercomputer (cluster) in the world, with a LINPACK
benchmark rating of 93 petaflops. This is nearly 3 times faster than the previous
holder of the record, the Tianhe-2, which ran at 34 petaflops.
It was designed by the National Research Center of Parallel Computer Engineering &
Technology (NRCPC) and is located at the National Supercomputing Center in Wuxi in
the city of Wuxi, in Jiangsu province, China.

47

Grid Computing

A characteristic feature of cluster computing is its homogeneity.

In most cases, the computers in a cluster are largely the same, they all have the same
operating system, and are all connected through the same network.

In contrast, grid computing systems have a high degree of heterogeneity: no
assumptions are made concerning hardware, operating systems, networks,
administrative domains, security policies, etc.

48

A key issue in a grid computing system is that resources from different organizations
are brought together to allow the collaboration of a group of people or institutions.
Such a collaboration is realized in the form of a virtual organization.

The people belonging to the same virtual organization have access rights to the
resources that are provided to that organization. Typically, resources consist of
compute servers (including supercomputers, possibly implemented as cluster
computers), storage facilities, and databases. In addition, special networked devices
such as telescopes, sensors, etc., can be provided as well.

49

Types of Grids:

Computational Grid: Shared Compute Resources

Data Grid: Access to Large amounts of Data spread across various sites

Collaboration Grid: multiple collaboration systems for collaborating on a common
issue

50

CNGrid (Chinese: 中国国家网格) is the Chinese national high performance
computing network supported by 863 Program.

China National Grid (CNGrid) is a major project supported by the Hi-Tech Research
and Development (863) Program of China. CNGrid is the new generation test-bed of
information infrastructure aggregating high-performance computing and
transaction
processing capabilities. Through resource sharing, work in coordination, and service
mechanism, CNGrid effectively supports many applications such as scientific
research, resource environment, advanced manufacturing, and information
services.
CNGrid promotes the construction of national information industry and the
development of related industries by technological innovations. China National Grid
Software, named CNGrid GOS, is a suite of grid software with independent
intellectual property, which is developed by CNGrid software R&D project team.

CNGrid GOS mainly includes a system software, a CA certificate management system
and a testing environment, three business version of sub-systems (high
performance
computing gateway, data grid, and grid workflow), and a monitoring system. This
project is undertaken by seven organizations including Institute of Computing
Technology of Chinese Academy of Sciences, Jiangnan Institute of Computing
Technology, Tsinghua University, National University of Defense Technology,
Beihang University, Computer Network Information Center of Chinese Academy of
Sciences and Shanghai Supercomputing Center.

51

GPU Computing
A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics
card or video card. A GPU offloads the CPU from tedious graphics tasks in video
editing applications.
The world’s first GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU
chips can process a minimum of 10 million polygons per second, and are used in
nearly every computer on the market today. Some GPU features were also integrated
into certain CPUs.
Traditional CPUs are structured with only a few cores. For example, the Xeon X5670
CPU has six cores. However, a modern GPU chip can be built with thousands of
processing cores.

52

*SIMD - why it is distributed? – independent from CPU, several graphic cards can be
integrated in PC, clusters, etc*

Unlike CPUs, GPUs have a throughput architecture that exploits massive parallelism
by executing many concurrent threads slowly, instead of executing a single long
thread in a conventional microprocessor very quickly. Lately, parallel GPUs or GPU
clusters have been garnering a lot of attention against the use of CPUs with limited
parallelism.

General-purpose computing on GPUs, known as GPGPUs, have appeared in the HPC
field.

53

CPU VERSUS GPU
LEFT:
A simple way to understand the difference between a CPU and GPU is to compare
how they process tasks. A CPU consists of a few cores optimized for sequential serial
processing while a GPU consists of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously.

RIGHT:
GPUs have thousands of cores to process parallel workloads efficiently

54

Modern GPUs are not restricted to accelerated graphics or video coding. They are
used in HPC systems to power supercomputers with massive parallelism at multicore
and multithreading levels.

GPUs are designed to handle large numbers of floating-point operations in parallel. In
a way, the GPU offloads the CPU from all data-intensive calculations, not just those
that are related to video processing. Conventional GPUs are widely used in mobile
phones, game consoles, embedded systems, PCs, and servers.

The NVIDIA CUDA Tesla, Fermi, or Volta cards are used in GPU clusters or in HPC
systems for parallel processing of massive floating-pointing data.

55

As today’s standard screening methods frequently fail to diagnose breast cancer
before metastases have developed, earlier breast cancer diagnosis is still a major
challenge. Three-dimensional ultrasound computer tomography promises high-quality
images of the breast, but is currently limited by a time-consuming image
reconstruction.

Medical imaging is one of the earliest applications to take advantage of GPU
computing to get acceleration. The use of GPUs in this field has matured to the point
that there are several medical modalities shipping with NVIDIA's Tesla GPUs now.

* CalcUA”, the supercomputer of the University of Antwerp, which cost 3.5 million
euro in March 2005.

56

Volta uses next generation NVIDIA NVLink™ high-speed interconnect technology.
This delivers 2X the throughput, compared to the previous generation of NVLink.

With over 21 billion transistors, Volta is the world’s most powerful GPU architecture,
pairing NVIDIA CUDA® and Tensor Cores, delivering the performance of an AI
supercomputer in a GPU.

With Volta-optimized CUDA and NVIDIA Deep Learning SDK libraries like cuDNN,
NCCL, and TensorRT™, the industry's top frameworks and applications can easily tap
into the power of Volta.

Equipped with 640 Tensor Cores, Volta delivers over 100 teraFLOPS of deep learning
performance, a 5X increase compared to prior generation NVIDIA Pascal™
architecture.

57

NVIDIA DGX SATURNV is POWERED BY NVIDIA TESLA® V100 GPUs and Built on the
latest NVIDIA Volta GPU architecture.

with NVIDIA Volta is a GPU-powered AI supercomputer developed in-house at
NVIDIA, demonstrating how NVIDIA® DGX-1™ can change the landscape of businesses
and scientific research.

The opportunity for AI-accelerated companies is exploding as the world comes to rely
on increasingly sophisticated products and services to build better customer
experiences, transform supply chains, and improve product quality. NVIDIA leads the
AI computing industry, and SATURNV is designed to enable moonshots—empowering
the world’s most brilliant minds to do their life’s work.

58

GPU Computing is highly energy-efficient.

For example, DGX SATURNV is raising the bar for energy efficiency (making the Green500 with
15 GFLOPS per watt of FP64 efficiency) with a total expected
computational capacity footprint of 660 petaFLOPS of AI horsepower.

59

Let's see this video with the vivid demonstration of difference between
CPU and GPU computing.

60

Client-Server Computing

61

An example of a well-established distributed system is the client-server
architecture. In this scenario, client machines (PCs and workstations) are
connected to a central server for compute, e-mail, file access, and database
applications.
The system is structured as a set of processes - servers, that offer services to the
users – clients:

• clients and servers communicate over a computer network on separate
hardware, but both client and server may reside in the same system

• a server runs one or more server programs which share their resources with
clients

• a client does not share any of its resources, but requests a server's content or
service function

Applications:
Email, network printing, World Wide Web.

62

The system is structured as a set of processes - servers, that offer services to the users -
clients.

Work:

- clients and servers communicate over a computer network on separate
hardware, but both client and server may reside in the same system
- a server runs one or more server programs which share their resources with clients

- a client does not share any of its resources, but requests a server's content or
service function

63

Here you can see several examples of the most popular client-server systems:

Electronic mail, most commonly referred to as email or e-mail since ca. 1993, is a
method of exchanging digital messages from an author to one or more recipients.
Modern email operates across the Internet or other computer networks. Some early
email systems required that the author and the recipient both be online at the same
time, in common with instant messaging. Today's email systems are based on a store-
and-forward model. Email servers accept, forward, deliver, and store messages.
Neither the users nor their computers are required to be online simultaneously; they
need connect only briefly, typically to a mail server, for as long as it takes to send or
receive messages.

Network printing: A print server, or printer server, is a device that
connects printers to client computers over a network. It accepts print jobs from the
computers and sends the jobs to the appropriate printers, queuing the jobs locally to
accommodate the fact that work may arrive more quickly than the printer can
actually handle it. Ancillary functions include the ability to inspect the queue of jobs
to be processed, the ability to reorder or delete waiting print jobs, or the ability to do
various kinds of accounting (such as counting pages printer, which may involve
reading data generated by the printer(s)).

64

The World Wide Web is a system of interlinked hypertext documents that are
accessed via the Internet. With a web browser, one can view web pages that may
contain text, images, videos, and other multimedia and navigate between them
via hyperlinks.

Online banking, also known as internet banking, it is an electronic payment system
that enables customers of a bank or other financial institution to conduct a range of
financial transactions through the financial institution's website. The online banking
system will typically connect to or be part of the core banking system operated by a
bank and is in contrast to branch banking which was the traditional way customers
accessed banking services.

65

Volunteer Computing

66

What is Volunteer Computing?
Computer owners donate their computing resources (such as processing power
and storage) to one or more "projects".
Why it is important (motivation):

• low costs
• high performance

Applications:
science, multimedia

67

The basic workflow is like this:

• Volunteers select project and get “job”
• Volunteers get feedback on their contribution
• Projects compete for volunteers

68

 The typical budget for construction and operation of various infrastructures:

Cluster: $145K
Computing hardware; power/AC infrastructure; network hardware; storage; power;
sysadmin
Cloud: $1.75M
Volunteer: $1K - $10K
Server hardware; sysadmin; web development

69

The cumulative performance of all volunteer computing systems are as
follows:
Current

500K people, 1M computers
6.5 PetaFLOPS (3 from GPUs, 1.4 from PS3s)

Potential

1 billion PCs today, 2 billion in 2015
GPU: approaching 1 TFLOPS

How to get 1 ExaFLOPS:
4M GPUs * 0.25 availability

How to get 1 Exabyte:
10M PC disks * 100 GB

70

Volunteer computing is crucially important, especially to projects that
have limited funding.

SETI@home ("SETI at home") is an Internet-based public volunteer
computing project employing the BOINC software platform created by
the Berkeley SETI Research Center and is hosted by the Space Sciences
Laboratory, at the University of California, Berkeley.

Its purpose is to analyze radio signals, searching for signs of
extraterrestrial intelligence, and as such is one of many activities
undertaken as part of the worldwide SETI effort.

SETI@home is oldest and the third large-scale use of distributed
computing over the Internet for research purposes, after Great
Internet Mersenne Prime Search (GIMPS) was launched in 1996 and
distributed.net in 1997.

Along with MilkyWay@home and Einstein@home, it is the third major
computing project of this type that has the investigation of
phenomena in interstellar space as its primary purpose.

71

Desktop Grid Computing

What is Desktop Grid Computing?

A form of distributed computing in which an organization (business, university, etc.)
uses its existing computers (desktop and/or cluster nodes) to handle its own
long-running computational tasks.

72

Applications of desktop grid computing: calculations, multimedia

73

It is similar to Volunteer Computing, but… differs:

• The computing resources can be trusted; i.e. one can assume that the PCs don't
return results that are intentionally wrong or falsified
• There is no need for screensaver graphics; in fact it may be desirable to have the
computation be completely invisible and out of the control of the PC user
• Client deployment is typically automated.

74

SZTAKI Desktop Grid (SzDG) is a BOINC project located in Hungary run by the
Computer and Automation Research Institute (SZTAKI) of the Hungarian Academy of
Sciences.

75

The University of Westminster Local Desktop Grid connects laboratory PCs of the
university into a BOINC based Desktop Grid infrastructure. The university is set over
four main campuses and some additional smaller locations in Central- and North-
West-London each of them offering a variable number of mainly windows based PCs
for teaching purposes.

The University of Westminster Local Desktop Grid currently includes over 1500
registered machines. These machines are available for desktop grid computations
whenever they are switched on but not utilised by students for teaching or other
purposes.

The aim of the University of Westminster Desktop Grid Gateway (UoW DG Gateway)
is to support computation intensive research and teaching applications at the
University of Westminster, based on low cost local resources.

76

Peer-to-Peer Computing

The P2P architecture offers a distributed model of networked systems.

In this section, P2P systems are introduced at the physical level and overlay networks
at the logical level.

77

Peer-to-peer (P2P) computing or networking is a distributed application architecture
that partitions tasks or workloads between peers. Peers are equally
privileged, equipotent participants in the application. They are said to form a peer-to-
peer network of nodes.

Peers make a portion of their resources, such as processing power, disk storage or
network bandwidth, directly available to other network participants, without the
need for central coordination by servers or stable hosts. Peers are both suppliers and
consumers of resources, in contrast to the traditional client-server model in which
the consumption and supply of resources is divided. Emerging collaborative P2P
systems are going beyond the era of peers doing similar things while sharing
resources, and are looking for diverse peers that can bring in unique resources and
capabilities to a virtual community thereby empowering it to engage in greater tasks
beyond those that can be accomplished by individual peers, yet that are beneficial to
all the peers.

78

Applications of peer-to-peer computing are very wide:

• File sharing (BitTorrent)
• Storage (Gnutella 2)
• Calculations (OurGrid)
• Collaborations (MMORPG)
• Multimedia (SopCast)

79

A peer-to-peer network is designed around the notion of equal peer nodes
simultaneously functioning as both "clients" and "servers" to the other nodes on the
network.

Unstructured peer-to-peer networks do not impose a particular structure on the
overlay network by design, but rather are formed by nodes that randomly form
connections to each other.

In structured peer-to-peer networks the overlay is organized into a specific
topology, and the protocol ensures that any node can efficiently search the network
for a file/resource, even if the resource is extremely rare.

Hybrid models are a combination of peer-to-peer and client-server models. A
common hybrid model is to have a central server that helps peers find each other.

80

Cloud Computing

81

What is Cloud Computing?
This notion will be explained in details below in all modules of this course.

At this stage we will consider the following "jargon" definition:

The delivery of computing as a service rather than a product, whereby shared

resources, software, and information are provided to computers and other
devices as a utility (like the electricity grid) over a network (typically the
Internet).

82

We need not to install a piece of software on our local PC and this is how, the cloud
computing overcomes platform dependency issues. Hence, the Cloud Computing is
making business application mobile and collaborative.

83

Cloud Computing is used in numerous applications like these:

• Collaborations (Google Docs, Microsoft Office 365)
• Storage (Amazon Web Services)
• Calculations (Google App, Amazon Web Services)

84

Ubiquitous Computing

85

What is Ubiquitous Computing?

In contrast to desktop computing, Ubiquitous Computing can occur everywhere
and anywhere, using any device, in any location, and in any format, including
laptop computers, tablets and terminals in everyday objects such as a fridge
or a pair of glasses

It has various usages, but mostly in applications for Internet of Things and
wearable computing. These topics will be covered later.

86

Previous (old) paradigm of ubiquitous computing (top part of the Figure):

 Organizing a sensor network database, while storing and processing data only at
 the operator’s site.

Cloud-Fog-Dew (new) paradigm of ubiquitous computing (top part of the Figure):

 Organizing a sensor network database (Cloud), while storing and processing data
 only at the controllers near sensors (Fog) or sensors (Dew)

87

Crowd Computing

88

What is Crowd Computing (crowdsourcing)?

“Harnessing the power of people out in the web to do tasks that are hard for
individual users or computers to do alone. Like cloud computing, crowd
computing offers elastic, on-demand human resources that can drive new
applications and new ways of thinking about technology” (C) Rob Miller

89

It is actually like

volunteer PC computing,

but crowd computing uses

volunteer brain computing

and combines human intelligence (the crowd) with artificial intelligence (the cloud).

90

Crowd Computing examples are everywhere:

Astronomy:
 galaxy classification (www.galaxyzoo.org)

Biology:
 protein folding (http://fold.it)

Business:
 Amazon Mechanical Turk (http://mturk.com)

1

Cloud Computing
Lecture Manual

Volume 1

Module 1

Parallel and Distributed
Computing

2

Content
Lecture 1. Organization of Parallel Computing 5

Parallel Computing 6

Overview 6

Classification of Systems 14

Memory 24

Programming Models 36

Parallel Computing Design 44

Decomposition 47

Communication 52

Agglomeration 58

Mapping 62

Synchronization 70

Parallel Computing Performance 75

Metrics 76

Laws 83

Lecture 2. Architectures of Distributed Systems 103

Architecture 104

Introduction 104

Styles 109

System Architectures 117

Centralized Architectures 119

Multitiered Architectures 130

Decentralized Architectures 135

Hybrid Architectures 145

Middleware 153

Automatic Adaptation 162

3

4

Module 1. Parallel and
Distributed Computing

5

Lecture 1. Organization of
Parallel Computing

6

Parallel Computing

Overview

7

8

9

Bit-level: from bit processing to word processing.

Instruction-level: a single operation of a processor.

Thread-level: stream of execution (has one or multiple instructions).

Task-level: execution path through the address space that has many instructions.
(Some times task and process are used interchangeably).

Process-level: instance of a program in execution. It has its own address space,
and interacts with other processes only through communication managed by OS.
A process might contain one or multiple threads,
which share the same address space and interacting directly.

Program-level: an executable file with one or multiple tasks.

10

More than sixty years ago, when hardware was bulky and expensive,
most computers were designed in a bit-serial fashion.

In this scenario, bit-level parallelism (BLP) converts bit-serial processing to
word-level processing gradually.

Over the years, users graduated from 4-bit microprocessors to 8-,
16-, 32-, and 64-bit CPUs.

Bit-level parallelism (BLP) led us to the next wave of improvement,
known as instruction-level parallelism (ILP).

Let’s consider instruction-level parallelism (ILP) in details.

11

In instruction-level parallelism (ILP)
the processor executes multiple instructions simultaneously rather than
only one instruction at a time.

For the past more than 40 years,
ILP evolved significantly with appearance of various techniques like:
• branch prediction,
• dynamic scheduling,
• speculation,
• pipelining,
• superscalar computing,
• VLIW (very long instruction word) architectures, and
• multithreading.

Let’s consider multithreading in details.

12

Multithreading or thread-level parallelism (TLP) –
is sharing the functional units of one processor
by multiple processes or threads taking part in overlapped execution.
The purpose can be to execute:
- several programs on one processor or
- to execute a single application as a multithreaded program (real parallel program).

Processes can belong to different users (applications), but threads belong
to the same user (application).
It is a higher level of parallelism than instruction level parallelism (ILP),
because the execution of each single thread can exploit ILP.

Advantage (in comparison to process level parallelization):
A switch between processes, normally denoted context switch in operating systems
terminology, can typically use hundreds or even thousands of clock cycles,
while there is multithreaded processors that can switch to another thread within one
clock cycle.

13

14

Classification of Systems

Now, let’s consider the classification of parallel systems.

15

Flynn divided multiprocessors into four categories based on the multiplicity
of instruction streams and data streams.

This has become known as the famous Flynn’s taxonomy.

16

A conventional computer (uniprocessor or von Neumann machine) is termed a
Single Instruction Single Data (SISD) machine.

Here you can see:
- its place in Flynn taxonomy
- its main characteristics
- and examples of implementation – in traditional uniprocessor computers.

Let’s consider them in details on the next slide…

17

It has one execution or processing unit (PU).

This processing unit is controlled by a single sequence of instructions,
and it operates on a single sequence of data in memory.

In the early days of computing, the control logic needed to decode the instructions
into control signals that manage the execution and
data traffic in a processor was a costly component.

18

The Multiple Instruction Single Data (MISD) category of machines has been
given a mixed treatment in the literature. Some textbooks simply say that no machines
of this category have been built, while others present examples. In our view
MISD is an important category representing different parallel architectures.

Here you can see:
- its place in Flynn taxonomy
- its main characteristics
- and examples of implementation – in avionics control computers,

in specialized hardware structures – let’s consider them in details on the next slide…

19

One of the example architectures presented in the classical paper by Flynn
is very similar to the variant shown in this Figure.
Here a source data stream is
- sent from the memory to the first PU,
- then a derived data stream is sent to the next PU, where it

is processed by another program (instruction stream)
- and so on until it is streamed back to memory.

This kind of computation has by some authors been called a software
pipeline. It can be efficient for applications such as real-time processing
of a stream of images (video) data, where data is streamed through different PUs
executing different image processing functions (e.g. filtering or feature extraction).

Another type of parallel architectures that can be classified as MISD is systolic
arrays. These are specialized hardware structures, often implemented as an
application specific integrated circuit (ASIC), and use highly pipelined and parallel execution
of specific algorithms such as pattern matching or sorting or cryptocurrency mining.

20

When introducing parallel processing,
it was therefore natural to let multiple execution units operate on different
data (multiple data streams).
They were controlled by the same single control
unit, that is, a single instruction stream.

A fundamental limitation of these Single Instruction Multiple Data (SIMD) architectures is
that different PUs cannot execute different instructions and, at the same
time, they are all bound to one single instruction stream.

Here you can see:
- its place in Flynn taxonomy
- its main characteristics
- and examples of implementation – in array processors, GPU, etc.

Let’s consider them in details on the next slide…

21

SIMD machines evolved in many variants.

A main distinction is between
- SIMD with shared memory (as shown in this Figure) and
- SIMD computers with distributed memory.

In the latter variant (distributed memory),
the main memory is distributed to the different PUs.

The advantage of this architecture is that it is much easier to implement compared
to multiple data streams to one shared memory.

The disadvantage is that it gives the need for some mechanism
such as special instructions for communicating between
the different PUs.

22

Multiple Instruction Multiple Data (MIMD) category comprises
most contemporary parallel computer architectures,
and its inability to categorize these
has been a source for the proposal of different alternative taxonomies,
for example, described by Quinn in his book:

M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill Book
Company, New York, 1987.

But this question is out of scope of this course.

23

In a MIMD computer every PU has its own control unit that reads, a separate stream of
instructions dictating the execution in its PU.

Just as for SIMD machines,
a main subdivision of MIMD machines is into those having
- shared memory or
- distributed memory.

In the latter variant (distributed memory) each PU can have a local memory storing both
instructions and data. This leads us to another main categorization of multiprocessors,
– shared memory multiprocessors and message passing multiprocessors.

Let’s consider organization of memory in the NEXT SECTION…

24

Memory

25

Distributed Memory Architecture
Each processor has its own address space (local memory).
Changes done by each processor is not visible by others.

Shared Memory Architecture
Processors perform their operations independently,
but they share the same resources
since they have access to all the memory as global address space.

Hybrid (Distributed-Shared) Memory Architecture
It contains
- the shared memory components
and
- the distributed memory components.
It is used in most of today’s fast and large parallel computers.

26

The architecture of parallel systems is categorized by two aspects:
- Whether the memory is physically centralized or distributed
- Whether the address space is shared or not

If
- memory is centralized AND address space is shared then we have uniform

memory access (UMA) architecture;
- memory is distributed AND address space is shared then we have non-uniform

memory access (NUMA) architecture;
- memory is distributed AND address space is NOT shared then we have distributed

memory (DM) architecture.

Sometimes systems with
- uniform memory access (UMA) architecture are called symmetric

multiprocessors (SMP)
and
- distributed memory (DM) architecture are called massively parallel processors

(MPP)

27

Processors perform their operations independently,

but they share the same memory resources

since they have access to all the memory as global address space.

If a processor changes the value in the memory,

then it will be observed by all other processors.

If many PUs try to access to a single memory module through a parallel
interconnection

network, the memory could easily become a bottleneck. That is why,

it is common to use several physical memory modules (memory banks)

as shown in this Figure.

But this architecture is called a centralized memory system, because the modules (memory

banks) are assembled as one subsystem that is equally accessible from all the processors.

28

The following main classes (listed in this figure) should be considered in details:

• UMA (Uniform Memory Access)

• NUMA (Non-uniform Memory Access)

29

It gives equal access rights and access times to memory

Due to this uniformity of access,
these systems are often called symmetric multiprocessors (SMP)
or uniform memory access (UMA) architectures

Sometimes called Cache Coherent UMA (CC-UMA)

30

Symmetric Multiprocessor (SMP) architecture uses shared system resources that can
be accessed equally from all processors.

Usually, a single OS controls the SMP machine and it schedules processes and threads
on processors so that the load is balanced.

31

Usually physically linked 2 or more SMPs,
so they can access the memory of each other directly

Not all have equal access time to all memories

Memory access across the link is much slower

32

The main alternative to centralized memory is called distributed memory and is
shown in this Figure.

The memory modules are located together with the processors.

33

• Each CPU has its own local memory.

• Changes done by each processor are not visible by others.

• Processors are connected by network.

• The program must define a way to transfer data between processors.

Such systems with distributed memory (DM) architectures
are called massively parallel processors (MPP).

34

Massively Parallel Processors (MPP) architecture consists of multiple nodes.

Each node has its own processor, memory and I/O subsystem.

An independent OS runs at each node.

35

Used in the most of the current parallel systems

The shared memory components are SMP nodes

The distributed memory component is a network

36

Programming Models

37

What is a programming model?
[Read 1st sentence from this slide]

What is a parallel programming model?
[Read 2nd sentence from this slide]

It determines how easily programmers can specify their algorithms into
parallel unit of computations (i.e., tasks) that the hardware understands

It determines how efficiently parallel tasks can be executed on the hardware

Main Goal: utilize all the processors of the underlying architecture
(e.g., SMP, MPP, CMP) and minimize the time of your program

38

39

Processors read/write the variables stored in a shared address space asynchronously.

Access to the shared memory is controlled by some mechanisms (locks/semaphores)

Advantage:
Program development can be simplified,
because no process owns the data stored in memory.
Because all processors can access the same variables,

Disadvantage:
it’s difficult to understand and manage data locality.
Data are saved locally to the processor,
that is working on it conserves memory access to this processor.
This causes bus traffic when multiple processors are trying to access the same data.

referencing data stored in memory is similar to traditional single
‐
processor programs.

40

In the shared memory programming model, the abstraction is that
parallel tasks can access any location of the memory

Parallel tasks can communicate through reading and writing
common memory locations

This is similar to threads from a single process which share a single
address space

Multi-threaded programs (e.g., OpenMP programs) are the best fit
with shared memory programming model

41

In message passing, parallel tasks have their own local memories

One task cannot access another task’s memory

Hence, to communicate data they have to rely on explicit messages
sent to each other

This is similar to the abstraction of processes which do not share an
address space

Message Passing Interface (MPI) programs are the best fit with the
message passing programming model

42

43

44

Parallel Computing Design

45

The task/channel methodology described here was proposed by Ian Foster.

In this methodology, a parallel program is viewed as a collection of tasks
that communicate by sending messages to each other through channels.

This Figure shows a task/channel representation of a hypothetical parallel program.

A task consists of an executable unit (think of it as a program)

A channel is a message queue
that connects one task's output port to another task's input port.

46

Why we need this methodology?

It is not easy to design a parallel program from scratch without some methodology.

It is far better to use a proven methodology that is general enough and that can be
followed easily.

Otherwise you will not learn from the mistakes of others.

In 1995, Ian Foster proposed such a methodology, which has come
to be called Foster's design methodology.

It is a four-stage design process as shown in this Figure with their brief descriptions.

47

Decomposition

48

49

Functional parallelism is possible when there are separate
operations that can be applied simultaneously, typically to different parts of the data set.

Functional decomposition is the paradigm in which primitive tasks are assigned
to separate functions, and then the data to which these functions can be applied is identified.

Here the focus is on the computation that is to be performed rather than on the data.
The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work as shown here in top image.

Sometimes this results in a pipelined approach, as in an audio signal processing example,
as shown here in bottom image for digital signal processing.
The signal is passed through four different filters. Each filter is a separate process.
As the data is passed through a filter it is sent to the next one in the line.
This is so-called a computational pipeline.

50

The same operation is being performed on different parts of the same data structure,
i.e. each processor performs the task of its part of the data.

• A data is divided into chunks, operations are performed on each chunk concurrently

• A set of tasks are carried out on the same data structure,
but on a different part of this structure

• Tasks on the same part of the data structure do the same operations on each instance of this
data.

51

Foster provides a checklist for evaluating the partitioning stage.
Your partitioning should satisfy the following criteria as much as possible:
1.The partition defines at least an order of magnitude more tasks
than there are processors in your target computer.
If not, you have little flexibility in subsequent design stages.
2.Redundant computations and data storage are avoided as much as possible.
If not, the resulting algorithm may not be able to deal with large problems.
3.Primitive tasks are roughly the same size.
If not, it may be hard to allocate to each processor equal amounts of work,
and this will cause an overall decrease in performance.
4.The number of tasks is an increasing function of the problem size.
Ideally, an increase in problem size should increase the number of tasks rather
than the size of individual tasks. If this is not the case, your parallel algorithm
may not be able to solve larger problems when more processors are available.
5.You have identified several alternative partitions.
You can maximize flexibility in subsequent design stages by considering alternatives now.
Remember to investigate both domain and functional decompositions.

52

Communication

53

When the entire computation is one sequential program,
all of the data is available to all parts of the program.
When that computation is divided up into independent tasks
that may execute in separate processors,
some of the data needed by a task may reside in its local memory,
but some of it may reside in that of other tasks.
As a result, these tasks may need to exchange data with one another.
This information flow is specified in the communication stage of the design.
This inter-task communication does not exist in a sequential program;
it is an artifact of the parallelization of the computation.
Therefore considered to be entirely overhead.
Overhead is just a term that means the price we pay to produce something,
but that is not directly a part of what we produce.
We want to minimize this overhead in our design;
therefore it is important to identify it.
We also want to design the program so
that delays caused by this communication are minimal.

54

55

56

57

You should evaluate your design solution by these criteria:
1.All tasks perform about the same number of communication operations.
Unbalanced communication requirements suggest a design
that will not scale to a larger size instance of the problem.
2.Each task should communicate only with a small number of neighbors.
If each task must communicate with many other tasks,
it will add too much overhead.
3.The communication operations should be able to proceed concurrently.
If not, your algorithm is likely to be inefficient and non-scalable to a larger problem.
4. Tasks can perform their computations concurrently.
If not, your algorithm is likely to be inefficient and non-scalable to a larger problem.

58

Agglomeration

59

In the first two stages of the design process,
the computation is partitioned to maximize parallelism,
and communication between tasks is introduced so that tasks have the data they need.
The resulting algorithm is still an abstraction,
because it is not designed to execute on any particular parallel computer.
It may also be very inefficient, especially
if there are many more tasks than processors on the target computer.

This is because:
• Creating a task (process) typically uses overhead,

and scheduling tasks on the processor uses overhead.
• The communication between tasks on the same processor adds artificial overhead,

because if these tasks were combined into a single task,
that communication would not exist.

Even if there are as many processors as tasks,
there may be inefficiencies in the design due to the inter-task communication.

In the third stage, agglomeration,
decisions made in the partitioning and communication phases are revisited.

60

One way that performance is improved is by increase of granularity,
that is by lowering communication overhead.
a) to increase locality
When two tasks that exchange data with each other are combined into a single task,
the data that was exchanged through a channel is part of a single task and
that channel and the overhead are removed. This is called increasing locality.
Figure A shows how two tasks can be combined into one to increase locality.
b) to reduce transmissions
A second way to reduce communication overhead is by combining groups of tasks
that all send and groups of tasks that all receive data from each other.
The cost of sending a message has two components, the initial start-up time,
called the latency, which is independent of how large the message is,
and the transmission time, which is a function of the number of bytes sent.
The transmission time is not reduced, but we cut the total latency in half.
Figure B illustrates this type of agglomeration.
c) to combine adjacent tasks
A third way to agglomerate is to combine adjacent tasks without reducing
the dimensionality of the solution, but to increase granularity.
Figure C shows how a 6*4 matrix that has been partitioned so that each task
has one matrix element can be agglomerated by assigning four elements to each task.
If the target architecture had only six processors, this might be a good solution.

61

You should evaluate how well your agglomeration by the following criteria:
1. Agglomeration should reduce communication costs by increasing locality.
2. If agglomeration has replicated computation,
the benefits of this replication should outweigh its costs,
for a range of problem sizes and processor counts.
3. If agglomeration replicates data, it should not compromise the scalability
of the algorithm by restricting the range of problem sizes or processors that it can address.
4. Agglomeration should produce tasks with similar computation and communication costs.
5. The number of tasks can still scale with problem size.
6. There is sufficient concurrency for current and future target computers.
7. The trade-off between the chosen agglomeration and
the cost of modification to existing sequential code is reasonable.

62

Mapping

63

Mapping, the final stage of Foster's methodology,
is the procedure of assigning each task to a processor.
Of course, this mapping problem does not arise on uniprocessors or
on shared-memory computers whose operating systems provide automatic task scheduling.
We assume here that the target architecture is a distributed-memory parallel computer.
The goal in developing mapping algorithms is to minimize total execution time.
This is usually achieved by minimizing interprocessor communication and
maximizing processor utilization.
Processor utilization is the average percentage of time during
which the computer's processors are actively executing code necessary to solve the problem.
It is maximized when the computation is balanced evenly,
because if there are processors that are idle while others are busy,
then it would suggest that a different design might be able to off load the work
being done by the busier ones onto the idle ones, making the total computation time smaller.
This is not necessarily the case, but it is the general idea.
Two different strategies to minimize execution time are shown in Figure.
Unfortunately, sometimes these two strategies will be in conflict,
in which case the design will involve trade-offs.
In addition, resource limitations may restrict the number of tasks
that can be placed on a single processor.

64

a) homogeneous mapping
usually after a domain decomposition,
there is a fixed number of tasks with similar size and similar computing steps.
A natural strategy is to divide the tasks among the processors in such a way
that each processor has the same number of tasks,
and such that adjacent tasks are assigned to the same processor as shown in Figure A.

b) heterogeneous mapping
sometimes, some of the tasks might have a different load than the others,
such as those perhaps in the corners of sub-grids.
This could create a load imbalance,
and a heterogeneous mapping might be optimal (such as shown in Figure B).

65

In the previous examples, the communication pattern was regular,
so the solutions were regular.

When the communication pattern is not regular, but is known in advance,
a static load-balancing algorithm can be used.
It can be applied at compile-time to determine a mapping strategy.
But sometimes the number of tasks is NOT known in advance,
or if it is, the communication requirements are not.
In either of these cases, a dynamic load-balancing algorithm must be used.
A dynamic load-balancing algorithm analyzes the set of running tasks
and generates a new mapping of tasks to processors.

66

Sometimes the tasks are short-lived;
they are created on the fly to solve small problems and then they are destroyed,
and they do not communicate with each other.

In this case, a task scheduling algorithm runs while the parallel program is running
and manages the mapping of tasks to processors.

Such an algorithm can be
- centralized
or
- distributed.

In general, task scheduling algorithms can be used
when a functional decomposition yields many tasks, each with weak locality requirements.

67

In a centralized task scheduling algorithm:
• one processor becomes a manager
and
• the remaining processors are used to run worker tasks.

A pool of problems is maintained, into which new problems are placed and
from which problems are taken for allocation to the worker processors.
Each worker processor runs to solve a problem,
and when it is finished, it returns its results to the manager and requests a new problem.
This Figure illustrates the idea.

68

One problem with the centralized scheduler is that the manager becomes a bottleneck.

In a distributed scheduling algorithm, there is no manager.

Instead, a separate task pool is maintained on each processor,
and idle workers request problems from other processors.

The task pool is, in effect, a distributed data structure
that is accessed by the different tasks asynchronously.

This is a more scalable solution than a centralized one.

Quinn presents a decision tree (shown in this Figure)
for deciding on how to map tasks to processors.

69

The following checklist can be used for informal evaluation of the mapping design:

1.Designs based on one task per processor
and multiple tasks per processor have been considered.

2.Both static and dynamic allocation of tasks to processors have been considered.

3.If a centralized load-balancing scheme is chosen,
you have made sure that the manager will not become a bottleneck.

4.If a dynamic load-balancing scheme is chosen,
you have evaluated the relative costs of different strategies,
and should account for the implementation costs in the analysis.

70

Synchronization

71

72

Each task keeps working until reaching a barrier.

Then, it stops and keeps waiting for the last task to reach the barrier.

When last task reaches the barrier, all tasks are synchronized.

From this point, tasks continues their work.

73

Only one task at a time may access the lock/semaphore.

The first task accesses the lock sets it to be locked and releases it when it’s done with
it.

When other tasks try to access the lock they fail until the task that owns the lock
releases it.

Can be blocking or non-blocking

74

75

Parallel Computing Performance

It is as important to know costs and benefits of parallelization.

The purpose of this section is to consider the means (metrics):

• to determine how much faster a parallel algorithm performs than a sequential

algorithm;

• to predict the performance of a parallel algorithm;

• to decide whether there are inherent limitations

that prevent a parallel algorithm from performing, and what they are;

• to determine how efficient a parallel algorithm can be

as the problem size and number of available processors increases.

76

Metrics

The following metrics are usually used for estimation of performance of parallel
programs…

77

We use the term “speedup” to indicate how much faster the parallel program is than
the sequential program.

Question: What does it mean if speedup > 1?
Answer: It means the parallel program is executing faster than the sequential program.

Question: What does it mean if speedup < 1?
Answer: It means the parallel program is executing slower than the sequential
program.

Question: For a given problem size, speedup often increases as the number of
processors increases, but it always “elbows out” and starts to decline. Why?
Answer: The overhead costs associated with creating, managing, and terminating
parallel threads increases as the number of threads increases. The amount of work to
be done by each thread keeps getting smaller as the number of threads increases. At
some point the overhead time associated with a new thread is greater than the time
savings achieved by adding a new thread. At that point the parallel execution time will
increase, and the speedup curve will drop.

78

79

We use the word “efficiency” to indicate how well we are using the available CPU
resources. An efficiency of 100% means that every one of the processors in a parallel
computation is spending all its time doing useful work, compared to the
computational rate of the sequential program.
FOR A GIVEN PROBLEM SIZE, EFFICIENCY IS ALMOST ALWAYS A
DECREASING FUNCTION OF THE NUMBER OF PROCESSORS USED TO
SOLVE THE PROBLEM.
Question: Which is better---an efficiency of 80% on two processors, or an efficiency
of 50% on four processors?

An efficiency of 80% on two processors means a speedup of 1.6.
An efficiency of 50% on four processors means a speedup of 2.0.
An efficiency of 50% on four processors is better because the speedup is higher.

Answer: Efficiency = Speedup / Number of Processors
Speedup = Efficiency * Number of Processors ⇒

80

This is true if the four processors have nothing else to do. But what if we have two
jobs to run, and each job has an efficiency of 80% on two processors and an efficiency
of 50% on four processors? In that case, we would make more efficient use of the
processors if we ran both jobs simultaneously and gave each job two processors. That
would increase the throughput of the system (i.e., the rate at which jobs are
completed).

How does this relate to parallel processing? After all, we said at the beginning of the
class that our focus is on getting particular tasks to complete faster. It’s relevant if our
problem has a potential task decomposition, and within each task decomposition there
is a potential domain decomposition. It may be better to have two tasks executing
simultaneously, each with two processors, then to first execute one task on four
processors and then execute the second task on four processors.

81

82

83

Laws

It is as important to know costs and benefits of parallelization.

The purpose of this section is to consider the means (metrics):

• to determine how much faster a parallel algorithm performs than a sequential
algorithm;

• to predict the performance of a parallel algorithm;

• to decide whether there are inherent limitations
that prevent a parallel algorithm from performing, and what they are;

• to determine how efficient a parallel algorithm can be
as the problem size and number of available processors increases.

84

Today we will talk about Amdahl’s Law.

85

Suppose that the sequential execution of a program takes T1 time units and the
parallel execution on p processors takes Tp time units

86

Amdahl's law is often used in parallel computing to predict the theoretical speedup
when using multiple processors.
For example, if a program needs 20 hours using a single processor core, and a
particular part of the program which takes one hour to execute cannot be
parallelized, while the remaining 19 hours (p = 0.95) of execution time can be
parallelized, then regardless of how many processors are devoted to a parallelized
execution of this program, the minimum execution time cannot be less than that
critical one hour.
Hence, the theoretical speedup is limited to at most 20 times (1/(1 − p) = 20).
For this reason, parallel computing with many processors is useful only for highly
parallelizable programs.

87

Suppose that 80% of your program can be parallelized and that you use 4 processors
to run your parallel version of the program.
As a result you use 4 processors you cannot get a speedup more than 2.5 times!

88

Amdahl’s Law is too simple for real cases. The communication overhead and
workload imbalance among processes (in general) should be taken into account

89

It’s rare that a parallel computation will actually achieve the speedup predicted by
Amdahl’s Law.

90

Taking into account the parallel overhead reduces our expectations about how many
processors can be profitably employed in speeding the computation.

91

The task is completed only when the last processor finishes. When some processors
finish before others, the time that the “early bird” processors spend waiting around
for the last processor to finish is wasted. It is a form of overhead because a single
processor never spends time waiting for another processor to finish.

92

When we add time lost due to workload imbalance, we see that the benefits of
parallelization (in this hypothetical case) don’t extend beyond three processors.
That’s a lot worse than the original graph implied.

93

blue - shows A diagram of the program runtime;
Red – shows program speed-up of a real-world program with sub-optimal
parallelization.
The dashed lines indicate optimal parallelization–linear increase in speedup and
linear decrease in program runtime.
Not: the runtime actually increases with more processors (and the speed-up likewise
decreases) -> this is parallel slowdown.

94

Embarrassingly parallel problem - little or no effort is required to separate the
problem into a number of parallel tasks. They are thus well suited to large, internet
based distributed platforms (such as volunteer computing, like BOINC), and do not
suffer from parallel slowdown. They require little or no communication of results
between tasks, and are thus different from …

Distributed computing problems - require communication between tasks, especially
communication of intermediate results.

Inherently serial computing problems - cannot be parallelized at all, and they are
diametric opposite to embarrassingly parallel problems

95

96

The slide highlights the two reasons why we should view Amdahl’s Law as providing
an upper bound on the speedup that can be achieved, rather than a realistic
prediction.

Question: So why do we bother with Amdahl’s Law?

Answer: Because even an overly optimistic prediction can be useful. For example,
suppose we benchmark a program and then use Amdahl’s Law to predict the speedup
we would achieve if we made several key functions parallel. If Amdahl’s Law predicts
a speedup of 1.20 (i.e., a 20% improvement in speed), we might decide it is not worth
the effort.

97

In most parallel programs the functions “sigma(n)” and “kappa(n,p)” are in a lower
complexity class than the function “phi(n)”. For example, in matrix multiplication, the
I/O of the matrices is order “n” squared, whereas the complexity of the actual matrix
multiplication is order “n” cubed.

So, as “n” gets larger, the “phi(n)” terms dominate, and “psi(n,p)” gets closer to
“phi(n)/(phi(n)/p)”, or “p”.

Put another way, speedup is an increasing function of problem size. For example,
when the problem size is larger, there may be more parallel operations per barrier
synchronization. That makes the overhead of the barrier relatively lower.

98

For a given number of processors, as we increase the problem size, the relative
amount of time spent doing useful work increases, raising the efficiency and the
speedup of the parallel program.

99

Question: If 25% of the program’s time is spent in sequential code, what’s the
greatest speedup that can be achieved, regardless of the number of processors?

Answer: 4. That’s because the limit, as “p” goes to infinity, of 1 / (0.25 + (1 - .25)/p) =
1 / 0.25 = 4.

100

In the early 1960s Amdahl was the chief architect of the IBM System/360, which
began the corporation’s most profitable mainframe product line. This was the first
time the term architecture was applied to a computer design.
The System/360 did not use parallel processing, but a rival computer, the ILIAC IV
was a SIMD design with 64 processors.
In 1967, Gene Amdahl argued at the AFIPS Spring Joint Computer Conference that
because the operating system of the ILIAC IV took 25 to 45 percent of the machine
cycles, parallel programs could only achieve a speedup of 2 to 4.

101

To get benefits from parallelization in efficient way, we ought to follow these
guidelines:

Maximize the fraction of our program that can be parallelized
Balance the workload of parallel processes
Minimize the time spent for communication

102

The title of this module is “Parallel and Distributed Computing”.
This is a lecture 2 “Architectures of Distributed Systems”.

103

Lecture 2. Architectures of
Distributed Systems

This lecture is about:

• approaches used to organize distributed computer

systems; software architectures styles;

• system architectures types;

• models of memory and parallel programming;

• Middleware, namely, software between applications and
distributed platforms;

• and important self-management principles in distributed systems.

104

Architecture

Introduction

We start our discussion on architectures by first considering the logical
organization of distributed systems into software components, also referred
to as software architecture.

Research on software architectures has matured considerably and it is now
commonly accepted that designing or adopting an architecture is crucial for
the successful development of large systems.

105

Distributed systems are often complex pieces of software of which the
components are by definition dispersed across multiple machines. To master
their complexity, it is crucial that these systems are properly organized. There
are different ways on how to view the organization of a distributed system,
but an obvious one is to make a distinction between the logical organization
of the collection of software components and on the other hand the actual
physical realization.

The organization of distributed systems is mostly about the software
components that constitute the system. These software architectures tell us
how the various software components are to be organized and how they
should interact. In this lecture we will pay attention to some commonly
applied approaches toward organizing (distributed) computer systems.

106

The actual realization of a distributed system requires that we instantiate and
place software components on real hardware.
There are many different choices that can be made in doing so.
The final instantiation of a software architecture is also referred to as a
system architecture.

In this lecture we will look into traditional centralized architectures in which a
single server implements most of the software components (and thus
functionality), while remote clients can access that server using simple
communication means.

In addition, we consider decentralized architectures in which machines more
or less play equal roles.

Also we consider as hybrid organizations.

107

As we explained in the previous lecture, an important goal of distributed
systems is to separate applications from underlying platforms by providing a
middleware layer.

Adopting such a layer is an important architectural decision, and its main
purpose is to provide distribution transparency. However, trade-offs need to
be made to achieve transparency, which has led to various techniques to
make middleware adaptive. We discuss some of the more commonly applied
ones in this lecture, as they affect the organization of the middleware itself.

108

Adaptability in distributed systems can also be achieved by having the system
monitor its own behavior and taking appropriate measures when needed.

This insight has led to a class of what are now referred to as autonomic
systems, which are systems adapting to unpredictable changes while hiding
intrinsic complexity to operators and users.

These distributed systems are frequently organized in the form of feedback
control loops, which create an important architectural element during a
system's design.

In this lecture, we devote a section to autonomic distributed systems.

109

Styles

Let‘s start our discussion on architectures by first considering the logical
organization of distributed systems into software components, also referred
to as software architecture.

Research on software architectures has matured considerably and it is now
commonly accepted that designing or adopting an architecture is crucial for
the successful development of large systems.

110

The notion of an architectural style is important and based on components
and connectors.

A component is a modular unit with well-defined required and provided
interfaces that is replaceable within its environment. As we shall discuss
below, the important issue about a component for distributed systems is that
it can be replaced, provided we respect its interfaces.

A somewhat more difficult concept to grasp is that of a connector, which is
generally described as a mechanism that mediates communication,
coordination, or cooperation among components. For example, a connector
can be formed by the facilities for (remote) procedure calls, message passing,
or streaming data.

An architectural style is formulated in terms of components, the way that
components are connected to each other, the data exchanged between
components. and finally how these elements are jointly configured into a
system.

111

Using components and connectors, we can come to various configurations,
which, in turn have been classified into architectural styles.
Several styles have by now been identified, of which the most important ones
for distributed systems are:
1. Layered architectures
2. Object-based architectures
3. Data-centered architectures
4. Event-based architectures

112

[LEFT SIDE]

The basic idea for the layered style is simple:

components are organized in a layered fashion where a component at layer Li is
allowed to make requests to components at the underlying layer Li-1, but not
the other way around, as shown in this Figure.

This model has been widely accepted by the IT community. A key observation is that
control generally flows from layer to layer: requests go down the hierarchy, but the
results, in reverse, flow up.

[RIGHT SIDE]

On the right side you can see the typical implementation of this architecture style.
The top-most level (Presentation Layer in this example) creates the User Interface.
Its main aim is to translate user requests to machine and, in reverse, to translate
machine responses to user.

The middle level (Logic Layer here) coordinates the application, commands, makes
evaluations, perform calculations and derive decisions.

And it delivers requests-responses and data between the other layers.

The bottom level (Data Layer here) contain the information in database or file
system. After requests the information from this Data Layer is passed to the Logic
Layer for processing and to the Presentation Layer for users.

113

[LEFT SIDE]
A more flexible organization is proposed in object-based architectures, which
are illustrated in this Figure.
In essence, each object corresponds to what we have defined as a
component,
and these components are connected through a (remote) procedure call
mechanism.

[RIGHT SIDE]
This architecture style corresponds to the client-server system architecture
(in details described below).
The layered and object-based architectures still form the most important
styles for large software systems.
In this example of a computer network diagram, clients communicate with a
server via the Internet.
A server runs one or more server programs which share their resources with
clients.

114

[LEFT SIDE]
Data-centered architectures views data as the most valuable part of the
application, where processes communicate through a common (passive or
active) repository of data.

[RIGHT SIDE]
In the context of distributed systems these architectures are as important as
the layered and object-based architectures.
For example, many networked applications rely on a shared distributed file
system in which virtually all communication takes place through files.
Likewise, cloud computing systems, which we discuss extensively later, are
largely data-centric: processes communicate through the use of shared data
services.

115

In event-based architectures, processes essentially communicate through the
propagation of events, which optionally also carry data, as shown in this
Figure.

For distributed systems, event propagation has generally been associated
with what are known as publish/subscribe systems.
The basic idea is that processes publish events after which the middleware
ensures that only those processes that subscribed to those events will receive
them.

The main advantage of event-based systems is that processes are loosely
coupled.
In principle, they need not explicitly refer to each other.
This is also referred to as being decoupled in space, or referentially
decoupled.

116

Event-based architectures can be combined with data-centered architectures,
what is also known as shared data spaces.
The essence of shared data spaces is that processes are now also decoupled
in time: they need not both be active when communication takes place.
Furthermore, many shared data spaces use a SQL-like interface to the shared
repository in that sense that data can be accessed using a description rather
than an explicit reference,
as is the case with files.

What makes these software architectures important for distributed systems is
that they all aim at achieving (at a reasonable level) distribution transparency.
However, distribution transparency requires making trade-offs between
performance, fault tolerance, ease-of-programming, and so on.
As there is no single solution that will meet the requirements for all possible
distributed applications,
researchers have abandoned the idea that a single distributed system can be
used to cover 90% of all possible cases.

117

System Architectures

118

Now that we have briefly discussed some common architectural styles, let us
take a look at how many distributed systems are actually organized by
considering where software components are placed.

Software components, their interaction, and their placement leads to creation
of an instance of a software architecture, also called a system architecture.

We will discuss centralized and decentralized organizations, and various hybrid
forms.

119

Centralized Architectures

Despite the lack of consensus on many distributed systems issues, there is
one issue that many researchers and practitioners agree upon: thinking in
terms of clients that request services from servers helps us understand and
manage the complexity of distributed systems and that is a good thing.

120

In the basic client-server model, processes in a distributed system are divided
into two (possibly overlapping) groups.
A server is a process implementing a specific service, for example, a file
system service or a database service.
A client is a process that requests a service from a server by sending it a
request and subsequently waiting for the server's reply.
This client-server interaction, also known as request-reply behavior is shown
in this Figure.

121

Communication between a client and a server can be implemented by means
of a simple connectionless protocol when the underlying network is fairly
reliable as in many local-area networks.

In these cases, when a client requests a service, it simply packages a message
for the server, identifying the service it wants, along with the necessary input
data. The message is then sent to the server.

The latter, in turn, will always wait for an incoming request, subsequently
process it, and package the results in a reply message that is then sent to the
client.

122

Using a connectionless protocol has the obvious advantage of being efficient.
As long as messages do not get lost or corrupted, the request/reply protocol
just sketched works fine. Unfortunately, making the protocol resistant to
occasional transmission failures is not trivial. The only thing we can do is
possibly let the client resend the request when no reply message comes in.
The problem, however, is that the client cannot detect whether the original
request message was lost, or that transmission of the reply failed. If the reply
was lost, then resending a request may result in performing the operation
twice. If the operation was something like "transfer $10,000 from my bank
account," then clearly, it would have been better that we simply reported an
error instead. On the other hand, if the operation was "tell me how much
money I have left," it would be perfectly acceptable to resend the request.
When an operation can be repeated multiple times without harm, it is said to
be idempotent. Since some requests are idempotent and others are not it
should be clear that there is no single solution for dealing with lost messages.

123

As an alternative, many client-server systems use a reliable connection-oriented protocol.
Although this solution is not entirely appropriate in a local-area network due to relatively low
performance, it works perfectly tine in wide-area systems in which communication is
inherently unreliable. For example, virtually all Internet application protocols are based on
reliable TCPI IP connections. In this case, whenever a client requests a service, it first sets up a
connection to the server before sending the request. The server generally uses that same
connection to send the reply message, after which the connection is torn down. The trouble
is that setting up and tearing down a connection is relatively costly, especially when the
request and reply messages are small.

[LEFT SIDE] Let’s consider connection-oriented communication in “three way handshake” for
TCP connection establishment:

1. The first arrow is a request for synchronization (called SYN)
2. The second arrow is acknowledgment of synchronization (called SYN-ACK).
3. The third arrow is also acknowledgment to inform the receiver that the connection has
been established (called ACK)
[RIGHT SIDE] And the similar sequence of actions for TCP connection termination:

1. The host A, who needs to terminate the connection, sends a special message with the FIN
(finish) flag, indicating that it has finished sending the data.
2. The host B, who receives the FIN segment, does not terminate the connection but enters
into a "passive close" (CLOSE_WAIT) state and sends the ACK for the FIN back to the host A.
Now the host B enters into LAST_ACK state. At this point host B will no longer accept data
from host A, but can continue transmit data to host A. If host B does not have any data to
transmit to the host A it will also terminate the connection by sending FIN segment.
3. When the host A receives the last ACK from the host B, it enters into a (TIME_WAIT) state,
and sends an ACK back to the host B.
4. Host B gets the ACK from the host A and closes the connection.

124

The client-server model has been subject to many debates and controversies
over the years. One of the main issues was how to draw a clear distinction
between a client and a server. Not surprisingly, there is often no clear
distinction. For example, a server for a distributed database may continuously
act as a client because it is forwarding requests to different file servers
responsible for implementing the database tables. In such a case, the
database server itself essentially does no more than process queries.

However, if client-server applications are targeted toward supporting user
access to databases, then the following three levels can be considered:

1. The user-interface level - contains all that is necessary to directly interface
with the user, such as display management.

2. The processing level - typically contains the applications.

3. The data level - manages the actual data that is processed by these
applications for the users.

125

Clients typically implement the user-interface level. This level consists of the programs that
allow end users to interact with applications. There is a considerable difference in how
sophisticated user-interface programs are.

The simplest user-interface program is nothing more than a character-based screen. Such an
interface has been typically used in mainframe environments. In those cases where the
mainframe controls all interaction, including the keyboard and monitor, one can hardly speak
of a client-server environment. However, in many cases, the user's terminal does some local
processing such as echoing typed keystrokes, or supporting form-like interfaces in which a
complete entry is to be edited before sending it to the main computer.

Nowadays, even in mainframe environments, we see more advanced user interfaces.
Typically, the client machine offers at least a graphical display in which pop-up or pull-down
menus are used, and of which many of the screen controls are handled through a mouse
instead of the keyboard. Typical examples of such interfaces include the X-Windows
interfaces as used in many UNIX environments, and earlier interfaces developed for MS-DOS
PCs and Apple Macintoshes.

Modern user interfaces offer considerably more functionality by allowing applications to
share a single graphical window, and to use that window to exchange data through user
actions. For example, to delete a file, it is usually possible to move the icon representing that
file to an icon representing a trash can. Likewise, many word processors allow a user to move
text in a document to another position by using only the mouse.

Many client-server applications can be constructed from roughly three different pieces: a part
that handles interaction with a user, a part that operates on a database or file system, and a
middle part that generally contains the core functionality of an application. This middle part is
logically placed at the processing level. In contrast to user interfaces and databases, there are
not many aspects common to the processing level. Therefore, we shall give several examples
to make this level clearer.

126

As a first example, consider an Internet search engine. Ignoring all the
animated banners, images, and other fancy window dressing, the user
interface of a search engine is very simple: a user types in a string of keywords
and is subsequently presented with a list of titles of Web pages. The back end
is formed by a huge database of Web pages that have been prefetched and
indexed. The core of the search engine is a program that transforms the user's
string of keywords into one or more database queries. It subsequently ranks
the results into a list, and transforms that list into a series of HTML pages.
Within the client-server model, this information retrieval part is typically
placed at the processing level.

127

As a second example, consider a decision support system for a stock brokerage. Analogous to
a search engine, such a system can be divided into a front end implementing the user
interface, a back end for accessing a database with the financial data, and the analysis
programs between these two. Analysis of financial data may require sophisticated methods
and techniques from statistics and artificial intelligence. In some cases, the core of a financial
decision support system may even need to be executed on high-performance computers in
order to achieve the throughput and responsiveness that is expected from its users.

In general, Decision Support System developed by the three major components, namely
database management, Base Model and Software System / User Interface.

1. Database Management.
Is a subsystem of data organized in a database. Data that is a decision support system
may come from outside and within the environment. For the purposes of SPK, the
necessary data relevant to the problem to be solved through simulation.

2. Model Base.

Is a model that represents the problem into a format quantitative (mathematical model
as an example) as the basis of simulations or decision-making, including the purpose,
related components, limitations exist (constraints), and related matters Other. Base
Model enables decision makers to analyze as a whole by developing and comparing
alternative solutions

3. User Interphase / Management Dialog.

Sometimes referred to as a subsystem of dialogue, a merger between the two previous
components, namely Database Management and Model Base incorporated in the third
component (user interface), having previously presented in the form of computer models
that understandable. User Interface display system output to the user and receive input
from the user into the Decision Support System.

128

The data level in the client-server model contains the programs that maintain
the actual data on which the applications operate.

An important property of this level is that data are often persistent, that is,
even if no application is running, data will be stored somewhere for next use.

In its simplest form, the data level consists of a file system, but it is more
common to use a full-fledged database.

In the client-server model, the data level is typically implemented at the
server side.

Besides merely storing data, the data level is generally also responsible for
keeping data consistent across different applications. When databases are
being used, maintaining consistency means that metadata such as table
descriptions, entry constraints and application-specific metadata are also
stored at this level. For example, in the case of a bank, we may want to
generate a notification when a customer's credit card debt reaches a certain
value. This type of information can be maintained through a database trigger
that activates a handler for that trigger at the appropriate moment.

129

In most business-oriented environments, the data level is organized as a
relational database.

Data independence is crucial here. The data are organized independent of the
applications in such a way that changes in that organization do not affect
applications, and neither do the applications affect the data organization.

Using relational databases in the client-server model helps separate the
processing level from the data level, as processing and data are considered
independent.

However, relational databases are not always the ideal choice. A
characteristic feature of many applications is that they operate on complex
data types that are more easily modeled in terms of objects than in terms of
relations. Examples of such data types range from simple polygons and circles
to representations of aircraft designs, as is the case with computer-aided
design (CAD) systems.

In those cases where data operations are more easily expressed in terms of
object manipulations, it makes sense to implement the data level by means of
an object-oriented or object-relational database. Notably the latter type has
gained popularity as these databases build upon the widely dispersed
relational data model, while offering the advantages that object-orientation
gives.

130

Multitiered Architectures

131

The distinction into three logical levels as discussed so far, suggests a number
of possibilities for physically distributing a client-server application across
several machines.

The simplest organization is to have only two types of machines:
1. A client machine containing only the programs implementing (part of) the
user-interface level
2. A server machine containing the rest, that is the programs implementing
the processing and data level

In this organization everything is handled by the server while the client is
essentially no more than a dumb terminal, possibly with a pretty graphical
interface. There are many other possibilities, of which we explore some of the
more common ones in this section.

132

One approach for organizing the clients and servers is to distribute the programs in the
application layers of the previous section across different machines, as shown in this
Figure. As a first step, we make a distinction between only two kinds of machines: client
machines and server machines, leading to what is also referred to as a (physically) two-
tiered architecture.

1) One possible organization is to have only the terminal-dependent part of the user interface
on the client machine, as shown in Figure (a), and give the applications remote control over
the presentation of their data.

2) An alternative is to place the entire user-interface software on the client side, as shown in
Figure (b). In such cases, we essentially divide the application into a graphical front end,
which communicates with the rest of the application (residing at the server) through an
application-specific protocol. In this model, the front end (the client software) does no
processing other than necessary for presenting the application's interface.

3) Continuing along this line of reasoning, we may also move part of the application to the front
end, as shown in Figure (c). An example where this makes sense is where the application
makes use of a form that needs to be filled in entirely before it can be processed. The front
end can then check the correctness and consistency of the form, and where necessary
interact with the user. Another example of the organization of Figure (c), is that of a word
processor in which the basic editing functions execute on the client side where they operate
on locally cached, or in-memory data. but where the advanced support tools such as
checking the spelling and grammar execute on the server side.

4) In many client-server environments, the organizations shown in Figure (d) and Figure (e) are
particularly popular. These organizations are used where the client machine is a PC or
workstation, connected through a network to a distributed file system or database.
Essentially, most of the application is running on the client machine, but all operations on
files or database entries go to the server. For example, many banking applications run on an
end- user's machine where the user prepares transactions and such. Once finished, the
application contacts the database on the bank's server and uploads the transactions for
further processing.

5) Figure (e) represents the situation where the client's local disk contains part of the
data. For example, when browsing the Web, a client can gradually build a huge cache
on local disk of most recent inspected Web pages.
We note that for a few years there has been a strong trend to move away from the
configurations shown in Figure (d) and Figure (e) in those case that client software is placed at
end-user machines. In these cases, most of the processing and data storage is handled at the
server side. The reason for this is simple: although client machines do a lot, they are also more
problematic to manage. Having more functionality on the client machine makes client-side
software more prone to errors and more dependent on the client's underlying platform (i.e.,
operating system and resources). From a system's management perspective, having what are
called fat clients is not optimal. Instead the thin clients as represented by the organizations
shown in Figure (a)-(c) are much easier, perhaps at the cost of less sophisticated user
interfaces and client-perceived performance.

133

Note that this trend does not imply that we no longer need distributed
systems. On the contrary, what we are seeing is that server-side solutions are
becoming increasingly more distributed as a single server is being replaced by
multiple servers running on different machines. In particular, when
distinguishing only client and server machines as we have done so far, we miss
the point that a server may sometimes need to act as a client, as shown in this
Figure, leading to a (physically) three-tiered architecture.

In this architecture, programs that form part of the processing level reside on
a separate server, but may additionally be partly distributed across the client
and server machines.
A typical example of where a three-tiered architecture is used is in transaction
processing, where a separate process, called the transaction processing
monitor, coordinates all transactions across possibly different data servers.

134

Another, but very different example where we often see a three-tiered
architecture is in the organization of Web sites. In this case, a Web server acts
as an entry point to a site, passing requests to an application server where the
actual processing takes place. This application server, in tum, interacts with a
database server. For example, an application server may be responsible for
running the code to inspect the available inventory of some goods as offered
by an electronic bookstore. To do so, it may need to interact with a database
containing the raw inventory data.

135

Decentralized Architectures

136

Structured - organized into a specific topology, and the protocol ensures that
any node can efficiently search the network for a file/resource, even if the
resource is extremely rare.

Unstructured - do not impose a particular structure on the overlay network by
design, but rather are formed by nodes that randomly form connections to
each other.

137

In a structured peer-to-peer architecture, the overlay network is constructed
using a deterministic procedure.

The most-used procedure is to organize the processes through a distributed
hash table (DHT). In a DHT -based system, data items are assigned a random
key from a large identifier space, such as a 128-bit or 160-bit identifier.
Likewise, nodes in the system are also assigned a random number from the
same identifier space.

138

Here some properties of DHT-based systems are listed.
- A global view of data distributed among many nodes.
- Mapping nodes and data items into a common address space
- Each DHT node manages a small number of references to other nodes
- Queries are routed via a small number of nodes to the target node
- Load for retrieving items should be balanced equally among all nodes
- Robust against random failure and attacks
- Provides a definitive answer about results

DHT-based system should implement an efficient and deterministic scheme
that uniquely maps the key of a data item to the identifier of a node based on
some distance metric.

Most importantly, when looking up a data item, the network address
of the node responsible for that data item is returned. Effectively, this is
accomplished by routing a request for a data item to the responsible node.

139

For example, in the Chord system proposed by Stoica in 2003 the nodes are
logically organized in a ring of nodes. This node is referred to as the successor
of key k and denoted as succ(k).

To look up the data item, an application running on an arbitrary node would
then call the function LOOKUP(k) which would subsequently return the
network address of succ(k). Tnen, the application can contact the node to
obtain a copy of the data item.

140

Another approaches are proposed in other DHT-based systems.

As an example, here Content Addressable Network (CAN) is shown, which
was proposed by Ratnasamy in 2001.

CAN uses a d-dimensional Cartesian coordinate space, which is
completely partitioned among all the nodes that participate in the system.

For simplicity let us consider only the 2-dimensional case.

This slide shows how the two-dimensional space is divided
among six nodes. Each node has an associated region. Every data item in CAN
will be assigned a unique point in this space, after which it is also clear which
node is responsible for that data (ignoring data items that fall on the border
of multiple regions, for which a deterministic assignment rule is used).

141

Unstructured peer-to-peer systems largely rely on randomized algorithms for
constructing an overlay network.

The main idea is that each node maintains a list
of neighbors, but that this list is constructed in a more or less random way.

Data items are assumed to be randomly placed on nodes. As a consequence,
when a node needs to locate a specific data item, the only thing it can
effectively do is flood the network with a search query.

Unstructured networks utilize flooding and similar opportunistic techniques,
such as random walks, expanding-ring, Time-to-Live (TTL) search, in order to
locate peers that have interesting data items.

142

Napster is the name for notoriously famous music-focused online services.
It was founded as a pioneering peer-to-peer (P2P) file sharing Internet service
for sharing digital audio files, typically audio songs, encoded in MP3 format.
Here the principal scheme of Napster is shown.

It was shut down by court order.
Later companies and projects successfully followed its P2P file sharing
example such as Gnutella, Freenet, Kazaa, BearShare, and many others.

143

Skype uses a proprietary Internet telephony (VoIP) network called the Skype
protocol.
Part of the Skype technology relies on the Global Index P2P protocol.
The main difference between Skype and standard VoIP clients is that Skype
operates on a peer-to-peer model (originally based on the Kazaa software),
rather than the more usual client–server model.
Here the principal scheme of Skype P2P model is shown.

Note: The very popular Session Initiation Protocol (SIP) model of VoIP is also
peer-to-peer, but implementation generally requires registration with a
server, as does Skype.

Note: On 20 June 2014, Microsoft announced the deprecation of the old
Skype protocol. The new Skype protocol—Microsoft Notification Protocol 24.

144

It is possible to construct and maintain specific topologies of overlay
networks.

This topology management is achieved by adopting a two-layered approach,
as shown in this slide.

The lowest layer constitutes an unstructured peer-to-peer system in which
nodes periodically exchange entries of their partial views with the aim to
maintain an accurate random graph.

The lowest layer passes its partial view to the higher layer, where an
additional selection of entries takes place. This then leads to a
second list of neighbors corresponding to the desired topology.

145

Hybrid Architectures

So far, we have focused on client-server architectures and a number of peer-
to-peer architectures. Many distributed systems combine architectural
features, as we already came across in super-peer networks. In this section we
take a look at some specific classes of distributed systems in which client-
server solutions are combined with decentralized architectures.

146

An important class of distributed systems that is organized according to a
hybrid architecture is formed by edge-server systems. These systems are
deployed on the Internet where servers are placed "at the edge" of the
network.

147

This edge is formed by the boundary between enterprise networks and the
actual Internet, for example, as provided by an Internet Service Provider (ISP).
Likewise, where end users at home connect to the Internet through their ISP,
the ISP can be considered as residing at the edge of the Internet. This leads to
a general organization as shown in this slide.

148

End users, or clients in general, connect to the Internet by means of an edge
server. The edge server's main purpose is to serve content, possibly after
applying filtering and transcoding functions. More interesting is the fact that a
collection of edge servers can be used to optimize content and application
distribution. The basic model is that for a specific organization, one edge
server acts as an origin server from which all content originates. That server
can use other edge servers for replicating Web pages and such.

149

Hybrid structures are notably deployed in collaborative distributed systems.
The main issue in many of these systems to first get started, for which often a
traditional client-server scheme is deployed. Once a node has joined the
system, it can use a fully decentralized scheme for collaboration.

150

Let ‘s consider the BitTorrent file-sharing system.
BitTorrent is a peer-to-peer file downloading system. Its principal working is
shown in this slide.
The basic idea is that when an end user is looking for a file, he downloads
chunks of the file from other users until the downloaded chunks can be
assembled together yielding the complete file. An important design goal was
to ensure collaboration. In most file-sharing systems, a significant fraction of
participants merely download files but otherwise contribute close to nothing.
To this end, a file can be downloaded only when the downloading client is
providing content to someone else.
To download a user needs to access a global directory, which is just one of a
few well-known Web sites. Such a directory contains references to what are
called .torrent files. A .torrent file contains the information that is needed to
download a specific file. In particular, it refers to what is known as a tracker,
which is a server that is keeping an accurate account of active nodes that
have (chunks) of the requested file. An active node is one that is currently
downloading another file.
Obviously, there will be many different trackers, although (there will generally
be only a single tracker per file (or collection of files). Once the nodes have
been identified from where chunks can be downloaded, the downloading
node effectively becomes active.

151

Clearly, BitTorrent combines centralized with decentralized solutions. As it
turns out, the bottleneck of the system is, not surprisingly, formed by the
trackers. As another example, consider the Globule collaborative content
distribution network propsoed by Pierre and van Steen in 2006.

Globule strongly resembles the edgeserver architecture mentioned above. In
this case, instead of edge servers, end users (but also organizations)
voluntarily provide enhanced Web servers that are capable of collaborating in
the replication of Web pages.

152

Globule is a decentralized distributed system.
Requests for Web site are initially forwarded to server, at which point they
may be redirected to one of the other servers. Distributed redirection is also
supported.

Globule also has a centralized component in the form of its broker. The broker
is responsible for registering servers, and making these servers known to
others. Servers communicate with the broker completely analogous to what
one would expect in a client-server system. For reasons of availability, the
broker can be replicated, but this type of replication is widely applied in order
to achieve reliable client-server computing.

153

Middleware

When considering the architectural issues we have discussed so far, a
question that comes to mind is where middleware fits in. As we discussed
before, middleware forms a layer between applications and distributed
platforms. An important purpose is to provide a degree of distribution
transparency, that is, to a certain extent hiding the distribution of-data,
processing, and control from applications.

154

Middleware systems actually follow a specific architectural style.

For example, many middleware solutions have adopted an object-based
architectural style, such as CORBA. But others, like TIB/Rendezvous provide
middleware that follows the event-based architectural style.

If middleware is molded according to a specific architectural style, then it has
the benefit that designing applications may become simpler. However, an
obvious drawback is that the middleware may no longer be optimal for what an
application developer had in mind.

For example, some middleware can initially offer only objects that could be
invoked by remote clients. Later, this form of interaction became too restrictive,
so that other interaction patterns such as messaging were added. Obviously,
adding new features can easily lead to awkward middleware solutions. In
addition, middleware should provide distribution transparency, and specific
solutions should be adaptable to application requirements.

One solution to this problem is to make several versions of a middleware
system, where each version is tailored to a specific class of applications.

But the better approach is to make middleware systems such that they are easy
to configure, adapt, and customize as needed by an application. As a result,
systems are now being developed in which a stricter separation between
policies and mechanisms is being made.

Let’s take a look at some of the commonly followed approaches.

155

Conceptually, an interceptor is nothing but a software construct that will
break the usual flow of control and allow other (application specific) code to
be executed (like it is shown in this slide). To make interceptors generic may
require a substantial implementation effort, and it is unclear whether in such
cases generality should be preferred over restricted applicability and
simplicity. Also, in many cases having only limited interception facilities will
improve management of the software and the distributed system as a whole.

156

What interceptors actually offer is a means to adapt the middleware. The
need for adaptation comes from the fact that the environment in which
distributed applications are executed changes continuously. Changes include
those resulting from mobility, a strong variance in the quality-of-service of
networks, failing hardware, and battery drainage, amongst others. Rather
than making applications responsible for reacting to changes, this task is
placed in the middleware. These strong influences from the environment
have brought many designers of middleware to consider the construction of
adaptive software.

157

However, adaptive software has not been as successful as anticipated. As
many researchers and developers consider it to be an important aspect of
modern distributed systems, let us briefly pay some attention to it.

The following three basic techniques are used for software adaptation:
- Separation of concerns
- Computational reflection
- Component-based design

158

Separating Concerns
It relates to the traditional way of modularizing systems: separate the parts
that implement functionality from those that take care of other things (known
as extra functionalities) such as reliability, performance, security, etc.

But developing middleware for distributed applications is largely about
handling extra functionalities independent from applications. The main
problem is that we cannot easily separate these extra functionalities by
means of modularization. For example, simply putting security into a separate
module is not going to work. Likewise, it is hard to imagine how fault
tolerance can be isolated into a separate box and sold as an independent
service. Separating and subsequently weaving these cross-cutting concerns
into a (distributed) system is the major theme addressed by aspect-oriented
software development. However, aspect orientation has not yet been
successfully applied to developing large-scale distributed systems, and it can
be expected that there is still a long way to go before it reaches that stage.

159

Computational Reflection

It refers to the ability of a program to inspect itself and, if necessary, adapt its
behavior. Reflection has been built into programming languages, including
Java, and offers a powerful facility for runtime modifications. In addition,
some middleware systems provide the means to apply reflective techniques.
However, just as in the case of aspect orientation, reflective middleware has
yet to prove itself as a powerful tool to manage the complexity of large-scale
distributed systems.

160

Component-Based Design

It supports adaptation through composition. A system may either be
configured statically at design time, or dynamically at runtime. The latter
requires support for late binding, a technique that has been successfully
applied in programming language environments, but also for operating
systems where modules can be loaded and unloaded at will.

Research for automatic selection of the best implementation of a component
during runtime is carried out now, but again, the process remains complex for
distributed systems, especially when considering that replacement of one
component requires knowning what the effect of that replacement on other
components will be.

161

Here the comparison of advantages and disadvantages of software
architecture for distributed systems are listed.

Software architectures for distributed systems (middleware) are bulky and
complex. In large part, this bulkiness and complexity arises from the need to
be general in the sense that distribution transparency needs to be provided.
Applications have specific extra-functional requirements that conflict with
aiming at fully achieving this transparency. These conflicting requirements for
generality and specialization have resulted in middleware solutions that are
highly flexible.
Now all large software systems are required to execute in a networked
environment, and so the complexity of distributed systems becomes an
inherent feature and result of attempts to make distribution transparent.
The underlying assumption is that we need adaptive software in the sense
that the software should be allowed to change as the environment changes.
However, one should question whether adapting to a changing environment is
a good reason to adopt changing the software. Faulty hardware, security
attacks, energy drainage, and so on, all seem to be environmental influences
that can (and should) be anticipated by software.
The strongest, and certainly most valid, argument for supporting adaptive
software is that many distributed systems cannot be shut down. This
constraint calls for solutions to replace and upgrade components on the fly,
but is not clear whether any of the solutions proposed above are the best
ones to tackle this maintenance problem.

162

Automatic Adaptation

Distributed systems-and notably their associated middleware-need to provide
general solutions toward shielding undesirable features inherent to
networking so that they can support as many applications as possible. On the
other hand, full distribution transparency is not what most applications
actually want, resulting in application-specific solutions that need to be
supported as well. We have argued that, for this reason, distributed systems
should be adaptive, but notably when it comes to adapting their execution
behavior and not the software components they comprise.

163

What interceptors actually offer is a means to adapt the middleware.
The need for adaptation comes from the fact that the environment in which
distributed applications are executed changes continuously.
Changes include those resulting from mobility, a strong variance in the
quality-of-service of networks, failing hardware, and battery drainage,
amongst others.
Rather than making applications responsible for reacting to changes, this task
is placed in the middleware.

164

Distributed systems should be adaptive, but notably when it comes to
adapting their execution behavior and not the software components they
comprise. We need to organize the components of a distributed system such
that monitoring and adjustments can be done while on the other hand we
need to decide where the processes are to be executed that handle the
adaptation

Self-managing systems autonomic computing or self-managing systems are
organizing distributed systems as high-level feedback-control systems allowing
automatic adaptations to changes.

The variety by which automatic adaptations are being captured are as follows:
self-managing,
self- healing,
self-configuring,
self-optimizing, and so on.

165

The core of a feedback control system is formed by the components that need
to be managed. These components are assumed to be driven through
controllable input parameters, but their behavior may be influenced by all
kinds of uncontrollable input, also known as disturbance or noise input.
Although disturbance will often come from the environment in which a
distributed system is executing, it may well be the case that unanticipated
component interaction causes unexpected behavior.

166

There are essentially three elements that form the feedback control loop.
1 - First, the system itself needs to be monitored, which requires that various
aspects of the system need to be measured. In many cases, measuring
behavior is hard to organize. For example, round-trip delays in the Internet
may vary wildly, and also depend on what exactly is being measured. In such
cases, accurately estimating a delay may be difficult, and for these reasons, a
feedback control loop generally contains a logical metric estimation
component.
2 - Another part of the feedback control loop analyzes the measurements and
compares these to reference values. This feedback analysis component forms
the heart of the control loop, as it will contain the algorithms that decide on
possible adaptations.
3 - The last group of components consist of various mechanisms to directly
influence the behavior of the system. There can be many different
mechanisms: placing replicas, changing scheduling priorities, switching
services, moving data for reasons"of availability, redirecting requests to
different servers, etc. The analysis component will need to be aware of these
mechanisms and their (expected) effect on system behavior. Therefore, it will
trigger one or several mechanisms, to subsequently later observe the effect.

167

For a example, let’s consider Astrolabe (proposed by Van Renesse in 2003),
which is a system that can support general monitoring of very large
distributed systems. In the context of self-managing systems, Astrolabe is to
be positioned as a general tool for observing systems behavior. Its output can
be used to feed into an analysis component for deciding on corrective actions.
Astrolabe organizes a large collection of hosts into a hierarchy of zones. The
lowest-level zones consist of just a single host, which are subsequently
grouped into zones of increasing size. The top-level zone covers all hosts.
Every host runs an Astrolabe process, called an agent, that collects
information on the zones in which that host is contained. The agent also
communicates with other agents with the aim to spread zone information
across the entire system.
Each host maintains a set of attributes for collecting local information. For
example, a host may keep track of specific files it stores, its resource usage,
and so on. Only the attributes as maintained directly by hosts, that is, at the
lowest level of the hierarchy are writable. Each zone can also have a collection
of attributes, but the values of these attributes are computed from the values
of lower level zones.

168

When maintaining clusters of computers, each running sophisticated servers,
it becomes important to alleviate management problems. One approach that
can be applied to servers that are built using a component-based approach, is
to detect component failures and have them automatically replaced. The Jade
system follows this approach.

Jade is built on the Fractal component model, a Java implementation of a
framework that allows components to be added and removed at runtime.

Jade uses the notion of a repair management domain. Such a domain consists
of a number of nodes, where each node represents a server along with the
components that are executed by that server. There is a separate node
manager which is responsible for adding and removing nodes from the
domain. The node manager may be replicated for assuring high availability.

Each node is equipped with failure detectors, which monitor the health of a
node or one of its components and report any failures to the node manager.
Typically, these detectors consider exceptional changes in the state of
component, the usage of resources, and the actual failure of a component.
Note that the latter may actually mean that a machine has crashed.

169

When a failure has been detected, a repair procedure is started. Such a
procedure is driven by a repair policy, partly executed by the node manager.
Policies are stated explicitly and are carried out depending on the detected
failure. For example, suppose a node failure has been detected. In that case,
the repair policy may prescribe that the following steps are to be carried out:

1. Terminate every binding between a component on a nonfaulty node, and a
component on the node that just failed.
2. Request the node manager to start and add a new node to the domain.
3. Configure the new node with exactly the same components as those on the
crashed node.
4. Re-establish all the bindings that were previously terminated.

In this example, the repair policy is simple and will only work when no crucial
data has been lost (the crashed components are said to be stateless).
The approach followed by Jade is an example of self-management: upon the
detection of a failure, a repair policy is automatically executed to bring the
system as a whole into a state in which it was before the crash. Being a
component-based system, this automatic repair requires specific support to
allow components to be added and removed at runtime. In general, turning
legacy applications into selfmanaging systems is not possible.

170

Distributed systems can be organized in many different ways. We can make a
distinction between software architecture and system architecture. The latter
considers where the components that constitute a distributed system are
placed across the various machines. The former is more concerned about the
logical organization of the software: how do components interact, it what
ways can they be structured, how can they be made independent, and so on.

A key idea when talking about architectures is architectural style. A style
reflects the basic principle that is followed in organizing the interaction
between the software components comprising a distributed system.
Important styles include layering, object orientation, event orientation, and
data-space orientation.

There are many different organizations of distributed systems. An important
class is where machines are divided into clients and servers. A client sends a
request to a server, who will then produce a result that is returned to the
client. The client-server architecture reflects the traditional way of
modularizing software in which a module calls the functions available in
another module. By placing different components on different machines, we
obtain a natural physical distribution of functions across a collection of
machines.

171

Client-server architectures are often highly centralized.

In decentralized architectures we often see an equal role played by the
processes that constitute a distributed system, also known as peer-to-peer
systems. In peer-to-peer systems, the processes are organized into an overlay
network, which is a logical network in which every process has a local list of
other peers that it can communicate with. The overlay network can be
structured, in which case deterministic schemes can be deployed for routing
messages between processes. In unstructured networks, the list of peers is
more or less random, implying that search algorithms need to be deployed for
locating data or other processes.

As an alternative, self-managing distributed systems have been developed.
These systems, to an extent, merge ideas from system and software
architectures. Self-managing systems can be generally organized as feedback-
control loops. Such loops contain a monitoring component by the behavior of
the distributed system is measured, an analysis component to see whether
anything needs to be adjusted, and a collection of various instruments for
changing the behavior. Feedback -control loops can be integrated into
distributed systems at numerous places.

1

Cloud Computing
Lecture Manual

Volume 2

Module 2

Virtualization Technologies

2

Content
Lecture 1. Types of Virtualization 6

Virtualization Technologies 7

Overview 7

Layers 9

Techniques 11

Emulation vs. Virtualisation 13

Virtual Machines 14

Management in Clouds 18

Live VM Migration 22

Lecture 2. Hypervisor 31

Basic Notions 32

Context 43

Hypervisor Types 47

Type 1 and Type 2 in Details 51

Lecture 3. Storage Virtualization 64

Overview 66

Levels 71

Approaches 77

Host-based 79

Network-based 83

Storage-based 86

Implementation Methods 89

Lecture 4. Network Virtualization 95

Overview 97

Network Protocols and Components 101

Types 105

Internal 107

External 113

Protocols 118

3

Implementation Examples 139

Xen 140

IaaS Network Design 147

OpenStack 155

Amazon EC2 165

4

5

Module 2. Virtualization
Technologies

This module is dedicated to:

• the virtualization of the Cloud Computing resources, layers, properties, and techniques of
virtualization;

• the virtual machines and hypervisors;

• the storage virtualization;

• the network virtualization;

• the main management techniques of virtualization, deployment, migration, live migration,
and so on.

6

Lecture 1. Types of
Virtualization

This lecture is dedicated to overview of:

• the virtualization of the Cloud Computing resources;

• the layers of virtualization;

• the properties of virtualization;

• the techniques of virtualization;

• the virtual machines and hypervisors, their types, approaches, and examples;

• the main management techniques of virtualization, deployment, migration, live
migration, and so on.

7

Virtualization Technologies

Overview

4

8

This slide speaks to the “abstract” or theoretical idea of virtualization.

Definition: Virtualization is the creation of a virtual (rather than physical) version of
something, such as an operating system, a server, a storage device or network resources

• It hides the physical characteristics of a resource from users, instead showing
an abstract resource

• Virtualization includes the components’ abstraction (and adaptation)

Either a physical thing can be virtualized, like a “disk drive”, or a more conceptual capability,
like a “VLAN”. The slide speaks to how the virtualization layers relate to each other.

Note that sometimes specific hardware adapters are required, to model a particular type of
processor, storage, or network.

9

Layers
General virtualization layers:

• Virtualized instances with configurable characteristics

• Virtualization layer, software virtualization implementation

• Abstraction layer, including hardware adaptors

• Physical resources: Various types of infrastructure resources

10

Virtualization is an essential technique for enabling cloud properties and important
operations such as Live migration of VMs.

Live migration of virtual machines means that a virtual

machine can be migrated from one physical machine to another

in the run time with a small amount of performance down

grade.

The following cloud properties are based on virtualization.

• Scalability - Virtual machine system scales automatically

• Availability - Fault tolerance to hardware and software failures

• Manageability/Portability - Automatic physical to virtual system transformation

• Performance - Dynamic virtual machine level load balancing

• Multi-tenancy - Tenants’ infrastructure and applications isolation

11

Techniques
This slide illustrates Virtualization techniques.

At the top the General Virtualization Technique is illustrated.

Underneath, one can see how the general technique is applied to several
virtualization problems.

For Server virtualization, hypervisors are extensively used.
The hypervisors will be explained later.

For storage virtualization, many software techniques including volume management,
file systems, and replication are applied.

For network virtualization, there are many different features including link
aggregation, VPN, and also firewall, switching, routing, and application filtering and
load balancing have virtual capability in many cloud implementations today.

12

In this tutorial we look closer at the server or compute resource virtualisation.
First , we will look at this situation in the generality.

The most important concept is the that the host is a particular physical infrastructure,
right down to a processor type and specific I/O devices.

The guest is an operating system which is running on an “abstracted” hardware
platform; this abstracted platform may not even be the same processor or I/O
architecture as the host.

It is the job of the virtualization and abstraction layer to provide this intermediary
function.

This is illustrated in the slide.

13

Emulation vs. Virtualisation
Example

Emulate x86 architecture on ARM platform

Example
Virtualise x86 architecture to multiple instances

14

Virtual Machines

15

One approach for virtualization is to use a facility at the process-level in the Operating
System. This is called “process virtual machine” which is not the same as a hypervisor
technique (next slide), This is an OS technique and has some resurgence in interest
lately.

A Process virtual machine, sometimes called an application virtual machine, runs as a
normal application inside a host OS and supports a single process. It is created when
that process is started and destroyed when it exits. Its purpose is to provide a
platform-independent programming environment that abstracts away details of the
underlying hardware or operating system, and allows a program to execute in the
same way on any platform.

16

The most common virtualization approach uses a Hypervisor and is called “System
Virtual Machine”.

Provides the entire operating system on same or different host ISA
Constructed at ISA level
Persistent
Used in Cloud IaaS for CPU virtualisation

This is why we will concentrate on this approach form here out

17

To implement the System Layer Virtual Machine as described previously, a Virtual
Machine Monitor is needed. This is more commonly called a Hypervisor.

The slide illustrates how a Hypervisor fits into the Operating System stack.

A hypervisor is a process that separates a computer’s operating system and
applications from the underlying physical hardware. Usually done as software
although embedded hypervisors can be created for things like mobile devices.

The Hypervisor is the software layer providing the virtualization
• Each application runs on a separate VM
• Applications/processes isolation
• VM resources can be individually configured
• It is the Basis for multi-tenancy

18

Management in Clouds

19

Having a VMM/Hypervisor capability installed onto all of the machines inside a
cluster is a terrific start. However one does not really have a cloud yet unitl
automation is added, where the deployment of the VMs are controlled by the VMM
in response to programmatic inputs. The VMM can also re-arrange, or start and stop
VM’s to better utilize resources. Live VM migration is a technique which the VMM
leverages to do its’ rearranging.

The overall automation is enabled by the software control of VM’s which a
VMM/Hypervisor provides. Lets look into this important capability in depth.

20

Select VM image - Use previously stored VM image or find on the VM
marketplace typically available at cloud provider

Select VM instance configuration - CPU type, # cores, memory, storage

Download VM image - to the selected server/datacenter location (e.g. select
between AWS availability zone)

Configure environment - IP address (public or private); gateway, DNS, external
storage, Load Balancer (optionally)

Deploy VM - using web tool or command line interface

Activate VM and check its availability - by accessing VM and/or in the hypervisor
directory

21

In the context of virtualization, where a guest simulation of an entire computer is
actually merely a software virtual machine (VM) running on a host computer under a
hypervisor, migration is the process by which a running virtual machine is moved
from one physical host to another, with little or no disruption in service.

Live migration refers to the process of moving a running virtual machine or
application between different physical machines without disconnecting the client or
application. Memory, storage, and network connectivity of the virtual machine are
transferred from the original guest machine to the destination.

22

Live VM Migration

23

Once the VM is running, it is the subject of further adjustment by the Cloud OS /
VMM. There may be a utilization related optimization which calls for this running VM
to be located on a different physical server.

24

In order to move a VM with Live Migration, storage resources need to be separated
from computing resources, so they can be re-mapped to the VM’s target location.

Storage devices of VMs are attached via network

NAS: NFS, CIFS

SAN: Fibre Channel

iSCSI, network block device

drdb network RAID

And since we are doing memory copy (which is how Live Migration works) the
network needs to support these transfer rates through switches and routers if
needed.

25

Some applications have lots and lots of state, with large memory footprints and lots
of transactional workloads, Live Migration can be a challenging race between the
memory copy subsystem time slices and the application runtime time slices. For most
applications, the algorithms work well and Live Migration is a smash hit

26

How does Live Migration actually work?

This is illustrated in the slide.

It is a specialized Migration/relocation sequence

1. Pre-migration process

2. Reservation process

3. Iterative pre-copy

4. Stop and copy

5. Commitment

6. Activation

27

This slide illustrate the whole process of migration/relocation sequence
 in animated way:

1. Pre-migration process
2. Reservation process
3. Iterative pre-copy
4. Stop and copy
5. Commitment/Activation

28

This slide goes into even further detail on Live Migration.
Sequence is started at Stage 1: Pre-migration

• Active VM on host A
• Alternate physical host may be preselected for migration
• Block devices mirrored and free resources maintained

Then reservation process goes at Stage 2: Reservation
• Reservation Initiate a container on the target host

Note: During these two stages VM is running normally on Host A.
Then Stage 3: Iterative pre-copy begins:

• Enable shadow paging
• Copy dirty pages in successive rounds

Note: Overhead appears due to copying.
After this Stage 4: Stop and copy starts:

• Suspend VM on host A
• Generate ARP to redirect traffic to host B
• Synchronize all remaining VM state to host B

Then Stage 5: Commitment begins:
• VM state on host A is released

Note: Downtime VM out of service can be observed during Stages 4 and 5.
Finally, Stage 6: Activation starts:

• VM starts on host B
• Connects to local devices
• Resumes normal operation

Note: now VM running normally on Host B

29

Summary and take away

• Cloud IaaS represents all generic Cloud Computing properties and is the most widely used cloud
service type

• Cloud IaaS Architecture includes functionalities to virtualize physical resources (Compute, Storage,
Network), support provisioned on-demand cloud IaaS services deployment and management

• There is a variety of Cloud IaaS platforms
Big Cloud IaaS Providers use their own proprietary platforms

• There is a variety of Open Source Cloud Management platforms
OpenStack, OpenNebula, Eucalyptus, Nimbus are the most popular

• Virtualization is the major enabling technology for IaaS cloud
Enables cloud scalability, availability, manageability and performance

• VM migration is a function of the Cloud IaaS management software
Live VM migration is done in a few steps and can minimize services downtime
In this lecture we discussed the Amazon Web Services Cloud and its main functionality
Historically first, current AWS Cloud represents all the generic IaaS cloud properties.
Understanding the basic AWS Cloud properties will provide a good basis for understanding other
cloud platforms

30

This is module 2 under title “Virtualization Technologies”.
This lecture 2 is about hypervisors.

31

Lecture 2. Hypervisor
This lecture is dedicated to overview of:

 the basic terms notions in the virtualization technologies (what is virtualization,
definitions, components, scheme)

 the general context of virtual machines (what is virtualization, definitions,

components, scheme)

 various virtual machine technologies (principal idea, motivation and usage,
evolution)

 methods used to implement virtualization (definitions, pro and contra,
classification)
 the most common examples and how they are used

32

Basic Notions

This section is about the basic terms notions in the virtualization technologies:
• What is virtualization
• Definitions
• Components
• Scheme

33

Virtualization is creating a virtual version of something (hardware, operating system,
application, network, memory, storage).

According to the work of Popek and Goldberg (in 1974), virtualization is a “The
construction of an isomorphism between a guest system and a host”

See details in Popek, Gerald J., and Robert P. Goldberg. "Formal requirements for
virtualizable third generation architectures." Communications of the ACM 17.7
(1974): 412-421.

34

35

Partition a single hard disk to multiple virtual disks

Virtual disk has virtual tracks & sectors

Implement virtual disk by file

Map between virtual disk and real disk contents

Virtual disk write/read mapped to file write/read in host system

36

What is Virtualization?

It is a method of partitioning a physical computer into multiple “virtual”
computers, each acting independently as if they were running directly on
hardware.

What is a Hypervisor?
It is a technique used to run multiple operating systems simultaneously on a
single resource.
Also called a Virtual Machine Monitor (VMM).

What is a Virtual Machine?
It is a software implementation of a machine that executes as if it was running
on a physical resource directly.

37

Let’s consider them in the common scheme…

38

Virtual Machine – a software implementation of a machine that executes as if it
was running on a physical resource directly.

39

Host – underlying hardware system

40

Guest – process provided with virtual copy of the host (usually an operating
system).

41

Virtual machine manager/monitor (VMM) or hypervisor – creates and
runs
virtual machines by providing interface that is identical to the host (except for
the case of paravirtualization)

42

Finally, fundamental idea is to abstract hardware of a single computer into several
different execution environments

Similar to layered approach
But layer creates virtual system (virtual machine, or VM) on which operation
systems or applications can run

Several components
Host – underlying hardware system
Virtual machine manager (VMM) or hypervisor – creates and runs virtual
machines by providing interface that is identical to the host

(Except in the case of paravirtualization)
Guest – process provided with virtual copy of the host

Usually an operating system

Single physical machine can run multiple operating systems concurrently, each in its
own virtual machine.

43

Context

This section is about Context of Virtualization Technologies:
• Principal Idea
• Motivation and Usage
• Evolution

44

Server consolidation

Run a web server and a mail server on the same physical server

Easier development
Develop critical operating system components (file system, disk driver)
without affecting computer stability

Quality Assurance (QA) as a way of preventing mistakes and defects in manufactured
products and avoiding problems when delivering solutions or services:

Testing a network product (e.g., a firewall) may require tens of computers
Try testing thoroughly a product at each pre-release milestone… and have a
straight face when your boss shows you the electricity bill

Cloud computing
It is not the buzz-word anymore, but reality
It is necessary to sell computing power and storage

45

First appeared in IBM mainframes in 1972

Allowed multiple users to share a batch-oriented system

Formal definition of virtualization helped move it beyond IBM
1.A VMM provides an environment for programs that is essentially identical to
the original machine
2.Programs running within that environment show only minor performance
decreases
3.The VMM is in complete control of system resources

In late 1990s CPUs fast enough for researchers to try virtualizing on general purpose
PCs

Xen and VMware created technologies, still used today
Virtualization has expanded to many OSes, CPUs, VMMs

46

Most Cloud Computing deployments rely on virtualization.

Amazon EC2, GoGrid, Azure, Rackspace Cloud …
Nimbus, Eucalyptus, OpenNebula, OpenStack …

Number of Virtualization tools or Hypervisors available today.
Xen, KVM, VMWare, Virtualbox, Hyper-V …

Need to compare these hypervisors for use within the scientific computing
community.

47

Hypervisor Types

This section is about Hypervisor Types:

• Definitions
• Pro and Contra
• Classification

48

In 1973, Robert Goldberg classified hypervisors according to their proximity to hardware instructions.
Goldberg 's “Type 1” hypervisor was defined as one that translated physical to virtual resources once.
Goldberg 's “Type 2” hypervisor was one that made the resource translation twice.

More recently, these definitions were extended to “bare metal” Type 1 hypervisors (running directly
on the hardware), versus “hosted” Type 2 hypervisors (running within the operating system).

Later the discussion started: whether a traditional operating system (OS) environment is part of the
hypervisor's resource management code, or even whether a traditional OS is visible to or hidden from
the administrator.

Finally, the compromise is that there are two types of hypervisors:
Type 1 hypervisor: hypervisors run directly on the system hardware – A “bare metal” embedded
hypervisor,
Type 2 hypervisor: hypervisors run on a host operating system that provides virtualization services,
such as I/O device support and memory management.

Most hypervisors are based on full virtualization which means that they completely emulate all
hardware devices to the virtual machines. Guest operating systems do not require any modification
and behave as if they each have exclusive access to the entire system.

Full virtualization often includes performance drawbacks because complete emulation usually
demands more processing resources (and more overhead) from the hypervisor. Xen is based on
paravirtualization; it requires that the guest operating systems be modified to support the Xen
operating environment. However, the user space applications and libraries do not require
modification.

49

Type 1 hypervisor - bare-metal:

It has complete control over hardware
It doesn’t have to “fight” with operating system

Type 2 hypervisor - hosted:
Avoid code duplication: need not code a process scheduler, memory
management system – the OS already does that
Can run native processes alongside VMs
Familiar environment – how much CPU and memory does a VM take? Use
top! How big is the virtual disk? ls –l
Easy management – stop a VM? Sure, just kill it!

A combination of Type 1 and Type 2:
Mostly hosted, but some parts are inside the OS kernel for performance
reasons
E.g., KVM

50

Here the classification of hypervisors is summarized in the common comparison table
with some examples of implementation.

51

Type 1 and Type 2 in Details

This section is dedicated to the more detailed description of Hypervisor Types 1 and 2:

• Structure
• Pro and Contra
• Examples:

 Xen solution
 KVM solution

52

A Type 1 hypervisor has one less layer than a Type 2 hypervisor and sits directly on
the host hardware (see Figure 2). Amazon’s well-known Elastic Compute Cloud (EC2)
is a web service enabled through a Type 1 hypervisor. Using a Xen hypervisor on top
of powerful servers, Amazon can offer “slices” of scalable compute power to its
customers, allowing each slice to operate in a virtualized independent environment.

A Type 1 hypervisor may be thinner that its Type 2 counterpart, but it typically
requires modifications to the guest OS. Thus, the embedded developer must often
use a variant of the guest OS created specifically for the hypervisor.

Many Type 1 hypervisors rely on hardware than has virtualization capabilities. Intel’s
VT, Freescale’s embedded hypervisor technology, and ARM’s TrustZone are all
technologies that provide the foundation for virtualization solutions. As a
result, some hardware vendors have joined the hypervisor movement and promote
Type I hypervisors optimized for their hardware platforms. This approach offers an
attractive alternative for systems that demand higher performance.

53

1. VMware ESX and ESXi
These hypervisors offer advanced features and scalability, but require licensing, so the costs
are higher. There are some lower-cost bundles that VMware offers and they can make
hypervisor technology more affordable for small infrastructures.
VMware is the leader in the Type-1 hypervisors. Their vSphere/ESXi product is available in a
free edition and 5 commercial editions.
2. Microsoft Hyper-V
The Microsoft hypervisor, Hyper-V doesn’t offer many of the advanced features that
VMware’s products provide. However, with XenServer and vSphere, Hyper-V is one of the
top 3 Type-1 hypervisors.
It was first released with Windows Server, but now Hyper-V has been greatly enhanced with
Windows Server 2012 Hyper-V. Hyper-V is available in both a free edition (with no GUI and
no virtualization rights) and 4 commercial editions – Foundations (OEM only), Essentials,
Standard, and Datacenter. Hyper-V
3. Citrix XenServer
It began as an open source project.
The core hypervisor technology is free, but like VMware’s free ESXi, it has almost no
advanced features.
Xen is a type-1 bare-metal hypervisor. Just as Red Hat Enterprise Virtualization uses KVM,
Citrix uses Xen in the commercial XenServer.
Today, the Xen open source projects and community are at Xen.org. Today, XenServer is a
commercial type-1 hypervisor solution from Citrix, offered in 4 editions. Confusingly, Citrix
has also branded their other proprietary solutions like XenApp and XenDesktop with the Xen
name.
4. Oracle VM
The Oracle hypervisor is based on the open source Xen.
However, if you need hypervisor support and product updates, it will cost you.
Oracle VM lacks many of the advanced features found in other bare-metal virtualization
hypervisors.

54

Here are some examples of Hypervisors, showing the variation in architectures.

The first hypervisor illustrated is XEN.

One can see it is Type 1 Virtualization where VMMs run directly on the host's
hardware as a hardware control and guest operating system monitor.

Also it can be seen that it is a Para-Virtualization system where the VMM does not
necessarily simulate hardware, but instead offers a special API that can only be used
by the modified guest OS.
Paravirtualization is a virtualization technique that presents a software interface to
the virtual machines that is similar to but not identical to that of the underlying
hardware. The aim is to reduce the portion of the guest operating system's execution
time that is spent performing operations which are substantially more difficult to run
in a virtual environment compared to a non-virtualized environment.

Xen can run several guest operating systems each running in its own virtual machine
or domain. When Xen is first installed, it automatically creates the first domain,
Domain 0 (or dom0).
Domain 0 is the management domain and is responsible for managing the system. It
performs tasks like building additional domains (or virtual machines), managing the
virtual devices for each virtual machine, suspending virtual machines, resuming
virtual machines, and migrating virtual machines. Domain 0 runs a guest operating
system and is responsible for the hardware devices.

55

Xen has the following advantages:

 is built on the open source Xen hypervisor and uses a combination of
paravirtualization and hardware-assisted virtualization. This collaboration between
the OS and the virtualization platform enables the development of a simpler
hypervisor that delivers highly optimized performance.

 provides sophisticated workload balancing that captures CPU, memory, disk I/O,
and network I/O data; it offers two optimization modes: one for performance and
another for density.

 takes advantage of a unique storage integration feature called the Citrix Storage
Link. With it, the sysadmin can directly leverage features of arrays from such
companies as HP, Dell Equal Logic, NetApp, EMC, and others.

 includes multicore processor support, live migration, physical-server-to-virtual-
machine conversion (P2V) and virtual-to-virtual conversion (V2V) tools, centralized
multiserver management, real-time performance monitoring, and speedy
performance for Windows and Linux.

56

Xen server has the following disadvantages:

 it has a relatively large footprint
 it relies on third-party solutions for hardware device drivers, storage, backup and
recovery, and fault tolerance
 it gets slow down with anything with a high I/O rate or anything that sucks up
resources and starves other VMs
 its integration can be problematic; it could become a burden on your Linux kernel
over time
 it is missing 802.1Q virtual local area network (VLAN) trunking; as for security, it
doesn't offer directory services integration, role-based access controls, or security
logging and auditing or administrative actions.

57

Type 2 hypervisors are easy to use — they typically require no modification to the
guest OS. In the case of VMWare, the Workstation software emulates the underlying
hardware and provides a full set of virtual hardware resources (mapped by the
hypervisor to physical resources) to the guest OS. If the guest OS can run on an x86
machine, it can run within Workstation without modifications. The convenience
provided by this type of hypervisor comes with a trade-off: added processing
overhead that can compromise real-time performance.

58

1. VMware Workstation/Fusion/Player
VMware Player is a free virtualization hypervisor. It is intended to run only one virtual
machine (VM) and does not allow creating VMs. VMware Workstation is a more robust
hypervisor with some advanced features, such as record-and-replay and VM snapshot
support. VMware Workstation has three major use cases:
for running multiple different operating systems or versions of one OS on one desktop,
for developers that need sandbox environments and snapshots, or
for labs and demonstration purposes.
2. VMware Server
VMware Server is a free, hosted virtualization hypervisor that’s very similar to the VMware
Workstation.
3. Microsoft Virtual PC
This is the latest Microsoft’s version of this hypervisor technology, Windows Virtual
PC and runs only on Windows 7 and supports only Windows operating systems running on it.
4. Oracle VM VirtualBox
VirtualBox hypervisor technology provides reasonable performance and features if you want
to virtualize on a budget. Despite being a free, hosted product with a very small footprint,
VirtualBox shares many features with VMware vSphere and Microsoft Hyper-V.
5. Red Hat Enterprise Virtualization
Red Hat’s Kernel-based Virtual Machine (KVM) has qualities of both a hosted and a bare-
metal virtualization hypervisor. It can turn the Linux kernel itself into a hypervisor so the VMs
have direct access to the physical hardware.
KVM
This is a virtualization infrastructure for the Linux kernel. It supports native virtualization on
processors with hardware virtualization extensions.
The open-source KVM (or Kernel-Based Virtual Machine) is a Linux-based type-1 hypervisor
that can be added to most Linux operating systems including Ubuntu, Debian, SUSE, and Red
Hat Enterprise Linux, but also Solaris, and Windows.

59

KVM is an acronym of “Kernel based Virtual Machine”, and is a virtualization infrastructure
for the Linux kernel that turns it into a hypervisor.
The basic architecture for KVM is as follows.

The Kernel-based Virtual Machine (KVM) is a Type 2 hypervisor maintained by Qumranet, Inc.
KVM is based on the QEMU emulator and derives all its management tools from QEMU.
The main focus of KVM development is to use the x86 VT extensions, which allow virtual
machines to make system calls.
KVM versions newer than KVM-62 have support for paravirtualized Linux guests.
KVM uses a set of Linux kernel modules to provide VT support.
KVM can run on a stock Linux kernel that is: (a) new enough and (b) has had the KVM
modules built for it.
KVM is used with QEMU to emulate some peripherals, called QEMU-KVM.
KVM supports the QEMU Copy-on-write (QCOW) disk image format, allowing it to support a
snapshot mode for its disk I/O operations.
In snapshot mode, all disk writes are directed to a temporary file, and changes are not
persisted to the original disk image file.
Multiple VM's can be run from one disk image, somewhat mitigating the huge storage
requirements associated with hosting a grid of VM's.
Destroying a virtual cluster is as simple as sending SIGKILL to each hypervisor and deleting the
image from disk.
KVM supports the standard Linux TUN/TAP model for Ethernet bridging. By using this
model, each VM gets its own networking resources, making it indistinguishable from a
physical machine.

60

KVM advantages are as follows:

Cost: Given its open source nature, KVM has a lower total cost of ownership.

Rapid progress to maturity: A community of experts continuously enhances KVM.

Exploitation of advances in Linux: KVM is built into Linux and benefits from the entire
Linux community.

Efficiency: KVM takes advantage of modern hardware design to securely execute
directly on the host CPU, and is engineered to perform well even in memory- and
CPU-constrained environments.

Community: Customer feature requirements and security vulnerabilities are quickly
addressed by very active and responsive community.

Open source: The code and its repository data are available, continuously inspected,
and transparent in modification rationale throughout the product life cycle.

Support: some big players (like IBM) are the active KVM community members, and it
is influential in setting KVM development priorities

61

Protection - host system protected from VMs, VMs protected from each other
A virus less likely to spread
Sharing is provided though via shared file system volume, network
communication

Restoration - it is possible to freeze, suspend, running VM
Then can move or copy somewhere else and resume
To make snapshot of a given state, able to restore back to that state

Some VMMs allow multiple snapshots per VM
Clone by creating copy and running both original and copy

Consolidation – can run multiple, different OSes on a single machine
OS dev, app dev, …

Templating – to create an OS + application VM, provide it to customers, use it to
create multiple instances of that combination

Live migration – move a running VM from one host to another!

Efficient OS research – allow for the better operating system development efficiency

All these advantages are very important for cloud computing, because using APIs
programs can work in cloud infrastructure (servers, networking, storage) to create
new guests, VMs, virtual desktops!

62

Let’s compare Xen or KVM – please, this table with some observations of their features.
Which hypervisor is best for your cloud: Xen or KVM?
Xen
Xen began around 2004 when there was no existing open source virtualization.
Xen, which is a Type I Hypervisor, sits at the single layer above bare metal. It’s like a stripped
down operating system, and it uses a function called “pass-through” to connect directly to
PCI devices like RAM/CPU/NICs.
KVM
KVM (Kernel-based Virtual Machine) was originally written and released around 2007.
KVM, which is a Type II Hypervisor, sits one layer above the OS. If you have a bare metal
machine, you need to install an OS, and then to install KVM.
In Linux it is installed in the form of a Kernel, and this kernel then turns the bare metal
machine into a Hypervisor.

They are both open source, and both supported by large communities and large enterprises.
They both do the fundamental job of virtualization.
The differences are found in support for innovation, and in application
integration, application awareness and performance.
Xen tends to be more stable. It is older and more mature. Xen offers near native drivers for
OSs like Microsoft Windows, whereas KVM is weaker in those regards. However, KVM does
very well with Linux.

The general advice:
If you’re dealing with a lot of Linux-based solutions, you’d go with KVM. This doesn’t mean
Xen is bad. It’s just that chances are, you’ll find KVM will offer better performance with the
Linux OS.
If you’re dealing with a lot of Windows-based solutions, you’d go with Xen, because there are
more advantages to hosting on Xen due to the near native drivers.

63

64

Lecture 3. Storage Virtualization

65

As you can see from the slide, we will be covering several areas relating to Storage
Virtualisation in Cloud IaaS

Storage virtualisation techniques

Storage virtualisation layers

Approaches to storage virtualisation

Storage types in cloud

Virtualised file systems for cloud

66

Overview

67

VI - Virtualised Instance
VM - Virtual Machine

This slide illustrates Virtualization techniques in Cloud IaaS

At the top the General Virtualization Technique is illustrated.

Underneath, one can visualize how the general technique is applied to several
virtualization problems.

For Server virtualization, hypervisors are extensively used.

For storage virtualization, many software techniques including volume management,
file systems, and replication are applied.

For network virtualization, there are many different features including link
aggregation, VPN, and also firewall, switching, routing, and application filtering and
load balancing have virtual capability in many cloud implementations today.

68

VI - Virtualised Instance
As we have seen from previous lessons, virtualization of any kind of resource follows
a common blueprint. The physical hardware is put under a special kind of software
control which abstracts the physical layer, and presents to the user what “looks” like
the actual resource but is actually a “virtual” instance of that resource.

Storage follows this blueprint. The hardware and the hardware interfaces are
virtualized by a software layer as shown in the illustration, thus presenting virtual
storage primitives (disks, file systems, etc) to the consumer.

69

In clouds, there are many options for implementing physical storage, because, the
virtual storage interfaces can be kept to a small set, with the software providing
common interfaces.

Once can see by the diagram, that the underlying architectures of these different
schemes are quite different. The applications interface (legacy, non virtual) all look
the same – basically an application accesses a file system. Under the hood, the
connectivity of the components – and where the file system code actually runs – can
be at any number of locations (as shown)

70

The software layer which is implementing the virtualized storage, can also enhance
the storage model offered to beyond that which physical software can accomplish.

Storage virtualisation includes pooling multiple physical storage resources (in general
heterogeneous), their abstraction and further logical composition or segmentation.

71

Levels

72

The illustration on this slide goes into more depth as to how the virtualization layers
for storage work, and what kind of storage model they present.

The software layer for storage is in kernel space in the operating system, where it can
intercept the disk and file system primitives and insert the capability of utilizing
external, networked storage, and storage built from replicating, distributed drives.

The most common storage models are “file system” and “block device”. While the
names imply the capability of the models, the Cloud OS may not provide the exact
same capabilities as a standard lets say Linux file system or block device. We will
discuss more on this later.

73

What is file system
• A file system is a software layer responsible for organizing and policing the creation,

modification, and deletion of files
• File systems provide a hierarchical organization of files into directories and subdirectories
• The B-tree algorithm facilitates more rapid search and retrieval of files by name
• File system integrity is maintained through duplication of master tables, change logs, and

immediate writes off file changes

Different file systems
• In Unix, the super block contains information on the current state of the

file system and its resources.
• In Windows NTFS, the master file table contains information on all file

entries and status.

File Metadata
• The control information for file management is known as metadata.
• File metadata includes file attributes and pointers to the location of file data content.
• File metadata may be segregated from a file's data content.
• Metadata on file ownership and permissions is used in file access.
• File timestamp metadata facilitates automated processes such as backup and life cycle

management.
Different file systems
• In Unix systems, file metadata is contained in the i-node structure.
• In Windows systems, file metadata is contained in records of file attributes.

74

Block Device Level Virtualization is a low level technique which creates a “volume
pool” from a collection of drives. It presents virtualized storage primitives called LUN

for Logical Unit Identifier, and an offset within that LUN, which

known as a Logical Block Address (LBA)

This is illustrated in the slide

A single block of information is addressed using a logical unit identifier/number (LUN)
and an offset within that LUN, which known as a Logical Block Address (LBA)

75

Block level data
The file system block
• The atomic unit of file system management is the file system block.
• A file's data may span multiple file system blocks.
• A file system block is composed of a consecutive range of disk block addresses.
Data in disk
• Disk drives read and write data to media through cylinder, head, and sector

geometry.
• Microcode on a disk translates between disk block numbers and

cylinder/head/sector locations.
• This translation is an elementary form of virtualization.

Block device level interface: SCSI (Small Computer System Interface)
• The exchange of data blocks between the host system and storage is governed by

the SCSI protocol.

The SCSI command processing entity within the storage target represents a logical
unit (LU) and is assigned a logical unit number (LUN) for identification by the host
platform

76

Drives are not always local to the server, and therefore a Storage Interconnection is
utilized.

This illustration shows that the path to storage includes multiple layers of physical
and logical data transformation

The storage interconnection provides the data path

between servers and storage

The storage interconnection is composed of both

hardware and software components

77

Approaches

78

Abstracting physical storage

Physical to virtual

The cylinder, head and sector geometry of individual

disks is virtualized into logical block addresses (LBAs).

For storage networks, the physical storage system is

identified by a network address / LUN pair.

Combining RAID and JBOD assets to create a virtualized

mirror must accommodate performance differences.

Metadata integrity

Storage metadata integrity requires redundancy for

failover or load balancing.

Virtualization intelligence may need to interface with

upper layer applications to ensure data consistency.

79

Host-based

80

Important issues

Storage metadata servers
Storage metadata may be shared by multiple servers.
Shared metadata enables a SAN file system view for multiple servers.
Provides virtual to real logical block address mapping for client.
A distributed SAN file system requires file locking mechanisms to preserve
data integrity.

Host-based storage APIs
May be implemented by the operating system to provide a common interface
to disparate virtualized resources.
Microsoft's virtual disk service (VDS) provides a management interface for
dynamic generation of virtualized storage.

81

An additional layer of abstraction and control can be run on each host, and is called
Logical Volume Manager (LVM). This code runs on the host and front-ends all kinds of
back end storage resources.

The use cases and the architecture are shown on the slide.

82

Host based storage virtualization has gotten very popular in server machines because

No additional hardware or infrastructure

requirements

Simple to design and implement

Improve storage utilization

However

Storage utilization optimized only on a per host

base

Software implementation is depending on each

operating system

Consume CPU cycles for virtualization

As we all know, NFS is very popular, and it is a form of Host based storage virtualization

File level
Run virtualized file system on the host to map files into data blocks, which
distributed among several storage devices.

Block level
Run logical volume management software on the host to intercept I/O
requests and redirect them to storage devices.

83

Network-based

84

Animation illustrates…

Fabric switch should provide
Connectivity for all storage transactions
Interoperability between disparate servers,
operating systems, and target devices

FAIS (Fabric Application Interface Standard)

Define a set of standard APIs to integrate

applications and switches.

FAIS separates control information and data

paths.

The control path processor (CPP) supports the

FAIS APIs and upper layer storage virtualization

application.

The data path controller (DPC) executes the

virtualized SCSI I/Os under the management of

one or more CPPs

85

Network-based Virtualization come with plus and minus factors as well

True heterogeneous storage virtualization

No need for modification of host or storage

system

Multi-path technique improve the access

performance

However

Complex interoperability matrices - limited by

vendors support

Difficult to implement fast metadata updates in

switch device

Usually require to build specific network

equipments (e.g., Fibre Channel)

IBM SVC (SAN Volume Controller) is an example

86

Storage-based

87

This animation illustrates how the different layers in a storage system perform their
function.

In the first part of the animation one can see a mode where the underlying virtualized
storage provides a virtual filesystem interface, The connected Operating Systems send
the files there to get saved. The virtualized storage takes care of replicating the file
across actual drives in the cloud for high durability.

In the second part of the animation, on can see the mode where the underlying
virtualized storage presents and block level interface. Here, the application is running
on an OS, which presents a local file system interface. The operating system
deconstructs, through the file system code, the save into a series of blocks which
need to be written. The blocks go to the virtualization layer in this case, which stores
and replicates at the block level.

88

Storage virtualization is extremely useful

On the one hand
Provide most of the benefits of storage virtualization
Reduce additional latency to individual IO

However
Storage utilization optimized only across the connected controllers
Replication and data migration only possible across the connected controllers
and the same vendors devices

89

Implementation Methods

90

Storage virtualization can be implemented in a number of ways.

• In-Band virtualization - Also known as symmetric, virtualization devices actually sit
in the data path between the host and storage.

• Out-of-Band virtualization - Also known as asymmetric, virtualization devices are
sometimes called metadata servers.

91

The animation in this slide shows what is called In-Band virtualization, Also known as
symmetric, virtualization devices actually sit in the data path between the host and
storage.

Hosts perform IO to the virtualized device and never interact with the actual storage
device.

While Easy to implement
It has Bad scalability & Bottle neck characteristics

92

The animation in this illustration shows out of band virtualization

Also known as asymmetric, virtualization devices are sometimes called metadata
servers.

It Requires additional software in the host which knows the first request location of
the actual data.

While a good architecture for Scalability & Performance

It is Hard to implement

93

This tutorial has explored the various ways that Storage is virtualized and
implemented for large scale, distributed systems, including Cloud.

We explored the storage primitive which was virtualized, and saw that some systems
concentrate on virtualizing files, and some systems concentrate on virtualizing blocks.

We saw that the virtualization function can run in a variety of places in the
architecture. It can run in the host, in the network, or all the way back where the
drives are.

We saw that virtualization can be placed “in band” of the storage operations, and for
scale, is usually placed “out of band”.

3
1

94

95

Lecture 4. Network Virtualization

96

In this lesson we are going to dive deeper into Cloud Networking, in particular just as
we have studied compute virtualization, and storage virtualization, we are going to
study network virtualization, which is perhaps the most interesting and the most
recent development of the three.

We will look at Network protocols and components and how they relate to the
internal operating systems in the cloud.

We will study examples of network services in IaaS systems of AWS and OpenStack.

Finally we will cover the topic of load balancing, which is a special networking feature
that is extremely useful in cloud computing.

97

Overview

98

This diagram has been shown earlier to exemplify how the a generalized virtualization
approach is applied to virtualization in specific areas.

In a previous lesson we covered in depth how server (or comoute) virtualization is
typically enabled by a hypervisor as shown in the middle layer of the server
virtualization part of the illustraton.

Also in a previous lesson we covered in depth how storage virtualization is enable. As
shown in the middle layer of the storage virtualization part, this virtualization is
typically implemented by filesystem software layers which can ru anywhere along the
path to the drives, in other words, in the hosts, or across the network in processors
where the drives are. The block devices themselves are also typically virtualized and
merged using various techniques depending on how the drives are accessed.

Finally one can see from the illustration that there are analogous middle layers in the
network virtualization case, which is the area we will now concentrate on.

99

What is network virtualization? Network virtualization is a part of virtualized cloud
infrastructure and services.

There is of course, always a physical network connecting all the physical parts of the
cloud together. In fact, depending on how the cloud was actually constructed, there
may be several networks connecting the physical parts of the cloud together, to
provide for higher performance, better failure resiliency, or multiple physical paths.
Across the cloud cluster, for example let’s say the physical cloud spans many, many
racks, this/these network segments may be using Layer 2 in the rack and layer 3 from
rack to rack; many techniques are possible. This physical layer is very important and
requires traditional configuration of switches and routers.

Network virtualization creates a “logical” or virtual network on top of this physical
network. Network virtualization uses the virtual switches that are present in the
hypervisors to layer from VM to VM and they also layer on top of the physical
network. Network Virtualization is the process of combining hardware and software
network resources and network functionality into a single, software-based
administrative entity, a virtual network

This virtual network is Enabled by specially designed network protocols, and by
special software which controls or defines these virtual networks.,

100

Now we will focus on this layer called the virtualized network. While we haven’t really
explained how it works yet, conceptually we know it is software which sits on top of
the physical network. It is distributed across the cloud and is made up of several
software modules which talk to each other and also to the physical network below.

Given then that Network Virtualization is basically a distributed software system, if it
is implemented using distributed computing principles such as being aware of state,
using replication, asynchronous operation of components, and all the other usual
guiding principles for building distributed systems, the Virtual Network will exhibit
characteristics of a well designed distributed system.

As the slide indicates, Scalability, Resilience, Security, and Availability are all
properties which the Virtual Network will exhibit by virtue of it’s distributed software
based implementation.

101

Network Protocols and Components

102

As a reference, this slide provides an illustration to refresh yourself with the OSI
networking model and the TCP/IP networking model. We will refer to the these layers
on an ongoing basis

103

Also as a reference, this slide provides two illustrations.

The first illustration shows common IP based networking protocols and how they
correspond to layers in the TCP/IP model.

The second illustration shows common security protocols and how they too
correspond to layers in the TCP/IP model.

104

As discussed earlier, there are physical network components, which are connected
and configured. These are all sorts of networking devices, from Network Interface
Cards (NIC) in the Servers, to Switches, to Routers, and also the infrastructure which
the network depends on, such as a Domain Name System (DNS), and maybe an IP
Address Management (IPAM) system (such as DHCP).

On top of this is a software layer which implements the Virtual Network. The virtual
network includes the Virtual Switches and Virtual NICs (vNICs) which are part of the
Hypervisor system. It also will contain virtual switches (vSwitch), virtual routers
(vRouters), and even modules which supply DNA and IPAM at the virtualized network
level.

In other words all generic network devices can be in a virtualized forms and used in
clouds to interconnect VMs and virtual servers.

105

Types

106

In the previous slide, we made a distinction between the Physical network and the
Virtual Network.

Actually the virtual network has two types within it, as you might have already
figured out.

The first type is called Internal network virtualization, it is the vNICs and vSwitches
Supported by the Hypervisors and interconnect VMs. It is Providing network-like
functionality to the software containers on a single system

The second type is called External network virtualization, it is where we go outside
the individual server boundary, and Combine many networks, or parts of networks,
into a virtual network infrastructure. This Uses device and path virtualization.

We will think about a Typical virtual network configuration as the slide details.

107

Internal

108

Let us now examine the Internal Network Virtualization at Different Layers.

As the slide details, Layer 1 does not need to be emulated, as the physical layer is not
emulated by the hypervisor, the drivers abstract that.

Layer 2 is where software is first exposed to network, this is where the vNIC exposes
an Ethernet in the hypervisor, or where a vSwitch is used to do layer 2 bridging or
switching.

Layer 3 Implements the virtual L3 network devices, such as router, in the hypervisor

Layer 4 or higher layers virtualization is usually implemented in guest OS

In Linux, one can see TUN and TAP virtual network kernel devices, as explained, TUN
operates as router; while TAP is used for creating a network bridge

109

Now let us turn our detailed look towards Internal Network Virtualization

At the core of this, is that each single system which runs a few VMs containers is
already combined with hypervisor I/O control programs or pseudo-interfaces such as
the vNIC to create a “network in a box”

The VMs are connected logically to each other via vNICs and virtual switch (vSwitch)

Each internal virtual network is serviced by a single vSwitch

The vSwitch detects which VMs are logically connected to each of its virtual ports and
uses that information to forward traffic to the correct VM

A virtual network can be connected to a physical network by associating one or more
network adapters (physical uplink adapters) with vSwitch

110

This slide illustrates nicely an example of Internal Network Virtualization from
VMware.

One can see the vNICs and Virtual Switches

One Connects VMs to different networks via vSwitch and vNICs

111

Now lets look at Internal Network virtualization in KVM

KVM focuses on CPU and memory virtualization, so IO virtualization framework is
completed by QEMU project

In QEMU, network interface of virtual machines connect to host by TUN/TAP driver
and Linux bridge

The operation of TUN and TAP are described in the slide.

112

In the KVM/Linux bridge, as can bee seen in the illustration on this slide, the bridge is
what is used to connect the vNICs with the real physical NIC,

Bridging is a forwarding technique used in packet-switched computer networks. Unlike
routing, bridging makes no assumptions about where in a network a particular address is
located.

Bridging depends on flooding and examination of source addresses in received packet
headers to locate unknown devices.

Bridging connects multiple network segments at the data link layer (Layer 2) of the OSI
model.

113

External

114

No let us look at External Network Virtualization at Different Layers

Again, Layer 1 is rarely accessed by software Layer 2 has seen a lot of technology
around virtualization lately, we will spend more time on Layer 2 virtualizations such as
VLAN, SDN, NFV, IEEE802.1Q, OpenFlow/SDN.

Layer 2 techniques all use Use Ethernet packets header extensions and tags to transmit
across the network that a virtualization is in place and some of these conventions have
been standardized. This is an active area.

Layer 3 is in the same situation, lots of development usually using some tunnel
techniques to form a virtual network -
Example, VPN, GRE, MPLS, NFV, IEEE802.1Q, OpenFlow/SDN.

115

Network Virtualization usually utilizes two main techniques to get it’s job done, that
is Device and Path virtualization

These place network virtualization in two places, one at the device, and one in the
pathing of traffic,

• Device virtualization virtualizes physical devices in the network

• Data path virtualization virtualizes communication path between network access
points

One can see from the illustration how a complete virtualized network can be
constructed using Device and Path virtualization

116

Data path virtualization virtualizes communication path between network access
points

One can see from the illustration how a complete virtualized network can be
constructed using Device and Path virtualization

117

Device virtualization is done differently for each type of network device to be
constructed

A layer 2 (switch level) solution, creates numbers of switches, separating the traffic
amongst the switches. In a software implementation they are multiple vSwitches, In a
hardware device this is done by the ASICs, and is called VLAN for Virtual LAN

A layer 3 (router level) solution utilizes routing tables as one would suspect, making
separate routing tables or more accurately routing domains for each Layer 3 network,

In a software implementation the VRF (Virtual Routing and

Forwarding) technique is used, in a hardware

device the router create separate layer 3 domains

within the one router (with separate routing

protocols, rout processors, and tables).

118

Protocols

119

Protocols Supporting Network Virtualization

120

Virtual Private Network (VPN)
• IPSec based tunneling protocol interconnecting two network locations
• The most widely used solution for interconnecting remote offices and roaming

users

121

Data-path virtualization is realised based on special network protocols such as

122

IEEE802.1Q is a Layer 2 virtualization protocol that implements hop to hop data-path
virtualization and allows for creation of Virtual Local Area Networks.

123

MPLS (Multi-Protocol Label Switching) is a Layer 3 network path virtualization
protocol that operates at the level of network routers and switches;

124

GRE (Generic Routing Encapsulation): implements virtualization among wide variety
of networks with tunneling technique

125

126

•

•
•

Virtual Private Network (VPN) used to extend private network over public
Internet to remote locations

• Uses end-to-end secure IP protocol (IPSec)
Originally VPN has one home/main office
New technologies allow multi-homed VPN

127

128

IEEE 802.1Q Tunnel Ports is in a Service-Provider network
• Multiple tunnel ports are supported

IEEE 802.1Q Trunk Port in Customer network

129

130

IEEE802.1Q adds a 32-bit field between MAC address and EtherTypes
field
• ETYPE(2B): Protocol identifier
• Dot1Q Tag(2B): VLAN number, Priority code

131

IEEE802.1Q adds a 32-bit field between MAC address and EtherTypes
field
• ETYPE(2B): Protocol identifier
• Dot1Q Tag(2B): VLAN number, Priority code

132

IEEE802.1Q adds a 32-bit field between MAC address and EtherTypes
field
• ETYPE(2B): Protocol identifier
• Dot1Q Tag(2B): VLAN number, Priority code

133

134

135

GRE (Generic Routing Encapsulation) is a tunnel protocol developed by Cisco

136

When combined with IPSec, allows for secure multi-homed VPN

137

This means end-point doesn't keep information about the state

138

139

Implementation Examples

140

Xen

141

Next lets look at Xen. Xen is a para-virtualization hypervisor, so the guest OS uses
modified network interface drivers

Modified network interface drivers communicate with virtual switches in Domain0,
which act as TAP in traditional approach

Xen is a para-virtualization hypervisor, so guest OS uses modified network interface
drivers

142

•
•

Hypervisor remaps memory page for MMIO (Memory Mapped I/O)
Whenever packets send, induce one context switch from guest to Domain 0 to
drive real NIC

143

vSwitch in Xen can be implemented by Linux bridge or work with other optimized
bridge implementations

144

CDNA (Concurrent Direct Network Access) hardware adapter

145

This slide presents an illustration in detail of the Xen network virtualization model.

One can see that in each of the guest domains there is a customized driver which
talks to the hypervisor, which then intermediates with the OS to bridge these to the
physical NIC.

Most of this complication is due to the fact that the NIC was designed to be used with
one OS at a time (the concept of multiple OS’s controlling one NIC because of
virtualization was not around at the time of the hardware design).

146

This slide contains an illustration which shows how Hardware Assisted Xen Network
Virtualisation works,

The core of this is a re-architected NIC with supports multiple OS’s driving it, this is
called a CDNA (Concurrent Direct Network Access) hardware adapter

This Significantly improves performance by hardware, and Removes the driver
domain from data and interrupts

CDNA (Concurrent Direct Network Access) hardware adapter
• Significantly improves performance by hardware
• Remove driver domain from data and interrupts

• Hypervisor only responsible for virtual interrupts and assigning context to guest
OS

147

Now let us put some of these concepts together and look at the networking design of
an IaaS cloud.

IaaS Network Design

148

The Physical server has to connect to the physical network, and it does this with
physical NICs. There is a bridge from this physical layer to the virtual layer in the
hypervisor/at the Operating System level (vSwitch).

DHCP can be used as part if an IPAM (IP address management) strategy from the
cloud to the outside to Map virtual MAC addresses of VMs to private IPs in the LAN

NAT Forwards the packages to public network (WAN)

Inside the cloud IPAM is handled by the cloud itself with it’s own IP/MAC mapping
table

Make virtual machines on one node share physical NICs.

149

Map virtual MAC addresses of VMs to private IPs in the LAN.

150

Forward the packages to public network (WAN).

151

•
•
•

IP addresses are assigned by the Cloud.
MAC addresses are assigned by hypervisor.
This mapping table is maintained by Cloud system.

152

The figure on this slide expands on the previous assrtions and puts them into a
diagram. It presents a hypothetical example of IaaS virtual network design. The three
VMs are configured with vNICs and their internal IP addresses. They are connected to
the local network via physical NICs and can access external or public Internet via
Network Address Translation (NAT) protocol that translates an internal IP address into
one of the external public IP addresses. More complex virtual network infrastructure
can be created by deploying VM-based network devices or virtualising physical
network devices. The following are the components of the created IaaS network
infrastructure:

vSwitch: Make VMs on one node share physical NICs.
DHCP: Map virtual MAC addresses of VMs to private IPs in the LAN.
NAT: Forward the packages to the public network.
IP/MAC mapping table: maintains IP addresses assigned by CMS and MAC addresses
are assigned by hypervisor. This mapping table is maintained by CMS.

153

Now we can take the ideas from the previous single server environment and show
how to construct a larger cloud

Basically the servers are stacked and they are connected to physical top of rack”
network as indicated in the illustration in this slide

Note that the two physical NICs in each server (from the previous slide) are each
connected to a different top of rack switch. This will increase reliability should a link
or a switch fail. They are configured to use link aggregation to work as if they were
“bonded” to get the use of the entire bandwidth that has been purchased.

Within the rack the top of rack switches use Layer 2 switching to connect all nodes.

154

This slide illustrates how multiple racks are uplinked to an aggregation switch. The
uplinks are L3 uplinks. In this example we show 4 uplinks per top of rack switch.
Which allows for the hi availability approach of connecting each of the two top of
rack switches to both separated backplane and separated blades on the aggregation
switch.

Again link aggregation is used for maximum bandwidth and maximum redundancy.

155

OpenStack

156

OpenStack Neutron is a network management component in OpenStack cloud
platform
• Works together with the Network Controller in Nova (compute component)

157

Neutron network manager provides the following functionalities
• Provides API to build rich networking topologies, and configure advanced

network policies
• Enable user developed plugins that introduce advanced network capabilities; e.g.

NFV or SDN
• Allows building advanced network services that can be used in the

tenant’s Openstack infrastructure

158

Logically Neutron (and Nova) supports two types of IP address:
• Fixed which are associate with virtual machine instance at creation and remain
associated till termination
• Floating which can be dynamically attached/detached to/from a running VM
instance at run-time

159

For fixed IPs, Neutron (and Nova) support following three modes of networking
• Flat mode provides each VM instance with a fixed IP associated with a default
network bridge that must be manually configured

160

Flat DHCP mode improves upon Flat mode by creating a DHCP server to provide fixed
IPs to virtual machine instances

161

VLAN DHCP mode is the default networking mode in which Nova creates a VLAN
and
virtual bridge for each project
• VM instances in the project are allocated a private IP address from range of IPs.
• Users can access these instances by using a special VPN instance called
'cloudpipe' which uses a certificate and key to create a VPN (Virtual Private Network).

162

OpenStack Networking (Neutron, formerly Quantum) is a pluggable, scalable and API-driven system for managing networks and
IP addresses. Like other aspects of the cloud operating system, it can be used by administrators and users to increase the value
of existing data center assets. OpenStack Networking ensures the network will not be the bottleneck or limiting factor in a cloud
deployment and gives users real self-service, even over their network configurations.

OpenStack Networking is a system for managing networks and IP addresses. Like other aspects of the cloud operating system, it
can be used by administrators and users to increase the value of existing data center assets. OpenStack Networking ensures the
network will not be the bottleneck or limiting factor in a cloud deployment and gives users real self-service, even over their
network configurations.

OpenStack Neutron provides networking models for different applications or user groups. Standard models include flat
networks or VLANs for separation of servers and traffic. OpenStack Networking manages IP addresses, allowing for dedicated
static IPs or DHCP. Floating IPs allow traffic to be dynamically re routed to any of your compute resources, which allows you to
redirect traffic during maintenance or in the case of failure. Users can create their own networks, control traffic and connect
servers and devices to one or more networks. Administrators can take advantage of software-defined networking (SDN)
technology like OpenFlow to allow for high levels of multi-tenancy and massive scale. OpenStack Networking has an extension
framework allowing additional network services, such as intrusion detection systems (IDS), load balancing, firewalls and virtual
private networks (VPN) to be deployed and managed.

Networking Capabilities

OpenStack provides flexible networking models to suit the needs of different applications or user groups. Standard models
include flat networks or VLANs for separation of servers and traffic.

OpenStack Networking manages IP addresses, allowing for dedicated static IPs or DHCP. Floating IPs allow traffic to be
dynamically re-routed to any of your compute resources, which allows you to redirect traffic during maintenance or in the case
of failure.

Users can create their own networks, control traffic and connect servers and devices to one or more networks.

The pluggable backend architecture lets users take advantage of commodity gear or advanced networking services from
supported vendors.

Administrators can take advantage of software-defined networking (SDN) technology like OpenFlow to allow for high levels of
multi-tenancy and massive scale.

OpenStack Networking has an extension framework allowing additional network services, such as intrusion detection systems
(IDS), load balancing, firewalls and virtual private networks (VPN) to be deployed and managed.

163

Neutron provides "network connectivity as a service" between interface devices managed by
other OpenStack services (most likely Nova). The service works by allowing users to create
their own networks and then attach interfaces to them. Like many of the OpenStack services,
Neutron is highly configurable due to its plug-in architecture. These plug-ins accommodate
different networking equipment and software. As such, the architecture and deployment can
vary dramatically.

neutron-server accepts API requests and then routes them to the appropriate Neutron plug-
in for action.

Neutron plug-ins and agents perform the actual actions such as plugging and unplugging
ports, creating networks or subnets and IP addressing. These plug-ins and agents differ
depending on the vendor and technologies used in the particular cloud. Neutron ships with
plug-ins and agents for: Cisco virtual and physical switches, NEC OpenFlow products, Open
vSwitch, Linux bridging, the Ryu Network Operating System, and VMware NSX.

The common agents are L3 (layer 3), DHCP (dynamic host IP addressing) and the specific
plug-in agent.

Most Neutron installations will also make use of a messaging queue to route information
between the neutron-server and various agents as well as a database to store networking
state for particular plug-ins.

Neutron will interact mainly with Nova, where it will provide networks and connectivity for
its instances.

164

This slide illustrates how Neutron based software networking can be applied to result
is many different networking topologies for the user

Note the ability to create virtual switch components as well as multiple network
segments.

165

Amazon EC2

166

•
•
•

Private IP address is used within the EC2 LAN (Local Area Network)
Public IP address is used to access the user VM over the Internet
Public IP address is advertised to the Internet and has a 1:1 NAT (Network
Address Translation) mapping to the private IP address of the EC2 instance

167

•

•

A user can associate this IP address to any particular EC2 instance rented with
that account
The mapping can be changed dynamically to a different EC2 instance, in
particular to a replacement instance in the event of a failure of the running VM

168

VPC (Virtual Private Cloud) allows organizations to use AWS resources along with
their existing infrastructure connecting AWS VPC and organisation’s network via VPN

169

Amazon Route 53 is a DNS (Domain Name Server) service provided by Amazon to
map EC2 instance IP addresses to a domain names.

170

AWS Direct connect for dedicated connectivity to AWS cloud

171

AWS offers yet another option for more intimately connecting to the AWS cloud. Let’s
assume that your own company datacentre or at least the part of your infrastructure which
needs the overflow cloud-bursting” type of capability talked about in the previous slide, is
really co-location space in a public datacentre. Lets further assume AWS has some of their
infrastructure in exactly that same datacentre. This is not so coincidental because the brand-
name mega datacenters in places like New York, Washington DC, Silicon Valley, Tokyo, and
London are “the place to be” and those are places where AWS is as well. So if your syste is in
the same datacetner as AWS why
not simply connect to them directly? That is what AWS direct connect is, One end of the
cable is connected to customer router, the other to an AWS Direct Connect router. At an
Ethernet level a VLAN is established between the two routers. Layer 3 is the connectivity
which Direct Connect uses and it is like one ISP peering with another ISP, that is they both
have Autonomous System (AS) numbers and use the Border Gateway Protocol (BGP) for
Layer 3 IP routing. The public Interntet (or the rest of the in-datacenter IP exchange, for that
matter) is completely bypassed.

AWS has Direct Connect in most of regions

CoreSite NY1 & NY2 in US East (Virginia)

172

In this Lesson, we have covered

Network virtualization is an important part of cloud IaaS service
It is typically provided in Layer 2 in the form of VLAN and in Layer 3 in the form
of VPN

Virtualised cloud IaaS infrastructure uses both
Internal network virtualization implemented based on hypervisor and OS
functionality, and
External network virtualization that uses external device and path
virtualisation techniques and protocols (such as VPN, IEEE802.1Q, MPLS, GRE)

OpenStack Neutron provides rich functionality for building virtual network topologies
in cloud, allowing also for extensibility and external components integration
AWS EC2 cloud provides basic virtual network management functionality
VPN is used to interconnect the Virtual Private Cloud in the provider datacenter in
customer private network

1

Cloud Computing
Lecture Manual

Volume 3

Module 3

Introduction to Cloud Computing

2

Content
Lecture 1. Definition of Cloud Computing 5

Overview 6

Service Models 12

Deployment Models 17

Architecture 19

Use Cases 28

Lecture 2. Attributes of Cloud Computing 41

Properties and Benefits 42

Economics 51

Clouds as IT Innovator Facilitator 71

Ten Laws of Cloudonomics 75

Lecture 3. Design Principles of Cloud Computing 80

Cloud Design History 82

Overview 87

Cloud Implication on the Datacenter Design and Construction 91

Example 102

Lecture 4. Evolution and Future of Cloud Computing 106

Overview 107

Security and Privacy 120

Cloud Infrstructure Evolution 127

Mobile Cloud Computing 135

Energy Consumption and Green Clouds 138

3

4

Module 3. Introduction to

Cloud Computing

5

Lecture 1. Definition of Cloud

Computing

6

Overview

7

First of all, Cloud Computing is a key technology factor of Information

Technology industry.

Cloud Computing is entering a maturing stage of the technology development

and wide adoption

• Cloud Computing is already a given entity.

Cloud Computing is powering modern business and following new technologies

development that require elastic computing resources on-demand

• Mobile applications

• Big Data applications

• Internet of Things

• Changes telecom market landscape

Other technologies demand accelerated Cloud Computing development

Cloud Computing is increasing business agility and speed up new

services/technologies development

• However requires IT platforms/solutions transformation and

applications re-factoring/re-design

8

NIST Definition of Cloud Computing (according to NIST SP 800-145)

(http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-

definition.pdf)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.

This cloud model is composed of five essential characteristics, three service

models, and four deployment models.

Cloud computing is a fusion of the two basic technologies powered by

ubiquitous Internet connectivity:

• Utility Computing

• Service Oriented Architecture (SOA)

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

9

This slide contains the list of the main components of Cloud Computing

paradigm:

Five basic Cloud characteristics

On-demand self-service

Broad network access

Resource pooling

Rapid elasticity

Measured Service

3 basic service models

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Deployment models

Private clouds

Public clouds

Hybrid clouds

Community clouds

10

This slide contains the visualization of Cloud Computing and its main

components :

The essential Cloud characteristics

On-demand self-service

Broad network access

Resource pooling

Rapid elasticity

Measured Service

The main service models

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

The most popular deployment models

Private clouds

Public clouds

Hybrid clouds

Community clouds

11

According to the point of view of NIST:
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. This cloud model is
composed of five essential characteristics, three service models, and four
deployment models.

Here you can see the cumulative view on
- all main components (in list from the right side)
and
- visualizations of relations between them i(on the scheme from the right side).

12

Service Models

Now let's see consider the Service Models of Cloud Computing...

13

Cloud Computing Service Model - Infrastructure as a Service (IaaS):

provides high-level APIs used to dereference various low-level details of underlying network

infrastructure like

• physical computing resources,
• location,
• data partitioning,
• scaling,
• security,
• backup etc.

Examples
• Infrastructure of few interconnected Virtual Machines (VM) and Storage with

user defined characteristics that will run user defined OS and applications
• Physical IT infrastructure of interconnected computers and storage devices is

replicated into virtualised infrastructure in cloud
The capability provided to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating systems and applications.
The consumer does not manage or control the underlying cloud infrastructure but has
control over operating systems, storage, deployed applications, and possibly limited
control of select networking components (e.g., host firewalls).

The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of select networking components (e.g., host firewalls).

14

Cloud Computing Service Model – Platform as a Service (PaaS):
provides a platform allowing customers to develop, run, and manage applications without
the complexity of building and maintaining the infrastructure typically associated with
developing and launching an app.
Examples
Widely used enterprise management platform, such as CRM, provided for enterprise
customer on-demand; it is easy scalable depending on workload
Using PaaS cloud platform for new applications development and testing
Using cloud business process management platform for running user business processes,
e.g. Customer Relations Management (CRM) or Supply Chain Management (SCM)

The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages,
libraries, services, and tools supported by the provider. The consumer does not manage or
control the underlying cloud infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications and possibly configuration
settings for the application-hosting environment.
PaaS can be delivered in three ways:

• as a public cloud service from a provider, where the consumer controls software
deployment with minimal configuration options, and the provider provides the
networks, servers, storage, operating system (OS), middleware (e.g. Java runtime,
.NET runtime, integration, etc.), database and other services to host the consumer's
application.

• as a private service (software or appliance) inside the firewall.
• as software deployed on a public infrastructure as a service.

15

Cloud Computing Service Model – Platform as a Service (PaaS):

provides software licensing and delivery model in which software is licensed on a

subscription basis and is centrally hosted, and it is sometimes referred to as "on-

demand software"

Examples

• Web-based email services: Gmail, Hotmail, GoogleApps

• Microsoft Office365 online services

• File exchange and sharing: Google Drive, Dropbox, etc

• Data Analytics applications at Amazon AWS or Microsoft Azure clouds

The capability provided to the consumer is to use the provider’s applications running

on a cloud infrastructure. The applications are accessible from various client devices

through either a thin client interface, such as a web browser (e.g., web-based email),

or a program interface. The consumer does not manage or control the underlying

cloud infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited user-specific

application configuration settings.

16

The use models for Cloud Computing are closely related.
For a traditional “physically installed” packaged application (it is shown in the 1st
column from the left side), the entire deployment stack is managed by the user, as
can be seen in the first block of the illustration. The user is responsible for
provisioning the complete server including networking and storage, and the
Operating System software as well. Additionally, the user provisions whatever
databases and middleware they need, any special runtime (Java or Ruby), and finally
the application. The application data is also the responsibility (and the ownership of)
the user.
The Cloud IaaS model (it is shown in the 2nd column from the left side) changes this
significantly, alleviating a large portion of at least what would be considered
“physical” infrastructure, this is shown in the second block of the illustration. The
cloud management (sometimes called Cloud OS) software is shown in this diagram as
“IaaS Mngt Platf”. The user obtains the hardware in a virtualized form from the IaaS
CSP and worries only about the software stack, application, and data.
The Cloud PaaS model (it is shown in the 3rd column from the left side) further offers
middleware, application runtime, and as much “software” infrastructure as possible,
creating a convenient container for the application developer. While this requires the
developer to restructure if not rewrite the application at the source code level to
interface to the PaaS, this restricting will impart new scalability and availability
strengths into the application.
The Cloud SaaS model (it is shown in the 4th column from the left side) is a
consuming of just the application itself through a browser or web service.

17

Deployment Models

Now let's see consider the Deployment Models of Cloud Computing...

18

This slide contains the list of the main deployment models of Cloud Computing.

Private Cloud: The cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers (e.g., business units). It may be
owned, managed, and operated by the organization, a third party, or some
combination of them, and it may exist on or off premises.

Public Cloud: The cloud infrastructure is provisioned for open use by the general
public. It may be owned, managed, and operated by a business, academic, or
government organization, or some combination of them. It exists on the premises
of the cloud provider.

Hybrid Cloud: The cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private, community, or public) that remain unique entities,
but are bound together by standardized or proprietary technology that enables
data and application portability (e.g., cloud bursting for load balancing between
clouds).

Community Cloud: The cloud infrastructure is provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance considerations). It
may be owned, managed, and operated by one or more of the organizations in the
community, a third party, or some combination of them, and it may exist on or off
premises.

19

Architecture

20

Standardization has been very important from the beginning of the Cloud Computing

development. It is important for both Cloud Services Providers (due to the scale of their

infrastructure and facilities) and for cloud services consumers to allow their interoperability

with other services.

Here we refer to the related standards by National Institute of Standards and Technology of USA

(NIST) that define the Cloud Computing technology and Cloud Computing Reference

Architecture.

NIST is active in fostering cloud computing practices that support interoperability, portability,

and security requirements that are appropriate and achievable for important usage scenarios.

Since first publication of the currently commonly accepted NIST Cloud definition in 2008, NIST is

leading wide internationally recognized activity on defining conceptual and standard base in

Cloud Computing, which has been resulted in publishing the following documents that create a

solid base for cloud services development and offering: NIST SP 800-145, A NIST definition of

cloud computing, and other formal documentation.

21

The slide presents a high level view of the NIST Cloud Computing Reference Architecture

(CCRA), which identifies the major actors (Cloud Consumer, Cloud Service Provider, Cloud

Auditor, Cloud Broker, and Cloud Carrier), their activities and functions in cloud computing.

A cloud consumer may request cloud services from a cloud provider directly or via a cloud

broker. A cloud auditor conducts independent audits and may contact the others to collect

necessary information.

The proposed architecture is suitable for many purposes where network performance is

not critical but needs to be extended with explicit network services provisioning and

management when the cloud applications are critical to network latency like in case of

enterprise applications, business transactions, crisis management, etc

NIST Cloud Computing Reference Architecture (CCRA) defines a number of stakeholders

and actors which can be extended based on the basic of use cases analysis. The slide

illustrates some of those on such a list and shows relationships of the stakeholders and

actors.

22

Let’s consider the whole list of actors in Cloud Computing ecosystem of service

delivery:

Basic/Main actors – Define main business relation in cloud services delivery

Cloud Service Provider

Cloud Customer

Cloud User

Cloud Broker

Other actors – Define other relations in cloud business

Cloud Carrier

Cloud Auditor

Cloud Developer, Cloud Integrator

Cloud/Intercloud Service Operator

Cloud Resource Provider

Physical Resource Provider

Can also be a “fixed” resources provider

23

The main actors and their roles are as follows:

Cloud Service Provider (CSP)

A cloud provider is a person, an organization; it is the entity responsible for making a

service available to interested parties. A Cloud Provider acquires and manages the

computing infrastructure required for providing the services, runs the cloud software

that provides the services, and makes arrangement to deliver the cloud services to the

Cloud Consumers through network access.

Cloud Customer

A person or organization that maintains a business relationship with and manages

service obtained from Cloud Providers. Cloud customer can be also a cloud customer.

Cloud (end)user

A person or organization that uses/consumes cloud based services. Cloud user can be

also a cloud customer.

Cloud Broker

A cloud broker is an entity that manages the use, performance and delivery of cloud

services and negotiates relationships between cloud providers and cloud consumers.

Cloud broker may also include Developer of integration functions

24

Other actors and roles include:

Cloud Carrier

An intermediary that provides connectivity and transport of cloud services from Cloud

Providers to Cloud Consumers. A typical role for telecom provider.

Cloud Auditor

A party that can conduct independent assessment of cloud services, information

system operations, performance and security of the cloud implementation.

Cloud Developer

A party that develops cloud based services and can be internal or external role for

organisation (customer) that intends to use prospective cloud service. Particular task

include migration of the company’s IT infrastructure to cloud platform.

Cloud Integrator

A party which primarily role is to implement the approved cloud based project, in

particular, IT migration to clouds, and may also include other functions such as

company’s IT infrastructure maturity and readiness for cloud evaluation,

implementation plan development, cloud infrastructure and applications deployment.

Cloud/Intercloud Service Operator

A party to which the created cloud applications and infrastructure can be outsourced.

Cloud Resources Provider and Physical Resources Provider

Parties that act as provides of cloud based or physical resource providers that can be

integrated into the future delivered to customer cloud services or infrastructure.

25

The Cloud Service Provider is best known for the visible functions it provides,

that is enabling IaaS, PaaS, and SaaS capabilities.

Behind the scenes, there is a Service Delivery Framework (SDF) which provides

the mechanics for the Service Provisioning.

The Service Provisioning: occurs in several stages: Request & SLA Negotiation

Reservation & Composition Deployment Operation Decommissioning.

These are explained on the next slide.

26

The Slide illustrates the main service provisioning or delivery stages that address

specific requirements of the provisioned on-demand virtualized services:

Service Request Stage including service-level agreement (SLA) negotiation. The

SLA can describe Quality of Service (QoS) and security requirements of the

negotiated infrastructure service along with information that facilitates

authentication of service requests from users. This stage also includes generation

of the Global Reservation ID (GRI) that will serve as a provisioning session

identifier and will bind all other stages and related security context.

Composition/Reservation Stage that also includes Reservation Session Binding

with the GRI, which provides support for complex reservation processes in multi-

domain multi-provider environments. This stage may require access control and

SLA/policy enforcement.

Deployment Stage, including services Registration and Synchronization. The

deployment stage begins after all component resources have been reserved and

includes distribution of the common composed service context (including

security context) and binding the reserved resources or services to the GRI as a

common provisioning session ID.

The Registration and Synchronization stage (which are optional) specifically

targets scenarios with provisioned service migration or re-planning.

27

Operation Stage (including Monitoring). This is the main operational stage of the

provisioned on-demand cloud services. Monitoring is an important functionality

of this stage to ensure service availability and secure operation, including SLA

enforcement.

Decommissioning Stage ensures that all sessions are terminated, data is cleaned

up, and session security context is recycled. The decommissioning stage can also

provide information to or initiate service usage accounting.

Two additional (sub-)stages can be initiated from the Operation stage, based on

the running service or resources state:

Re-composition or Re-planning Stage should allow incremental infrastructure

changes.

Recovery/Migration Stage can be initiated by the user or provider. This process

can use MD-SLC to initiate a full or partial resource re-synchronization, it may

also require re-composition.

Implementation of the proposed SDF requires a special Service Lifecycle

Metadata Repository (MD SLC) to support consistent services lifecycle

management. MD SLC keeps the services metadata that include at least service

state, service properties, and services configuration information. This

functionality is a part of the cloud management software and cloud platform

software.

28

Use Cases

29

Why do we need use cases analysis?

• Use cases analysis is an important component of the technology definition

• Use cases analysis gives examples how the technology is used and allows

defining best practices

• Provide input for taxonomy

• Define requirements general and specific, functional and non-functional

• Provides a basis for architecture validation

• Help identifying the main stakeholders

We should not also exclude the analysis of use cases as valuable information for

education and professional training. What we actually do in this course.

On the other hand, when planning for company’s IT infrastructure migration to

clouds, the applicable cloud service and deployment model is selected based on a

number of factors:

♦ Company, business and applications must have economical or business

benefits from

♦ moving to clouds

♦ Besides purely technical, other business, organizational or staff factors must be

considered

♦ Some (older) applications may need to be re-designed

♦ Transition period from in-house to cloud services takes time and must be

carefully planned

30

There are different approaches to selsction and classifiacation of use cases:

 to look at the variety of service models and deployment models;

 to enumerate possibilities based on stakeholder involvement and business relations;

 to consider and adopt common industry or community use cases.

A collaborative effort of by Cloud Computing researchers has come up with one way to
characterize example use cases: End users to Cloud Enterprise to Cloud to End users
Enterprise to Cloud Enterprise to Cloud to Enterprise Private Cloud Changing Cloud Providers
Hybrid Cloud Something important to consider is, that these scenarios don’t suddenly
“happen”, they are built out, or more accurately “grown into” because of a particular
enterprise need. Think of the use case, where an enterprise wants to migrate part of its IT
infrastructure to a Cloud. It is not sure which approach it needs yet. But this is the use case
that all companies and enterprises face when they decide to move their IT infrastructure to
clouds. The motivation to do this is to benefit from the functional cloud benefits described
above as well as economical and business values.

As we pointed out, full cloud migration doesn’t happen in one step. For the big
organizations, it typically starts from implementing private cloud and moving local IT services
to cloud based. This step will also lead to the whole IT maturity and its readiness to
outsource some services to public cloud. This creates a hybrid cloud. And the next step will
be to move operational IT infrastructure or some departments entirely to cloud. What are
challenges and how to address them we will discuss in the subsequent use cases.

31

We can identify the following general cloud use cases which we discuss in details

below.

Use case 1:

Moving part of workload to cloud in case of abrupt demand increase: cloudburst

Use case 2:

Disaster recovery

Moving/restoring emergency load in a partner cloud

Restoring own cloud based IT infrastructure

Use case 3:

Service continuity when changing cloud provider

32

This is Use case 1: Extending services and capacities into public cloud in case of

rapid demand increase (“cloudbursting” scenario).

This term “cloudbursting” is an imprecise term widely used by businesses to

describe situations when workload is temporarily migrated to cloud, extending

and replicating the private cloud resources and VMs (using the formula “buy the

base, rent a spike”).

We will consider one “cloudbursting” scenario as it is one of key use cases for

cloud computing that bring important advantages for use of cloud technologies by

SME (also called SMB –Small and Medium Business).

The hypothetical SME is a startup with already running business but considering

new product or service that will require building or outsourcing new IT

infrastructure and resources. Main pre-conditions and requirements:

Untested/unpredictable workload -In particular for webshops, social sites, gaming

and mobile applications. The business wants to deploy services and infrastructure

“elastically” so they can be expanded and un-expanded to meet the actual

demands. This allows for the easy extension (in case of success) and cheap failure

(in case if service is not successful) .

33

Another driving force is handle an expected service expansion to different

countries and geographical zones. The ability to bring up infrastructure else where

addresses this need. One wants to have multiple infrastructures anyway, to

provide for load balancing and latency minimization across geographies.

The SME use case should also address a potential situation called “High-profile

success disaster” what happens when service or site popularity grows rapidly what

can a cases with modern web and mobile applications. Known examples/stories

include the BestBuy year 2012 holiday shopping service overloading, or Netflix

service outage the same year 2012 after problems at AWS that hosts Netflix

services. Netflix service was also irregularly available during Christmas holidays in

2013 in Europe. All these denial of service cases were caused by increased demand

from customers.

The cloud based solution can effectively address the situations with the demand

influx, however applications and services must be designed in a way to allow their

easy extension, replication and relocation to external cloud provider

infrastructure. It is important to repeat that not all services and operational

procedures are suitable for moving to clouds, in particular those that deal with the

sensitive data or require critical availability.

The diagram on the slide illustrates this use case. The company can be one of the

type or running the following applications: webshop or e-market, entertainment

or gaming application. Such applications are known for having seasonal or cyclical

demand, and in case of success can attract abruptly increased amount of users.

34

To finalize let’s emphasize the crucial points of this Use Case:

Scenario

• Webshops/eMarkets, entertainment sites have seasonal/holidays increase of load and users

• Surviving “disaster of success” when popular website attracts abrupt amount of users

Preconditions

• Company’s IT infrastructure is cloud based: private cloud or hosted on cloud

• Services and applications grouped to simplify services extension to cloud

• Some 3rd party services (like payment systems) are already hosted on cloud

• The whole or part of IT infrastructure is backed up, including VM, Data, UserDB, topology,

state/session

Sequence:

• Cloudburst scenario is triggered when increased number of requests causes services delay or

interruption

• VM images and up-to-date order data (optionally UseDB) are backed up/replicated and

transferred to suitable cloud provider (location, compatibility, cost)

• VMs and all necessary components are deployed in new cloud/location, data and states are

synchronized

• Requests (all or part) are started to be re-directed to new location benefiting from elasticity of

cloud resources

• Some services are typically not replicated to burst cloud, e.g. UserDB and order or payment

processing

• External cloud resources and infrastructure stopped, VM destroyed, after demand decrease

(scale-down), all business related data are transferred back to company.

35

Use case 2: Disaster recovery and large scale provider failure

Scenario

Due to natural disaster IT infrastructure of Municipality A destroyed

Offline backup stored remotely is available but cannot be used from Municipality A

There is vital need for information both for citizens and for rescue team amount of users

Preconditions

Municipalities’ IT infrastructures are cloud based: using community cloud deployment model

The whole IT infrastructure is backed up regularly, including VMs of all applications and

services, Data, UserDB, topology

Data and backups are replicated to/stored remotely

Sequence:

Emergency Team (ET) starts working and following emergency response procedure

ET accesses backup and transfers all files and images to previously defined location(s):

New services location is registered in DNS and information is populated on Internet and on

the web, by phone, newspapers

Municipality A information services and email starting working on emergency mode; when

original facility and datacenter are restored, services will be migrated to original location

Challenges:

Full services backup and restoration must also include infrastructure and services topology

Compatibility and standards for VM images, Data, service description and topology

Compatible cloud platforms in Municipality A, B, C

36

The following preconditions are suggested for this scenario to work successfully:

Municipalities’ IT infrastructures are cloud based, e.g. using community cloud deployment

model The whole IT infrastructure is backed up regularly, including VMs of all applications and

services, data, UserDB, and infrastructure topology Data and backups are replicated to/or

stored remotely.

The success of the described here disaster recovery scenario depends on addressing the

following challenges: Compatible cloud platforms in Municipality A, B, C Compatibility and

common standards for VM images, data, and services description. Full services backup and

restoration must also include infrastructure and services topology.

37

Use case 3: Service continuity when changing cloud provider.

This use case illustrates what are the main tasks and challenges when moving from one cloud

service provider to another. Such situation may happen when the current provider

discontinues its service or the customer decided to move to another provider because of a

number of reasons, e.g. cost of services, available services, regulation requirements that may

restrict location of the provider’s data center.

Actually, the scenario with the service migration to another provider should be discussed

when planning cloud technology implementation by enterprise, to avoid possible problems

with the provider lock-in what is still typical in cloud business.

The slide illustrates the IT infrastructure migration scenario. The following steps describe the

migration process: Enterprise transfers/replicates either individual VM images or the whole

infrastructure to new provider(s), in our case.

Main IT infrastructure is moved to provider B. Email service is moved to provider C Data are

replicated to new location(s) and synchronized. New services location is registered in DNS for

correct Internet traffic forwarding; no other changes required Enterprise services start

operating from the new cloud providers as usual.

38

To finalize let’s emphasize the crucial points of this Use Case 3:

The migration process should be well planned and there will be a transition period. The

following preconditions should assured: Enterprise IT infrastructure is cloud based: private

cloud or hosted on cloud The whole IT infrastructure is backed up, including VM, Data,

UserDB, infrastructure or services topology The transition plan may also include the

services/infrastructure optimization, some applications re-design.

This use case has similar challenges as in our cases: Compatibility of cloud platforms at

providers A, B, C Compatibility and standards for VM images, Data, service description and

topology Full and up to date services backup, data synchronization at the moment of the

service switch to a new location.

39

Cloud computing is presently a mainstream technology widely used by business and industry

Cloud Computing technology is well defined and has sufficient standardization base and best

practices

Cloud Computing technology/ecosystem defines a number of new actors and stakeholders

Presented basic use cases illustrate the main cloud features and opportunities

 Use them, refer to them when you need to decide on an appropriate scenario for cloud

 implementation at your company

40

41

Lecture 2. Attributes of Cloud

Computing

42

Properties and Benefits

43

Cloud characteristics

On-demand self-service

Broad network access

Resource pooling

Rapid elasticity

Measured Service

Basic service models

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Deployment models

Private clouds

Public clouds

Hybrid clouds

Community clouds

Federated clouds, Interclouds

44

45

46

47

For computation resources :

Deploy virtual machine with load balancing consideration.

Live migrate virtual machines among physical ones to balance the system loading.

For storage resources :

Deploy virtual storage with hot spot access consideration.

Live migrate virtual storage among physical ones with different performance level.

For communication resources :

Consider network bandwidth loading when deploying virtual machines and storage.

48

49

•

•

•

•

•

•

Data security as the main

o Where my data?

o What is happening with my data? Who has access to my data?

o

o Contact provider for modification and customized services

Opacity of design, operation, security

Cloud eDiscovery and data destroying

o
High Performance Computing (HPC) cannot be in general done on clouds

Often referred to as “cloud curtain”

o
Cost issue

Increasing factor due to Big Data advent

o
Innovation (and differentiation) in wide/global scale is difficult

Total Ownership Cost (TOC) is not always less comparing to traditional IT

o
Common SLA is positive but sometimes not sufficient for many business practices

Innovation pace in developing countries is significantly slower

o Some cloud concerns can be resolved by

signing NDA

customised SLA but may involved

50

For customers: can transform capex into opex when moving IT services to clouds:

Plus decrease IT management, backup and IT staff costs

51

Economics

52

53

•

•

•

•

Role of IT in business and other domains is increasing

• It facilitates changes in how work/business is done and increases business

agility

Traditional IT department is no longer tenable

• It is difficult predict for longer term (as earlier) IT needs with current rush

increase in digital applications as a primary method of doing business and

interacting with customers

Cost of running traditional large datacenter is estimated between 15 and 25 Mln

USD

• 42 percent: Hardware, software, disaster recovery

arrangements, uninterrupted power supplies, and networking.

• Costs are spread over time, amortized, because they are a

combination of capital expenditures and regular payments.

• 58 percent: Heating, air conditioning, property and sales taxes, and labor

costs. (In fact, as much as 40 percent of annual costs are labor alone)

Applications run in a datacenter

• Most data centers run a lot of different applications and have a wide

variety of workloads.

• Many of the most important applications running in data centers are

actually used by only a relatively few employees.

• Some applications that run on older systems are already taken off the

market (no longer sold) but are still necessary for business.

54

15

55

Please, for self-guide work, find the details in

"The Essentials of Services in Cloud Computing"

http://www.dummies.com/how-to/content/understanding-the-economics-of-saas-in-

cloud-compu.html

16

56

•

•

•

In many cases moving applications to the clouds is not simple

• Some configuration changing work to be done

• May require applications redesign and testing period

• Estimate costs if application is not available for cloud

• The same cost factors apply for both private and public clouds

• Compliance can be another cost factor, in particular related to security and recovery procedure

Leveraging existing datacenter resources to build a private cloud platform may be a first step in

moving to public and hybrid clouds Migrating/moving company’s data center to private cloud will

bring the following benefits, first of all due to use of virtualisation.

57

• Cloud is not necessarily less expensive and may not provide the same level of

service as private data center

• Own data center may have a service level agreement with a 99.999 percent uptime

record.

• Will the cloud provider offer that same level of service? Probably not.

• The company have to weigh how critical the level of predictable uptime is to internal

users and customers

Anticipate that the cloud won’t necessarily be less expensive and it won’t necessarily provide the

same level of service as your data center.

Your own data center may have a service level agreement with a 99.999 percent uptime record.

Will your cloud provider offer that same level of service? Probably not. You have to weigh how

critical that level of predictable uptime is to your internal customers. Evaluate all cost

components of running applications to make a fair/comprehensive comparison:

Server costs (A):

With this and all other hardware components, you’re specifically interested in the total

annual cost of ownership, which normally consists of the cost of hardware support plus

some amortization cost for the purchase of the hardware.

Storage costs (B):
In situations where a storage area network (SAN) or network attached store(NAS) is
used for an application, a proportional cost over the whole SAN or NAS needs to be
determined, including management and support cost for the hardware.

Network costs (C):

58

•

•

•

Enterprise private cloud costs for hardware (including server, storage, network) and

software

• In premises data center must also run cloud software • Only part of workload

workloads will move into cloud

• Customization costs for applications to work effectively on cloud

• Integration costs between off-premises and on-premises applications

• Operational support personnel costs will decrease for private cloud data center

Compliance costs (external or internal) may additionally require the cloud service audit,

however big cloud providers have already basic set of certificates.

• Compliance requirements may be defined by several bodies. e.g. PCI DSS,

HIPAA, SOX, company internal

Deploying hybrid cloud will require a new enterprise IT policy, in particular, how to

separate workload and data that must be run locally and those that can be moved to

public cloud

• Data security, safety and privacy must be managed differently

for in-premises and in public cloud

59

•

•

•

Data Centers and IT infrastructure cost is a significant part of the Federal Government (USA),

big corporations and small companies

• IT spending is increasing: $75.88B in FY10 (Fiscal Year 2010); $88B in FY11

• Estimated as $518 Bln over 2013-2018 with CAGR 3% **)

• Search for long term saving solution: pressure to cut federal IT budgets without losing

efficiency and the implementation of new technologies: agility, “rent, not buy”

Clouds can decrease cost of the long term Data Center ownership

• Implementing and sustaining cloud environment over 13 year cycle up to two-thirds

economy

3 basic scenarios

• Public cloud adopters: Department or agency migrates its IT Infrastructure

to one of existing public clouds

 No specific sensitive data, transition period extends 1-2 years

• Hybrid cloud adopters: Department or agency builds a private cloud solution to handle

the majority of IT tasks but also uses a public cloud for “surge” load support and for non-

sensitive applications

Estimated share between private and public cloud workload 75%/25%, private

cloud is built on existing IT hardware, transition period extends 1-2 years

• Private cloud adopters: Department or agency builds a private cloud solution or

participates in the inter-agency cooperation

 Late adopters: Mission sensitive data, private built on existing IT hardware,

transition period extends 1-2 years

60

Fast growing sectors

• Business Intelligence

• Cloud Computing

• Cyber Security

• Deduplication

• eDiscovery

• GIS and Geospatial

• Health Information Technology (HIT)

• High Performance Computing

• Non-Relational Database Management Systems

• Open Source

• Smart Grid

• SOA

• Virtual Events

• Virtualization

• Wireless Voice and Data.

61

•

•

Agility is another factor in “cost – agility” equation for cloud benefits

• “How will cloud improve my company’s competiveness?”

• Not just “How much capital and operations expenses can cloud cut?”

Cloud technology improves agility of modern IT companies

• Strong link between IT agility and business agility

• Continuous business transformation and technologies development is a

current trend and a new economy reality

• Requires faster responsiveness

• (According to McKensey&Company) Benefits of agility includes faster

revenue growth, greater and long lasting cost reduction, more effective

risks management

Source: VMware Business white paper

62

63

• Hybrid clouds combine benefits of public clouds elasticity

and on-demand resource provisioning with the benefits of

private clouds

• Legacy applications

• Operational control

• Sensitive applications and data

• Hybrid clouds require standardisation and interoperability

between private and public platforms to achieve

applications portability

• Common platform

• Common manageent

• Security

• Compliance

[ref] Business Agility and the True Economics of Cloud Computing.

Business White Paper, VMware 2011.

64

• Supply-side savings: Economy of scale

• Large-scale data centers (DCs) lower costs per server.

• Demand-side aggregation: Aggregating demand for computing smooths overall

variability, allowing server utilization rates to increase.

• Multi-tenancy efficiency: When changing to a multitenant application

model, increasing the number of tenants (i.e., customers or users) lowers the

application management and server cost per tenant.

The Economics of the Cloud.

Microsoft, 2010

65

Electricity cost is rapidly rising to become the largest element of total cost of ownership

(TCO), currently representing 15%-20%.

Power Usage Effectiveness tends to be significantly lower in large facilities than in smaller

ones.

• PUE = Total Facility Energy / It Facility Energy

Cloud computing significantly lowers labor costs by automating many repetitive

management tasks

A single system administrator can service approx 100+ servers in a traditional enterprise

In a cloud data center the same administrator can service thousands of servers

More time for higher value-add activities like building new capabilities and responding

customer requests.

General IT facility security, reliability and compliance are common problems in traditional

and cloud IT

• Often cited as a potential hurdle to public cloud adoption

Cloud again brings the economies of scale due to the largely fixed level of investment

required to achieve operational security, reliability, and compliance.

• Large commercial cloud providers are able to bring deep expertise to address this

problem, thus actually making cloud systems more secure and reliable.

• Modern hardware assisted virtualisation technologies allow for better tasks and

tenants separation in a cloud multi-tenant mode

66

•

•

•

•

•

Randomness:

• End-user access patterns contain a certain degree of randomness, e.g

checking email or accessing shared file storage.

• To meet service level agreements, capacity buffers are built to account for a

certain probability of services demand.

Time-of-day patterns:

• Daily recurring cycles in people‘s behavior: consumer services tend to peak

in the evening, while workplace services tend to peak during the workday

• Capacity has to be built to account for these daily peaks but can be

optimized by load balancing between different load patterns

Industry-specific variability is driven by industry dynamics:

• Retail firms see a spike during the holiday shopping season while U.S. tax

firms will see a peak before April 15.

Multi-resource variability:

• Compute, storage, and input/output (I/O) resources are generally bought in

bundles: a server contains a certain amount of computing power

(CPU), storage, and I/O (e.g., networking or disk access).

• Some workloads like search use a lot of CPU but relatively little storage or

I/O, while other workloads like email tend to use a lot of storage but little

CPU.

Uncertain growth patterns:

• The difficulty of predicting future need for computing resources and the
long lead time for bringing capacity online is another source of low
utilization

A key economic advantage of the cloud is its ability to address

variability in resource utilization brought on by these factors.

67

68

• The combination of supply-side economies of scale in server capacity (amortizing

costs across more servers), demand-side aggregation of workloads (reducing

variability), and the multi-tenant application model (amortizing costs across

multiple customers) leads to powerful economies of scale.

• The model indicates that a 100,000-server datacenter has an 80% lower total cost

of ownership (TCO) compared to a 1,000-server datacenter.

69

•

•

Existing application maintenance costs include update and

patching labor, end-user support, and license fees paid to

vendors.

• They account for roughly a third of spending and are targeted

by the multi-tenancy efficiency factor.

New application development accounts for just over a tenth

of spending and is seen as the way for IT to innovate.

• The economic benefits of cloud computing will enable more

effort and budget for innovation.

70

•

•

•

•

•

•

•

Simple move of packaged applications to cloud virtual machines can generate only

minor benefits

First, Applications designed to be run on a single server will not easily scale up and

down without significant additional programming to add load-balancing, automatic

failover, redundancy, and active resource management.

• This limits the extent to which they are able to aggregate demand and

increase server utilization.

• Applications need to be (re-)designed/re-architected for effective use on

clouds

Second, traditional packaged applications are not written for multi-tenancy, and

simply hosting them in the cloud does not change this.

For packaged apps, the best way to utilise the benefits of cloud is to use SaaS

service model

• For example, Office365, which have been architected for scale-out and

multi-tenancy to capture the full benefits of cloud platforms

New/custom applications

The full advantage of cloud computing can only be properly unlocked through a

significant investment in intelligent resource management

• The resource manager must understand both the status of the resources

(networking, storage, and compute) as well as the activity of the applications

For new applications, Platform as a Service (PaaS) will most effectively capture the

economic benefits of clouds
• PaaS offers shared services, advanced management, and automation

features that allow developers to focus directly on application logic rather

than on engineering their application to scale.

71

Clouds as IT Innovator Facilitator

72

73

74

75

Ten Laws of Cloudonomics

36

76

77

78

79

80

Lecture 3. Design Principles of

Cloud Computing

81

Outline

In this lecture we cover

Cloud Datacenter Evolution

Cloud Implication on the Datacenter Design and Construction
Open Source and Open Compute Project

Technologies Choices for Cloud Construction
CPU and Hypervisor Preferences

Memory and Storage

Network Design and Wiring
Energy and Cooling Designs

Scale Out and Inter datacenter connectivity
Wrap up and Summary

82

Cloud Design History

83

What’s in a Cloud

Routing and Switching

Datacenter and Wide Area Transit

Computing

Storage

Cloud OS

One-Datacenter Clouds

Multi-Datacenter Clouds

84

Brief Recap of Public Cloud Providers and their scale

The largest public cloud providers are continuing their massive build-outs. While the
physical scale of these datacenters is immediately obvious, the software and process
accomplishments to manage this size infrastructure are no less impressive.

As can be seen these vendors have figure out how to run clouds across literally
millions of servers. How do they do it?

85

Cloud Realities, Hardware
To understand this level of scaling, we need to consider some of the cold realities of
hardware, statistics, and the dynamics of failure.
On the statistics side, the numbers are not on your side, as far as keeping things
running, when you have large numbers at work.
For example consider how MTBF Statistics Kill You. If you have a server of 100K hrs

MTBF for a server

When you have 1,000 servers = 1 failure/4 days

When you have 100K servers = 1 failure/hour

There is no such thing as Hardware HA at scale.
On the hardware side, consider the “efficiency of capital” in temrs of keeping servers
and hardware around for even half of a depreciation cycle

An 18 month old server with be ½ as efficient use of capital as a new one (Moores Law)
An 18 mo old reserve of storage will cost ½ as much if purchased today instead of back then
(Kryders Law)
An 18 mo old set of networking ports will be ½ the cost if purchased today (Butlers Law)
This means, Hardware Gets Old Fast – Replacing it Saves, not Costs! There is no

reason to repair old, broken hardware, this is a very inefficient use of capital

86

Energy – The Largest Expense in Cloud

This chart has in illustration showing that cumulatively, the majority operating
expense is Energy

For a $50M capital expense in a Datacenter – building, equipment, everything - the
majority operating expense is Energy. Running the most efficient, latest equipment
will reduce cumulative costs dramatically

As one can see, cumulatively, cloud data center operational costs are 3-5 times the
capital costs.

What this tells us is that the most efficient was to say money with a cloud datacenter
is to use the most energy-dense configuration possible.

87

Overview

88

The cloud is not a server. It is not a special collection of severs with just the right
features for automatically making your application do magic things with scalability or
availability,

It is a distributed computing system, and probably quite a large one. So the rules of
distributed computing apply, What are these rules? When researcher first began to
put applications on distributed computing platforms, the applications broke in several
interesting ways. The researchers realized it was because they were making
assumptions about the platform that simply were not true. Individually, these
assumptions were often true for a development server or two. But in the world of a
distributed system platform like the cloud, believing in any of these “fallacies of

Distributed Computing” which we will now refer to as the “Fallacies of Cloud, will

eventually prove fatal to your application.

The “Fallacies of Cloud” are dscribed here in this slide.

As a Cloud Applications Developer, you must never make these assumptions, In fact

you must proactively protect against them in the way you design and deploy your

89

Before jumping in to writing or moving the application, first one should consider

some Cloud Applications Design on the subject of Availability. In this category we put

both “Resilience to Failure” as well as “Ability to service as scale demand increases”.

Understand the availability business requirement of the application:
Is it absolutely critical that the application have essentially zero possible
downtime in any situation?

In other words, are lives at stake, or is the very operation of the
business, dependent on this application?

Or, is a 5 minute “restart” or “switchover” timeframe acceptable for the
application?

Additionally, does the application experience widely varying load
conditions, for example, at the end of each month does load on the
application go from 1x to 100x or 1000x?

What is the business impact if the application is working, but for certain short

periods, is working slowly, is this acceptable?
Cloud can have an enormous positive effect on application high availability and
elasticity.

But these capabilities do not come automatically, they must designed-for and
enabled/coded-for by the developer/deployer

To develop the right strategy on cloud, one must first understand the availability business
requirement of the application:
Is it absolutely critical that the application have essentially zero possible downtime in any
application?

90

Next, one must consider the option of how to deploy the application on the cloud. It
is not a matter of simply using the cloud as one large server – or a collection of
servers – just like in the physical world.
First of all you will get hit with the result of one or more of the “fallacies of cloud

computing”. Secondly you will get few if any of the benefits of cloud computing. So it

is worth taking the time to Understand some technical details about the application

The slide details several key questions about Cloud Applications design. The
architecture of the application should be understood.

Understand some technical details about the application:
Are you writing this application brand new on latest infrastructure?

Are you re-platforming a relatively modern application running on latest

version operating systems and middleware?

Do you have the source code?

Is that version supported by the application vendor?

How do the various parts of the application talk to each other?

Is it an older application perhaps which had legacy platform

requirements, and doesn’t (and won’t) support the latest infrastructure?

Does it use it’s own embedded database or is that externalized to a standard

database component?

Is the application managing rapidly changing data which needs to constantly

updating storage, or is it a tool which is accessing largely static (or

occasionally updated) information?

How does it write to storage?

Understanding State and Persistence is the key to a straightforward cloud application.

91

Cloud Implication on the Datacenter Design and Construction

92

Cloud Design Implications

What these statistics at scale show us is, that in Cloud Design, one must Accept
failures as a normal part of operations

Heres a philosophy to illustrate the point

This rather famous quote which exists in many variations, can first be attributed to
Bill Baker, Distinguished Engineer, Microsoft

“Scale up is when servers are like pets. You name them and when they get sick, you

nurse them back to health.

Scale out is when servers are like cattle. You number them and when they get
sick, you shoot them.”

The implications are:

Fault isolation through minimal failure domains

Design-for-failure enabling graceful degradation when failure occurs

Scale out instead of up
Focus on the simplest solution possible, to minimize future risk

Beware the lure of repairing/replacing, at some scale, just shut it off

Upgrade as soon as CFO will let you

93

Where did Clouds Come From?

To understand how the perspectives on cloud building have emerged, one must
consider where clouds came from.

One the one hand, Enterprises wanted to run multiple virtual machines on a
homogeneous server, increasing efficiency and easing management

We call this The Legacy Cloud. These clouds do not contain the design principles to
reach a large scale and to use capital efficiently

On the other hand, Internet Service Providers wanted to build really large platforms
for new kinds of software like “search” and “auction” and “public email” (sound like

Internet Apps you’ve used before?)

We call this The Web-Scale Cloud. These clouds DO contain the design principles to
scale. We will look at these design principles in detail.

94

Use Cases for the Legacy Cloud and the Web-Scale Cloud

Legacy Cloud = Existing Software

Web-Scale = New Software

In Legacy cloud, Ability to Boot OS stacks and Virtual Appliances to mimic physical

deployment

IaaS is everything

Use Virtual Appliances or Additional booted Servers for Load Balancers or Message

Queue Services

In Web Scale cloud, Ability to Boot OS stacks & also provide some API’s to make

software deployment easier

IaaS is important

PaaS for common deployment helpers like Load Balancers or Message Queue

Services

Read the other areas of comparison

Conclusion

Legacy Clouds are “Virtualization 2.0”

Web-Scale Clouds are a 20-yr “Think Different” Religion

95

Two Schools of Thought for Building Clouds

There are Two Schools of Thought for Building Clouds, one for the Legacy Cloud, and
one for the Web Scale cloud

For the Legacy Cloud, the classic blueprint is using Hardware for High Availability and
Performance

For the Web Scale cloud, it’s using Software for High Availability and Performance

Literature for these two blueprints are illustrated in the slide

96

Implications from different Cloud Construction Approaches

Legacy Cloud = Premium Hardware

Web-Scale = Commodity Hardware

Diagram show many comparisons for example

Legacy Cloud, Value-added high availability and performance in HW

Failure is considered an “exception” and dead units are Replaced

Web Scale cloud, Low cost “small, good, cheap, simple, and fast” HW

Failure is statistically inevitable, dead units are just Powered Off

Legacy Cloud, Servers are often Blade Servers using a single vendor
architecture

Web Scale cloud, Servers are often no-name “rack and stack” servers, with

mix’n’match vendors

Read the other areas of comparison

Conclusion

In Legacy Cloud System design tends towards homogenous elements

In Web Scale cloud, System design tends to mix’n’match elements

97

Web-scale Cloud is the “Think Different” 20 year Platform Software Breakthrough

Cloud is really a New Platform Religion

Platform does almost nothing

Platform makes few promises

Virtualization

Automation

Infinite, Elastic Storage

Infinite, Elastic CPU’s

98

This has a Spillover Effect on Applications Architecture

One cannot bring the all the design patterns you know from enterprise multi-tier
applications architecture or web architecture, while they are largely applicable many
key areas are re-thought for cloud.

Applications must themselves now take care of: Scale Out, not Up, Adopt “Simple is

Good”, Design with Failure in Mind, and so on.

99

Key Technology Breakthroughs enabling Cloud Building

Certain technologies have aided in the construction of these large, web-scale clouds

As mentioned, commodity servers which are so-called “no frills” are

emerging, minimizing fancy cabinets, blinking lights and extra USB ports – they are
high memory footprint small servers with direct attached storage, perfect as cloud
servers

Add to this networking which is easy to configure as a “Spine and Leaf” configuration

for lots of top-of-rack switches to be conectedto each other either through an
aggregation layer or directly as a spine.

Then, the data center itself has evolved to support very dense (high wattage)
racks, and dense electricity

Of course, there are lots of open source elements which ae crucul n running all this.
Many of the important modules are illustrated in the slide.

100

Open Source Solutions for Cloud
Open Source has been extremely important in the technological advancement of
Cloud. This chart illustrates all the areas when Open Source has been crucial.
Amazingly in many areas there are more than one Open Source areas solving the
problem.
On the hypervisor side we have both Xen and KVM as open source alternatives. These
now come standard with Linux distributions.
On the IaaS system, there is the original open source cloud system from Europe
(OpenNebula) as well as OpenStack itself, the larget open source project in the
history of mankind.

There are open source PaaS systems, from both Pivotal and RedHat.
There are lot of Big Data open source tools beginning with the Hadoop community
and going on from there, with many projects in Apache.
Finally you will see some interesting initiatives, one called Open Compute project, is
all about the physical parts of building a datacenter, from power and cooling and
wiring techniques, to bare bones servers and storage modules. You will also see two
organizations looking at Software Defined Networks (SDN) standards.
It is really useful to go to each of these sites and to take a look at each initiative. It is

clear that Open Source is a very large driving factor in the technology going into cloud

computing.

101

Entire Open Specs for a Datacenter

From the Open Compute Project (founded by Facebook in 2011), which released the
specifications required to build a modern, highly efficient datacenter including overall
design of the facility

The slide shows a photo of Facebook's datacenter facility in Prineville, Oregon which
runs on Open Compute Project hardware.

The knowledge comes from a multi-million dollar investment Facebook has made
over the past couple of years as it has built its first dedicated, 300,000-square-foot
facility in Prineville, Oregon

Many other companies have since contributed to these specs.

102

Example

This slide contains an illustration showing details on the Facebook Datacenter

design, with an emphasis on cooling design. Please study the diagram.

103

Open Compute Project Phenomena

In the Open Compute Project there are actually many sub projects. The slide contains
illustrations of the major projects.

You will see server (motherboard) specs, network switch specs, power supply
specs, storage system specs, and specs for electrical, mechanical, even battery
cabinets.

The Open Compute Project has it’s own conference now in Silicon Valley. It is a very

interesting phenomena.

104

Recently, open source announcements regarding data center switches were made. At
first these seemed confusing, especially because the announcements were made
outside of the Open Compute project. On closer inspection, we see that the two
announcements, as illustrated in the slide, were actually made by many of the same
companies who are part of the Open Compute Project.

What all this means is that the era of needing proprietary networking equipment to
access massive performance and scalability are over, commodity solutions are
becoming extremely robust.

105

106

Lecture 4. Evolution and Future of

Cloud Computing

107

Overview

108

Cloud Computing is the New Pervasive Ubiquitous Intelligence & Communications
Platform for Planet Earth

Education

Relationships

Communications

Internet of Things Infrastructure

Commerce

Transportation

Entertainment

Day to Day Life!

109

Clouds are becoming more ubiquitous than one might think. Cloud Service Providers
count from thousands to over a million servers per cloud. According to
datacentermap.com, there are hundreds of such clouds now serving much of the
civilized population of the world. They come from companies such as Google and
Amazon and Microsoft and IBM and HP, and they also come from the local Telecom
companies, in pretty much a the country of one’s choice, including

Verizon, AT&T, NTT, Orange/FT, DT, BT, and so on. Many of these Telecoms will have
their Clouds well integrated with their mobile networks, facilitating the use of Big and
Fast Data capabilities for mobile apps as well as with M2M/IoT.

http://www.datacentermap.com/cloud.html

110

Nowadays, the major server operating systems vendors of Linux or Windows are
bundles which are simply stated, private clouds out of the box. Install the latest
entire Windows Server from Microsoft and you will find it’s a complete IaaS cloud.

Likewise, the distributions of Linux from Red Hat, Canonical, or SUSE contain a ready
to use private cloud version of OpenStack.

Some enterprises want to keep their computing on a private infrastructure for
reasons of Security or Compliance, some for simple reasons of economy; cost-

effective turnkey cloud systems are sold as software or hardware/software
combinations from all of the major IT providers. Clouds can be placed as close to the
processes they help optimize as is needed with Private Clouds.

111

Cloud IT Spending Soars

The slide shows a graph following the overall spending on Cloud IT Globally

As one can see the worldwide investment in Cloud Computing will exceed USD $200B
soon

112

●

●

●

●

●

Estimates that quarterly cloud infrastructure service revenues (including
IaaS, PaaS and private & hybrid cloud) have reached $3.5 billion

Trailing twelve-month revenues amounting to $12 billion.

Total market growing at an annual rate of almost 50%

Amazon, Microsoft, IBM and Google have all gained market share over the

last four quarters.

Total Amazon AWS revenues are now well in excess of $1 billion per

quarter, with nearly all of that coming from cloud infrastructure services.

Exploring More Market Share Figures

113

Next we will look at several General Cloud Computing Trends Research

114

Cloud Computing is approaching productivity area via massive implementation meets
reality, followed with Hybrid Cloud Computing that adopts clouds into the
transformed enterprise IT environment.
At the same time, it is obvious that Cloud Computing create a strong basis for many
technologies currently been on rise and buzz words such as Big Data, Data Science .
Cloud Computing also provides a new rich platform for Internet of Thing (sometimes
also called with broader term Internet of Everything).

Next slides and studies will explore different numerical estimations of the different
aspects pf Cloud Computing development.

115

The Cisco Global Cloud Index (GCI) is an ongoing effort to forecast the growth of
global data center and cloud-based IP traffic. The forecast includes trends associated
with data center virtualization and cloud computing.
This document presents the details of the study and the methodology behind it.

Global Data Center Traffic

• Annual global data center IP traffic will reach 8.6 zettabytes (715 exabytes [EB] per
month) by the end of 2018, up from 3.1 zettabytes (ZB) per year (255 EB per

month) in 2013.

• Global data center IP traffic will nearly triple (2.8-fold) over the next 5 years.
Overall, data center IP traffic will grow at a compound annual growth rate (CAGR)
of 23 percent from 2013 to 2018.

Data Center Virtualization and Cloud Computing Growth

• By 2018, more than three quarters (78 percent) of workloads will be processed by
cloud data centers; 22 percent will be processed by traditional data centers.

• Overall data center workloads will nearly double (1.9-fold) from 2013 to 2018;
however, cloud workloads will nearly triple (2.9-fold) over the same period.

• The workload density (that is, workloads per physical server) for cloud data
centers was 5.2 in 2013 and will grow to 7.5 by 2018. Comparatively, for
traditional data centers, workload density was 2.2 in 2013 and will grow to 2.5 by
2018.

116

Important to notice changes in the cloud processed workload by different Cloud
Service Delivery Models what will indicate financial market share

• By 2018, 59 percent of the total cloud workloads will be Software-as-a-Service
(SaaS) workloads, up from 41 percent in 2013.

• By 2018, 28 percent of the total cloud workloads will be Infrastructure-as-a-
Service (IaaS) workloads, down from 44 percent in 2013.

• By 2018, 13 percent of the total cloud workloads will be Platform-as-a-Service

(PaaS) workloads, down from 15 percent in 2013.

The trend actually reflects typical cloud implementation and evolution at enterprises:
From initial IaaS implementation through PaaS and common applications
development platform to SaaS type operational services

117

Internet of Everything (IoE) Potential Impact on Cloud

• Globally, the data created by IoE devices will reach 403 ZB per year (33.6 ZB per
month) by 2018, up from 113.4 ZB per year (9.4 ZB per month) in 2013.

• Globally, the data created by IoE devices will be 277 times higher than the amount
of data being transmitted to data centers from end-user devices and 47 times
higher than total data center traffic by 2018.

Consumer Cloud Storage

• By 2018, 53 percent (2 billion) of the consumer Internet population will use

personal cloud storage, up from 38 percent (922 million users) in 2013.

• Globally, consumer cloud storage traffic per user will be 811 megabytes per month

by 2018, compared to 186 megabytes per month in 2013.

118

Network latency is crucial for running cloud based application because majority of
reliable communication protocols require feedback (in particular TCP) and many
cloud applications are interactive and near real time (such as voice recognition in
smartphones, business applications or gaming)

The cloud-readiness study offers a regional view of the requirements for broadband
and mobile networks to deliver next-generation cloud services

The study also explored the ability of each global region (Asia Pacific, Central and
Eastern Europe, Latin America, Middle East and Africa, North America, and Western
Europe) to support a sample set of basic, intermediate, and advanced business and
consumer cloud applications.
Speed of network access and latency are two key criteria for evaluation of local IT
infrastructure technical readiness for large scale cloud deployment

119

Cloud Readiness and Acceptance in Developing countries

The next slide has an illustration which comes from The 2013 BSA Global Cloud
Computing Scorecard

This report ranks countries’ preparedness to support the growth of cloud computing

The 24 countries are included which together account for 80 percent of the global
information and communication technologies (ICT) market.

The economic growth and transformation of both businesses and
national economies from wide use of Cloud Computing require the

proper policies in each of the seven areas:
Ensuring privacy and data protection regulation

Consistent security services and compliance with best practices in security

Legal system and measure to protect against cybercrime
Protecting intellectual property to support innovation and content flow crossborder
and between cloud providers

Ensuring unrestricted or simply regulated data move, harmonization of international
regulations

Existence of the necessary IT infrastructure: Cloud computing requires robust,
ubiquitous, and affordable broadband access

120

Security and Privacy

121

BSA scoreboard factors include

Data Privacy

Cloud users will fully accept and adopt cloud computing only if they are confident
that private information stored in the cloud, wherever in the world, will not be
used or disclosed by the cloud provider in unexpected ways.

Security

Consumers of cloud computing and other digital services (including both private-
sector and government users) need assurance that cloud service providers
understand and appropriately manage the security risks associated with storing
their data and running their applications on cloud systems

Cybercrime

Because cloud computing involves the aggregation of massive amounts of data in
large data centers, it creates new and highly tempting targets. As criminals turn
their attention to these vaults of information, it will become increasingly
challenging to protect such data centers from both physical and cyberattacks.

Intellectual Property Rights

Providers of cloud computing and digital economy technologies and services, as with
other highly innovative products, rely on a combination of
patents, copyrights, trade secrets, and other forms of intellectual property
protection.

Standards/International Harmonization of Rules

122

Data Protection and Privacy in Cloud

Data protection and privacy will continue remaining the main restricting factor for
cloud growth and will stimulate the following research and developments

National and international data protection regulation and legislation that should be supported by
corresponding certification and assessment procedures, services and bodies

New advanced privacy enhancement technologies (PET) should protect user privacy on stored data
and activity in cloud
- Emergence of Big Data technologies will require new PET preventing user (re-)identification based
on correlation between multiple sources of data

The shared security model currently used in cloud will increase a level of customer controlled
security (and privacy) compliance monitoring

Cloud access control models will continue adopting federated access control and
Identity management models
- While based on initially verified user identity the access control methods should not reveal user
identity to cloud service providers and 3rd party services

Data Encryption and key management
- New encrypted data processing models such as homomorphic encryption
- New key management models

123

Trustworthiness of Cloud Computing Platform and Trust Management

Trusted cloud platform includes at least two aspects: platform trustworthiness and
trust management

Trustworthiness is a property of the cloud platform that includes multiple factors
including design principles, implementation, technical mechanisms and operational
methods

Trustworthiness by design is a key to create and trusted cloud
platform
Cloud providers pay strong attention to all aspects of their
platform to create a trusted environment for user services and
data

Trust management include both technical mechanisms and solutions for establishing
and managing trust relations between provider and customer or user administrative
and security domains

Technical trust is rooted in the trusted platform and typically
require manual setup
Cloud will stimulate further development of the dynamic trust
establishment and management mechanisms to adopt to the
dynamic and on-demand character of cloud services
Trusted Computing Platform (TCP) Architecture by Trusted
Computing Group (TCG) provides and technical based for building
distributed trusted environment

124

Open Source and Interoperability are Important to Consumers

Because Large Clouds are hard to build, the largest companies will build very large
clouds, and with them, they will try to monopolize the way we compute and
communicate

125

(? Not sure if I interpreted the original text correctly)

In times before the Internet, large companies were dominating. Once open source
and standards took over, the Internet started growing rapidly. Something similar will
happen with Cloud technologies.

126

This slide contains an illustration which shows major phases of evolution in IT. One
can see that applications software used to be closely linked to a set of servers and
storage and was usually installed on premise, in the site of the business.
Soon, computing platforms became more flexible, with virtualization and
automation, so that applications could share a generalized cluster/platform, which
we now call cloud.

The illustration shows that with Intercloud, businesses can run on a multiple
datacenter platform, where multiple vendors clouds cooperate and interoperate to
form one large distributed platform.

This illustration is courtesy of the Japan based industry association called the Global
Intercloud Technology Forum. This group did pioneering work in defining the
meaning and requirements for Intercloud.

127

Cloud Infrstructure Evolution

128

There are many ways clouds can interoperate. This slide uses an illustration from a
research group from University of Melbourne, who polished a paper on the
taxonomy of different cloud interoperability approaches. Please study the
illustration.

Intercloud Architecture Framework (ICAF) is based on the multi-layer Cloud Services
Model (CMS) and separates control, management, federation and operational
aspects in Intercloud. Developed by UvA, currently implemented in the European
project GEANT.

129

It is easier to understand these different cloud interoperability approaches when one
visualizes the resultant topologies. The illustration in this slide shows the same four
categories from the previous slide but from a topology view.

It is easy to see that the multi-cloud approach will work for a user wanting to access a
small number of clouds more or less manually and must “string together” the

resources from each cloud themselves. This approach is ideal for scientists who want
to access simple cloud resources (like VMs) to create large clusters for Hadoop or for
Grid calculations. The responsibility for understanding the variations amongst the
clouds falls with the user in this case.

It is easy to see that the Federations approach is a much more scalable and
interconnected architecture. This approach is ideal for systems which might span
multiple cloud providers, or span private and public clouds. It also places the
responsibility of understanding the variations amongst the clouds with the
infrastructure, not the end user. This is an important point which we will examine
more later.

130

Global cloud infrastructure continues to grow and creates its own global cloud
ecosystem that includes global cloud provider infrastructures and exchange points
similar to current Internet infrastructure
Operational since 2014 and has a strong growth
Equinix Cloud Exchange is an advanced interconnection solution that provides
seamless, on-demand, and private connections to many clouds and many networks in
major metro areas around the world. It makes the process of connecting to clouds as
fast and flexible as the cloud itself. That’s why Equinix Cloud Exchange is the data
centre industry’s most secure, scalable, and broadly adopted cloud connectivity
solution.
Equinix Cloud Exchange features
Secure, high-performance connections: Virtualised, private direct connections that

bypass the internet to provide better security and performance with a range of
bandwidth options.

On-demand, automated connectivity to clouds: The exchange portal and APIs
simplify the process of provisioning and managing connections to multiple cloud
services and networks.

One port, many virtual circuits: Connect to many participants
(clouds, networks, enterprise customers) over a single physical port, enabling
dynamic bandwidth allocation among parties.

Global availability: Equinix Cloud Exchange is available in 17 top business markets
worldwide.

Large cloud ecosystem: Equinix Cloud Exchange offers the broadest choice of cloud

services - including AWS and Microsoft Azure - in the data centre services industry.

131

GEANT Open Cloud Exchange (gOCX) is an Interoperability project for Science.

GEANT is the Trans-European highspeed network interconnecting European

universities and research organisations (via National Research and Education

Networks (NREN)) at current speed of 10 Gbps growing to 40 and 100 Gbps in the

next few years.

gOCX responds to the European research community needs and focuses on the

following general use cases for delivering Cloud services to campus based users:

Scientific application and scientific (Big) data

- LHC/HEP, genomics, astronomy, climate, video, etc. (+long tail science)

Streaming high-speed high volume experimental data to labs in campus location

- Direct links through campus network

Distributed (Big) Scientific Data processing with MPP tools on distributed facilities

- Data distributed between few locations next to local datacenters

CSP and campus L0-L2 (L3) network peering

- Dark fiber with termination as campus network or as CSP network

VoIP – approach with mobile data access

- Support mobile access network (LTE) and tunnel access to campus network

132

OCX can fill a needed bridge between users and Cloud Service Providers.

133

The slide illustrates the gOCX system

134

Architecturally and functionally the gOCX includes the following services and
functional components

Architecturally and functionally the gOCX includes the following services and
functional components

gOCX Points of Presence (PoP) for providers and customers.

L0-L2 network interconnection facility (optionally also connectivity using dedicated
optical links and L3 tunneling).

Trusted Third Party (TTP) service in order to support dynamic
peering, business/service and trust relation establishment between gOCX members

gOCX Marketplace to support cloud services brokering for participating Cloud Service
Providers

135

Mobile Cloud Computing

136

Mobile cloud Computing (MCC) is another trend that will use and drive CC development.

Smartphones, tablets and Cloud computing are converging into new
multidimensional technology domain of Mobile Cloud Computing (MCC). MCC can be
defined as "a rich mobile computing technology that leverages unified elastic

resources of varied clouds and network technologies toward unrestricted
functionality, storage, and mobility to serve a multitude of mobile devices
anywhere, anytime through the channel of Ethernet or Internet regardless of
heterogeneous environments and platforms based on the pay-as-you-use principle“.

The increasing use of mobile devices and their growing complexity and functionality
make mobile devices not just mobile clients or terminal to provide access to remote
resources and computation power but also part of the MCC ecosystem that
dynamically distribute and optimize workload to address such general mobile devices
issues as limited computation ability, limited memory and storage, security and privacy.

Mobile devices may play multiple roles in our highly networked and computer/cloud
powered world, in particular,

* Smartphones and tablets are increasingly used as mobile client devices for

accessing on-premises and cloud based services with increasing functionality of the

graphical user interface (GUI). Cloud based SaaS applications provide special profile

for mobile devices.

* Smartphones and tablets can be used as mobile remote visualization

137

Slide show general MCC architecture including mobile operator network, mobile
device/OS vendor cloud, public cloud and enterprise mobile cloud gateway

illustrates a general MCC architecture that includes mobile operator network, mobile
device/OS vendor cloud, public cloud and enterprise private cloud that may contain a
special gateway to mobile operators’ networks to allow optimized access for mobile

devices. Important to mention that large mobile network operators as well as mobile
device or mobile OS vendors are creating own clouds that are specifically targeted to
support mobile applications and services. You can find many such smart applications
from your provider or from the device vendor the obviously use cloud processing of
computation intensive tasks such as building route in navigation applications (these
kind of applications doesn’t work without connection to data network and

consequently to remote server).

Supporting mobile applications with backend clouds requires distributed and global
cloud infrastructure. Tracking the device movement with some continuous processes
will require the application or VM migration between datacenters. Such migration
needs to be context aware and location policies rising a number of technical and
research questions.

138

Energy Consumption and Green Clouds

139

Green Clouds and Datacenter Energy Consumption

Datacenter energy consumption is becoming a global problem that is accelerated
with moving more and more workload to cloud

A number of initiatives governmental, public and standardisation bodies are focusing
on optimizing energy consumption by datacenters and Internet in general

Technical Committee on Green Communications and Computing (TCGCC), IEEE
Communications Society

Greanpeace on Green Internet

140

The slide contains an illustration on Datacenter Greenness by Greenpeace (2014)

141

Green technologies deployed by Equinix globally include:
Adaptive control systems that reduce power consumption and increase cooling
capacity through active airflow management using intelligent, distributed sensors
and innovative control policies.
ASHRAE thermal guidelines are used as reference in our newest facilities to optimize
interior temperatures. This reduces power consumption for cooling, while
maintaining a safe operating temperature for computing equipment.
Cold/hot aisle containment uses physical barriers to reduce the mixing of cold air in
data center supply aisles with the hot air in their exhaust aisles. This results in lower
energy consumption and more efficient cooling.
Energy-efficient lighting systems in our data centers use motion-activated controls to
reduce energy consumption and ambient heat from operating lights.
Variable frequency drives are deployed in chillers, pumps and fans in our HVAC
systems to save energy by automatically reducing a motor’s speed and power draw

to match lower system loads.
Data Center Footprint Innovation
When Equinix designs and builds new data centers, it reduces energy by taking

advantage of unique site conditions:

Deep lake water cooling: Equinix’s Toronto data center uses the city’s Deep Lake

Water Cooling (DLWC). This novel approach reduces total energy needs by 50 percent

or more.

142

In this lecture we covered:

 Cloud is a fast developing area dating its first appearance in 2008 and currently (since
2015) in the maturity state

 Cloud computing drives many technologies transformation and provides a basis for
new emerging technologies such as Big Data

 And Big Data itself drives cloud development to respond to volume and velocity of
data processing

 Shift in cloud service model from IaaS to SaaS indicates that there are growing
opportunities for new business developments

 Cloud can take over all routing functions of infrastructure management and allows
innovators to focus on the key and smart ideas

 Mobile Cloud Computing that utilizes growing amount of personal handheld smart
devices is utilizing global cloud infrastructure and will influence both infrastructure
and applications development

 Cloud industry is working hard to decrease cloud datacenter consumption by
implementing advanced “green” technologies

 There is a great opportunity for building a career in Cloud Computing and Big Data
and this set of materials intends to provide a sufficient knowledge body from basic to
advanced level.

1

Cloud Computing
Lecture Manual

Volume 4

Module 4

Technologies and Types of

Cloud Computing

2

Content
Lecture 1. Service Models 6

Overview 7

Infrastructure as a Service (IaaS) 12

Example: Amazon AWS 27

Platform as a Service (PaaS) 31

Example: Microsoft Azure 44

Example: Google App Engine (GAE) 47

Example: Open Source PaaS 51

Software as a Service (SaaS) 53

Example: WordPress 59

Network as a Service (NaaS) 64

Example: Senet 71

Database as a Service (DaaS) 75

Example: Google Cloud Datastore 86

Function as a Service (FaaS) 92

Lecture 2. Deployment Models 100

Overview 101

Private Cloud 105

Examples 108

Public Cloud 110

Examples 113

Hybrid Cloud 115

Examples 118

Community Cloud 120

Federated Cloud 126

Inter Cloud and Multi-Cloud 131

Lecture 3. Providers of Cloud Computing Services 136

Overview 137

Proprietary Solutions 139

3

Example: Amazon AWS 140

Example: Microsoft Azure 151

Example: Google App Engine (GAE) 167

Example: IBM Cloud (Bluemix) 185

Open Source Solutions 196

Example: OpenNebula 198

Example: OpenStack 226

Example: Cloud Fondry 257

Example: OpenShift 264

4

5

Module 4. Technologies

and Types of Cloud

Computing

6

Lecture 1. Service Models

7

Overview

8

The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of select networking components (e.g., host firewalls).

9

The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages,

libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers,
operating systems, or storage, but has control over the deployed applications and

possibly configuration settings for the application-hosting environment.

PaaS can be delivered in three ways:

• as a public cloud service from a provider, where the consumer controls software
deployment with minimal configuration options, and the provider provides the
networks, servers, storage, operating system (OS), middleware (e.g. Java runtime,

.NET runtime, integration, etc.), database and other services to host the consumer's

application.
• as a private service (software or appliance) inside the firewall.

• as software deployed on a public infrastructure as a service.

10

The capability provided to the consumer is to use the provider’s applications running

on a cloud infrastructure. The applications are accessible from various client devices
through either a thin client interface, such as a web browser (e.g., web-based email),

or a program interface. The consumer does not manage or control the underlying

cloud infrastructure including network, servers, operating systems, storage, or even
individual application capabilities, with the possible exception of limited user-specific

application configuration settings.

11

The use models for Cloud Computing are closely related.

For a traditional “physically installed” packaged application, the entire deployment

stack is managed by the user, as can be seen in the first block of the illustration. The
user is responsible for provisioning the complete server including networking and
storage, and the Operating System software as well. Additionally, the user provisions
whatever databases and middleware they need, any special runtime (Java or Ruby),
and finally the application. The application data is also the responsibility (and the
ownership of) the user.

The Cloud IaaS model changes this significantly, alleviating a large portion of at least
what would be considered “physical” infrastructure, this is shown in the second block

of the illustration. The cloud management (sometimes called Cloud OS) software is
shown in this diagram as “IaaS Mngt Platf”. The user obtains the hardware in a

virtualized form from the IaaS CSP and worries only about the software stack,
application, and data.

The Cloud PaaS model further offers middleware, application runtime, and as much
“software” infrastructure as possible, creating a convenient container for the

application developer. While this requires the developer to restructure if not rewrite
the application at the source code level to interface to the PaaS, this restricting will
impart new scalability and availability strengths into the application.

The Cloud IaaS model is a consuming of just the application itself through a browser

or web service.

12

Infrastructure as a Service (IaaS)

13

We will start the Lesson by reviewing the NIST Cloud Definition.

In particular, the NIST definition is very specific around Infrastructure as a Service,
which we will first investigate.

14

The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of select networking components (e.g., host firewalls).

15

The use models for Cloud Computing are closely related. This illustration has been
covered in an earlier Lesson, but to re-iterate.

For a traditional “physically installed” packaged application, the entire deployment

stack is managed by the user, as can be seen in the first block of the illustration. The
user is responsible for provisioning the complete server including networking and
storage, and the Operating System software as well. Additionally, the user provisions
whatever databases and middleware they need, any special runtime (Java or Ruby),
and finally the application. The application data is also the responsibility (and the
ownership of) the user.

The Cloud IaaS model changes this significantly, alleviating a large portion of at least
what would be considered “physical” infrastructure, this is shown in the second block

of the illustration. The cloud management (sometimes called Cloud OS) software is
shown in this diagram as “IaaS Mngt Platf”. The user obtains the hardware in a

virtualized form from the IaaS CSP and worries only about the software stack,
application, and data.

The Cloud PaaS model further offers middleware, application runtime, and as much
“software” infrastructure as possible, creating a convenient container for the

application developer. While this requires the developer to restructure if not rewrite
the application at the source code level to interface to the PaaS, this restricting will
impart new scalability and availability strengths into the application.

The Cloud IaaS model is a consuming of just the application itself through a browser

or web service.

16

Internally, the technology inside the Cloud “Operating Systems” amongst the various alternatives is
quite different. This has a direct impact on the focus or target use case for that system.

Generally speaking, one of the main goals of a CloudOS is to orchestrate all of the different services on
the servers manipulating VMs, managing distributed storage, configuring network parameters, and so
on. Therefore, the communications mechanism used by the CloudOS is like the “backbone” of the
system and is a key architectural design element in the system.

These communications mechanisms can be placed into two large categories: a Closely Coupled /
Synchronous Model , versus a Loosely Coupled / Asynchronous Model.

A Closely Coupled / Synchronous Model is simpler architecturally. It is designed primarily to provide for
excellent performance, visibility, and control characteristics. Usually it involves TCP/IP and Socket
connections and perhaps Unicast or Multicast on top of that for communications. As a side effect of
this architecture, scalability limits appear and also, single points of failure (the central orchestration
element) appear. These architectures are excellent for smaller private clouds where large scale is not
needed, and where tight control of running applications is needed (for example, older/legacy software
running on the nodes).

As examples of a Closely Coupled / Synchronous Model - VMware vSphere and Eucalyptus, both use
TCP/IP and Sockets as a fabric.

A Loosely Coupled / Asynchronous Model is more complicated architecturally. It is designed primarily
to provide for excellent scalability and for high availability characteristics. Usually it involves a
Message Queue system for communications. As a side effect of this architecture, there can be less
granular control and less real-time control of the nodes. These architectures are excellent for larger
clouds, especially the largest public clouds where scale and redundancy of controlling elements is
required.

As examples of a Loosely Coupled / Asynchronous Model – OpenStack and OpenNebula both use a
message queue mechanism as a fabric.

17

How does one choose amongst these different approaches to using the cloud? There

are many driving factors.

IaaS is in some ways and easier mode to adopt, especially if one is using commercial

software, and not developing for PaaS within the IT shop.

This slide covers several of the reasons why companies look to IaaS. Some of these

requirements are all expressed at the “physical deployment” conceptual levels, in

other words “need more servers” type of concern; some are concerned with

operational improvements such as agility or availability.

IaaS can take care of may of these benefits as long as the applications are moved to

the IaaS following several best practices. To realize Cloud benefits one should detail

the benefits sought from the Cloud Service Provider:

CSP provides substitute for our own physical infrastructure.

CSP takes care of all the IT infrastructure complexities

CSP guarantees quality of services and high availability

CSP charges clients according to the resource usage

Make sure an analysis is done to understand the expectation and impact of each of

these on the department.

18

Cloud IaaS represents a complete set of cloud characteristics. It is more than

simly using virtualization, or in running something outside of your datacenter.

All the fundamental properties and characteristics of clouds are implemented in IaaS

and this creates a synergy which enables new characteristics.

The Cloud combines the following technologies: Service/Utility Computing

(automation), SOA, and Virtualisation, where virtualisation is the key

technology to enable all cloud properties.

Cloud does not automatically provide new magical capabilities to an

application unless it is deployed properly to take advantage of the new

capability. For example, scalability and elasticity can be had on cloud but

requires capabilities in the modules you are going to scale up and down, and

also requires some control or automation code which needs to be customized

for that application. Cloud enables this new capability but not automatically.

We will look at Scalability / Elasticity, Availability / Reliability, Performance

Optimization, Accessibility / Portability, and Manageability and Interoperability

as we study more in IaaS, and learn how to enable the features in one’s
application deployment.

19

Cloud IaaS is often defined as the Cloud OS (example OpenStack, Microsoft) as in
general it provides all necessary functions for managing cloud resources and
supporting applications.

External cloud resources can be different virtualised resources (servers, storage) or
resources provided by other clouds.
External resources can use cloud APIs

Note difference between roles: customer and user

Customer is an entity ordering/buying cloud services. They install and run/administer
cloud based applications or services. Like website. Developers are typically have a full
control over cloud resources.

Users are entities using cloud based services like website users.

20

As can be seen in the previous illustration, Cloud IaaS has easy to discern architecture
layers.

The Physical Resource layer is the hardware and firmware wired up in a particular
topology with network and storage

The Virtualization layer virtualizes and places under software control the physical
resource layer

Next running on the Virtualization are the cloud management components, they are
the “Cloud OS” modules

Finally there are interfaces and tools which we ultimately go through to access the
cloud internals

21

The Cloud OS has gotten to be very full featured and continues to grow in capability.
His job was initially responsible for core IaaS functionality of virtualized resources and
automating key processes in provisioning resources.

Now the Cloud OS also provides multiple storage models, software controlled
networking with a variety of features, and support for many kinds of data storage
(data base).

Other functions of the Cloud OS are detailed on the slide, where you can see
mechanisms including Authentication, Key Mangement, Accounting, Workflow, and
other stuff.

22

Let us look at a basic IaaS cloud operation couple of scenarios.

The topics we will consider include

Composition and deployment of the VM’s we’ll need

Infrastructure scaling, backup

Data management and backup

And then Physical to virtual migration

From these basic steps we will “paper construct” a few common deployment

scenarios

We will look at creating a multi-host system, how we do testing, how does Cloud

Burst work, and what about backup and recovery

23

To begin with, we concentrate on Resources and Services Virtualization in Clouds.

We are going to deploy the actual servers we need to run our applications. Through

well defined interfaces to the cloud, for example web services or REST, the Cloud OS

Dynamically provisions CPU and memory, arranges for Virtualised network

connectivity and infrastructure.

Cloud virtualization includes

-Computation resources virtualization Virtual Machine technique

-Storage resources virtualization, Virtual Storage technique

- Network connectivity/resources virtualization, Virtual Network technique

24

How does the Cloud actually implement the programmatic availability of VM’s, served

up to different tenants?

The illustration shows the “logical” view of Virtual Machines and Networks. Note the

color coding.

The provider “serves up” the cloud resources using a variety of options, given the

pool of physical servers it has in the datacenter.

This illustration shows the Physical Server 1 is running a VM for each tenant, sharing

the machine resources across the two VMs. Other VM’s are scattered about on other

servers in the cloud.

25

IaaS cloud providers differ in platform, API, location but majority offer both Linux and
Windows VM images. Some CSP use proprietary cloud management platforms, some
also offer VMware cloud management platforms.

Large CSP offer services worldwide and have multiple availability zones.

(CSP1, 2104) IaaS Providers List: 2014 Comparison And Guide. [online]
http://www.tomsitpro.com/articles/iaas-providers,1-1560.html

(CSP2, 2014) Joe Panettieri, Top 100 Cloud Services Providers (CSPs) List And
Research [online] http://talkincloud.com/tc100

26

The challenge for the developer is, that even IaaS API’s and conventions are different

across cloud service providers.

The slide lists several Cloud Service Providers as well as Cloud OS software
alternatives.

While similar in design, there are a variety of cloud platforms to choose from
depending on what is driving your choice.

27

Example: Amazon AWS

28

The most popular IaaS cloud is Amazon AWS. For that reason we will reference this
platform in providing example solutions.

The AWS architecture contains many, many services. The first and most basic ones
are “EC2” computing and the associated core parts that come with it (S3 and EBS

storage for example).

Therefore let us investigate AWS more.

29

AWS offers two major services

Elastic Compute Cloud (EC2) that provides resizable compute capacity
Simple Storage Service (S3)

AWS also offer many many other services, For example, all kinds of databases are
offered, many kinds of VM’s, and middleware components, all “as a service”.

Amazon EC2 and S3 API became a standard-de-facto interfaces for accessing and
managing cloud services

AWS has 9 availability zones to choose from:

30

31

Platform as a Service (PaaS)

32

This slide quotes the NIST Cloud Computing definition of Platform as a Service.

First the slide repeats the NIST definition of Cloud Computing in general.

Note the emphasis on “ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources”

In the NIST definition for Platform as a Service (PaaS), the emphasis is on
“programming languages, libraries, services, and tools supported by the provider. ”

So PaaS is about an environment for developers!

33

The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages,

libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers,
operating systems, or storage, but has control over the deployed applications and

possibly configuration settings for the application-hosting environment.

PaaS can be delivered in three ways:

• as a public cloud service from a provider, where the consumer controls software
deployment with minimal configuration options, and the provider provides the
networks, servers, storage, operating system (OS), middleware (e.g. Java runtime,

.NET runtime, integration, etc.), database and other services to host the consumer's

application.
• as a private service (software or appliance) inside the firewall.

• as software deployed on a public infrastructure as a service.

34

The use models for Cloud Computing are closely related. This illustration has been
covered in an earlier Lesson, but to re-iterate.

For a traditional “physically installed” packaged application, the entire deployment

stack is managed by the user, as can be seen in the first block of the illustration. The
user is responsible for provisioning the complete server including networking and
storage, and the Operating System software as well. Additionally, the user provisions
whatever databases and middleware they need, any special runtime (Java or Ruby),
and finally the application. The application data is also the responsibility (and the
ownership of) the user.

The Cloud IaaS model changes this significantly, alleviating a large portion of at least
what would be considered “physical” infrastructure, this is shown in the second block

of the illustration. The cloud management (sometimes called Cloud OS) software is
shown in this diagram as “IaaS Mngt Platf”. The user obtains the hardware in a

virtualized form from the IaaS CSP and worries only about the software stack,
application, and data.

The Cloud PaaS model further offers middleware, application runtime, and as much
“software” infrastructure as possible, creating a convenient container for the

application developer. While this requires the developer to restructure if not rewrite
the application at the source code level to interface to the PaaS, this restricting will
impart new scalability and availability strengths into the application.

The Cloud IaaS model is a consuming of just the application itself through a browser

or web service.

35

A PaaS provided by a Cloud provides a lot of benefits to the developer over classic
middleware/programming suites.

It brings a Streamlined applications development lifecycle with Continuous development,
deployment, integration

It provides Deployment with one click usually with a Browser based development studio

No need to manage applications execution platform and underlying infrastructure

Management and monitoring tools are provided

No upfront costs, pay as you use

More Automatic Elastic load balancing and performance optimization

High services availability

36

This slide contains an illustration of a Cloud PaaS Architecture

Of course, underneath a PaaS, there is an Infrastructure Cloud (EC2, OpenNebula,

OpenStack, vCloud, etc. This can be local or it can be an External Cloud IaaS Platform

There ae Three major groups/layers of functionalities, components and services

1. PaaS management services such as Cloud Resources Management, Autoscaling,
Elastic Load Balancer, Service Load Monitor, and Artifact/Code Deployment, and
other subsystems depending on the PaaS variety

2. Core PaaS middleware services such as Authorization and Security Services, Storage
(File, Queue, Cache), Data bases (SQL,NoSQL), Task/Job Workflow Mgmt Services,
and other subsystems depending on the PaaS variety

3. Application platform containers and support services such as App Containers (ESB,
WebApp, PHP, DBase), Developer tools (SDK, Libraries), Repository Templates,
User artifacts, and other subsystems depending on the PaaS variety

Additional internal PaaS management functions
Storing user applications/artifacts
MPP/Analytics clusters

37

Let us look at these elements in more detail.

First, the PaaS Functional Components

General cloud IaaS/PaaS services allow applications deployment, monitoring,
scalability, load balancing, and redundancy

There is Cloud resources management and autoscaling that automatically scales
resources required by an application

There is Elastic load balancer that distribute load between service instances or
underlying computing resources

There is Service load monitor that provides information to load balancing service

And there is Artifact/code deployment synchroniser that manages all necessary
dependencies and bindings when deploying a customer code

38

Messaging service is considered a basic business platform/infrastructure service that
allows SOA based business applications to communicate and interact.
SOA is the major architecture for business services that use messages for
communication between services and processes.

Messaging service has different implementations where the Enterprise Service Bus
(ESB) is the most widely used and the standard-de-facto for enterprise SOA based
applications. ESB has a number of Open Source and proprietary implementations. We
will discuss in a separate tutorial the Azure Service Bus as a cloud based messaging
service implementation by Azure.

Registry Service

Maintains the register of services available on the platform, one of the key
component of the SOA based environment
Used by applications for services publishing and discovery. Registry contains sufficient
information to select required service and invoke it as a part of customer application

The Registry may contain either a service interface description (e.g. WSDL) or
reference to the service package or VM image.

Task/Job and Workflow Management Service

Provides additional functionality to manage and coordinate services operation on the
Cloud PaaS platform

May use different workflow management systems and manage both service
execution and applications lifecycle.

Storage

Provides different types of storage: Files, Blobs, Tables, Queues, Cache

39

Databases
Scalable Database services is one of the key application building blocks
Cloud based databases may have limited functionality in exchange for scalability, multi-
tenancy and easy integration with cloud based applications. Both
SQL and NoSQL (Not only SQL) databases are provided by different PaaS platforms.

Logging and Billing Services
Logging service can be configured to collect information both from the PaaS components
and from user applications
Billing service makes PaaS resources usage measureable and accountable; it may
implement different charging approaches, e.g. as reserved or on-demand instances,
implement quotas and other accountability and billing approaches.

The Application Platform Containers and Support Services
Includes Application Containers where the services and applications can be deployed and
run, repository of service templates, and Developer Tools that include Software
Development Kits (SDK) that in most cases can be part of the Integrated Development
Environment (IDE) or pluggable to one of the popular IDEs such as Eclipse or Microsoft
Visual Studio. Such SDK/IDEs support direct applications deployment and testing in cloud.
Each Cloud PaaS provider typically supports one or several programming languages and
corresponding application containers and SDK. It can also be targeted for different types
of applications like websites, web applications, business process management, etc.

40

Security is one of key middleware services in Cloud PaaS
Includes security in services interaction, data protection, and application
centric access control that allows enforcing different access/permissions level
for different applications’ capabilities or requested actions.

Authentication and Authorisation is applied to the services interactions (in
particular at the message exchange level) and user access.
Access control service may also include Identity Management service
provided by the Cloud PaaS provider that can be used for creating identity
federation between (enterprise) customer domain and cloud based

applications.
PaaS level access control must be consistent with the underlying security measures
and access control to shared cloud resources.

Users and applications must not have access to resources or services that are
not allocated to them or which permission level is higher than a particular

user’s access right.
Multi-tenancy as a security improvement factor

Cloud PaaS platform must be designed to support multi-tenancy in resources
sharing and security domains separation, similarly to Cloud IaaS platform

Customer applications run in separate VMs, using also additional measures for
separating application users’ data and processes.

41

This slide contains an illustration of a Cloud PaaS Services Runtime Environment.

As can be seen, the IaaS platform is at the base. There are other facilties not visible to
the programmer making the cloud platform work, such as cloud management,
Governance, Identity etc,

Then there is a Platform as a Service Runtime Framework (i.e. Cloud Foundry, RedHat

OpenShift, dotNET)

Note that n the PaaS runtime framework, the multi-tenant layer occurs at an
Application Container level, not at the VM level. There is no visibility to VMs to users!

42

As mentioned in the previous slide, each tenant’s application runs in a separate container
(that are isolated from each other by the code sandbox) or even in a separate VM hosting
target runtime environment

Applications/services runtime environment provides the following general services

Dynamic services provisioning including automatic deployment tools
Load balancing
Fine grained access control
Fault tolerance
System monitoring

43

There are not as many Major PaaS providers as there are cloud IaaS providers.

Generally there are not too many mainstream programming environment “families”.

There is at the highest level “.NET (Microsoft)” and “Java (or more generally speaking

more open development environments)”.

Microsoft was the unquestioned pioneer of PaaS. At the original launch of Windows

Azure, there was no IaaS mode at all, it was a PaaS-pure-play offering. Microsoft was

truly way ahead of the times here, believing that VM’s should never be manipulated

by users, and that they could deliver a much better cloud and much more security

and capability by exposing a pure code container environment. While Azure has

added the IaaS capability, it remains one of the most well architected and complete

PaaS environment. It is worth noting that Microsoft has excellent support for many

languages including PHP, Ruby, and Java, and so thinking that Azure or .NET PaaS is

strictly a C# environment is quite wrong.

Google also came out with a PaaS before they supported an IaaS offering, GAE was

very very simple.

While people argue that AWS is not really a PaaS, this is a legacy perception now it

contains all kinds of facilities to run code as indicated in the table

RedHat combined/re-adapted their middleware offerings into OpenShift but this has

been less accepted by the community than Cloud Foundry (see below) as it seems to

be very controlled by RedHat,

Salesforce,com has a “customization and extension” environment to it’s CRM

applications and database which it calls Force,com.

44

Example: Microsoft Azure

45

Global Data Center Footprint
99.95% Monthly SLA. Pay only for what you use.

Flexible & Open Compute Options
Virtual Machines, Web Sites, Cloud Services, Windows and Linux OS

Managed Building Block Services
SQL Database, Cache, Service Bus, & moa, C, re

Multiple Languages

Java, PHP, python, .net, node,js, mobile

46

The Azure platform is pretty much like other cloud platforms as to it’s structure with
the exception that the data and application services are very closely integrated with
the underlying core cloud services.

This is an artifact of how Azure ws a pure PaaS environment at the start

The slide illustrates the Microsoft Azure 3 structural layers

Microsoft Azure core services that include Compute, Storage, and Connect network
connectivity service

SQL Azure that include Database service and additionally Reporting and Data
Synchronisation

AppFabric applications fabric that provides a number of services for service
integration such as Service Bus, Access Control and Caching.

47

Example: Google App Engine (GAE)

48

Google App Engine Google App Engine (often referred to as GAE or
simply App Engine) is a platform as a service (PaaS) cloud computing platform for
developing and hosting web applications in Google-managed data centers.

Applications are sandboxed and run across multiple servers. App
Engine offers automatic scaling for web applications— as the number of requests
increases for an application, App Engine automatically allocates more resources for
the web application to handle the additional demand. Google App Engine is free up
to a certain level of consumed resources. Fees are charged for additional storage,

bandwidth, or instance hours required by the application.
It was first released as a preview version in April 2008, and came out

of preview in September 2011.

49

Auto Scaling - No need to over provision

Static Files - Static files use Google’s CDN

Easy Logs - View logs in web console

Easy Deployment - Literally 1-click deploy

Free Quota - 99% of apps will pay nothing

Affordable Scaling - Google App Engine is not cheap, but it has a very competitive
cost structure considering the scalability and ease of use.

No config - No need to config OS or servers

Easy Security - The whole App Engine infrastructure is way different than “regular”

hosting platforms. The application works in a small sandbox with very limited
permissions. Because an app can’t write to the filesystem, it’s impossible to alter the

application code from the application itself. This prevents most of the WordPress
targeted attacks.

50

An App Engine application can consume resources up to certain
quotas.
You can view the daily usage and quota consumption of App Engine

resources for your project in the Google Cloud Platform Console Quota Details page.

Billable limits and safety limits

App Engine has three kinds of quotas or limits:
Free quotas: Every application gets an amount of each resource for
free. Free quotas can only be exceeded by paid applications, up to the application's

spending limit or the safety limit, whichever applies first.
Spending limits: If you are the project owner and the billing

administrator, you can set the spending limit to manage application costs in the

Google Cloud Platform Console in the App Engine Settings. Spending limits might be

exceeded slightly as the application is disabled.

Safety limits: Safety limits are set by Google to protect the integrity of
the App Engine system. These quotas ensure that no single app can over-consume
resources to the detriment of other apps. If you go above these limits you'll get an
error whether you are paid or free.

51

Example: Open Source PaaS

52

There is a “battle” going on regarding which Open Source PaaS platform will be most
widely accepted

Cloud Foundry was initially assembled from Spring and Hibernate, and several
components were added, developed both in Open Source and by VMware, and
productized by the VMware/EMC spin out Pivotal. Pivotal launched a foundation
created by VMware and EMC with initial endorsement by IBM. Pivotal CF and
IBM Bluemix are Brand Names/Distros of Cloud
Foundry. Immediately the Pivotal Foudation gained more
support from business oriented IT companies such as IBM, HP and SAP.
It appears Pivotal is becoming the “new J2EE”

RedHat had put together OpenShift, which came from it’s extensive middleware
product line (all open source). While gaining initial momentum, OpenShift places
RedHat at odds with it’s typically largest partner IBM. The future of OpenShift is in
question.

OpenStack Solum is still in development.

53

Software as a Service (SaaS)

54

The capability provided to the consumer is to use the provider’s applications running

on a cloud infrastructure. The applications are accessible from various client devices
through either a thin client interface, such as a web browser (e.g., web-based email),

or a program interface. The consumer does not manage or control the underlying

cloud infrastructure including network, servers, operating systems, storage, or even
individual application capabilities, with the possible exception of limited user-specific

application configuration settings.

55

The use models for Cloud Computing are closely related. This illustration has been
covered in an earlier Lesson, but to re-iterate.

For a traditional “physically installed” packaged application, the entire deployment

stack is managed by the user, as can be seen in the first block of the illustration. The
user is responsible for provisioning the complete server including networking and
storage, and the Operating System software as well. Additionally, the user provisions
whatever databases and middleware they need, any special runtime (Java or Ruby),
and finally the application. The application data is also the responsibility (and the
ownership of) the user.

The Cloud IaaS model changes this significantly, alleviating a large portion of at least
what would be considered “physical” infrastructure, this is shown in the second block

of the illustration. The cloud management (sometimes called Cloud OS) software is
shown in this diagram as “IaaS Mngt Platf”. The user obtains the hardware in a

virtualized form from the IaaS CSP and worries only about the software stack,
application, and data.

The Cloud PaaS model further offers middleware, application runtime, and as much
“software” infrastructure as possible, creating a convenient container for the

application developer. While this requires the developer to restructure if not rewrite
the application at the source code level to interface to the PaaS, this restricting will
impart new scalability and availability strengths into the application.

The Cloud IaaS model is a consuming of just the application itself through a browser

or web service.

56

Software as a service (SaaS) is a software licensing and delivery model in which
software is licensed on a subscription basis and is centrally hosted. It is sometimes
referred to as "on-demand software", and was formerly referred to as "software plus
services" by Microsoft. SaaS is typically accessed by users using a thin client via a web
browser. SaaS has become a common delivery model for many business applications,
including office software, messaging software, payroll processing software, DBMS
software, management software, CAD software, development software, gamification,
virtualization, accounting, collaboration, customer relationship management (CRM),
Management Information Systems (MIS), enterprise resource planning (ERP),
invoicing, human resource management (HRM), talent acquisition, learning
management systems, content management (CM), and service desk management.
SaaS has been incorporated into the strategy of nearly all leading enterprise software
companies.

57

Configuration and customization

SaaS applications similarly support what is traditionally known as application
configuration.
Accelerated feature delivery

SaaS applications are often updated more frequently than traditional software, in
many cases on a weekly or monthly basis

Open integration protocols

Because SaaS applications cannot access a company's internal systems (databases or
internal services), they predominantly offer integration protocols and application
programming interfaces (APIs) that operate over a wide area network. Typically, these
are protocols based on HTTP, REST and SOAP.
Collaborative (and "social") functionality

Inspired by the success of online social networks and other so-called web 2.0
functionality, many SaaS applications offer features that let their users collaborate
and share information.

58

The vast majority of SaaS solutions are based on a multitenant architecture. With this
model, a single version of the application, with a single configuration (hardware,
network, operating system), is used for all customers ("tenants"). To support
scalability, the application is installed on multiple machines (called horizontal scaling).
In some cases, a second version of the application is set up to offer a select group of
customers access to pre-release versions of the applications (e.g., a beta version) for
testing purposes. This is contrasted with traditional software, where multiple physical
copies of the software — each potentially of a different version, with a potentially
different configuration, and often customized — are installed across various customer
sites. In this traditional model, each version of the application is based on a unique
code

There are two main varieties of SaaS(current slide)

59

Example: WordPress

60

WordPress is a free and open-source content management system (CMS) based on
PHP and MySQL. To function, WordPress has to be installed on a web server, which
would either be part of an Internet hosting service or a network host in its own right.
An example of the first scenario may be a service like WordPress.com, and the second
case could be a computer running the software package WordPress.org. A local
computer may be used for single-user testing and learning purposes. Features include
a plugin architecture and a template system. WordPress is used by 30.6% of the top
10 million websites as of April 2018. As such, WordPress is the most popular website
management or blogging system in use on the Web, supporting more than 60 million
websites. WordPress has also been used for other application domains such as
pervasive display systems (PDS).

61

Simplicity
Simplicity makes it possible for you to get online and get publishing, quickly. Nothing should get in the
way of you getting your website up and your content out there.
Flexibility
With WordPress, you can create any type of website you want: a personal blog or website, a
photoblog, a business website, a professional portfolio, a government website, a magazine or news
website, an online community, even a network of websites. You can make your website beautiful with
themes, and extend it with plugins. You can even build your very own application.
Publish with Ease
If you’ve ever created a document, you’re already a whizz at creating content with WordPress. You can
create Posts and Pages, format them easily, insert media, and with the click of a button your content is
live and on the web.
Publishing Tools
WordPress makes it easy for you to manage your content. Create drafts, schedule publication, and look
at your post revisions. Make your content public or private, and secure posts and pages with a
password.
User Management
Not everyone requires the same access to your website. Administrators manage the site, editors work
with content, authors and contributors write that content, and subscribers have a profile that they can
manage. This lets you have a variety of contributors to your website, and let others simply be part of
your community.
Media Management
They say a picture says a thousand words, which is why it’s important for you to be able to quickly and
easily upload images and media to WordPress. Drag and drop your media into the uploader to add it to
your website. Add alt text, captions, and titles, and insert images and galleries into your content. We’ve
even added a few image editing tools you can have fun with.

62

Full Standards Compliance
Every piece of WordPress generated code is in full compliance with the standards set by the W3C. This
means that your website will work in today’s browser, while maintaining forward compatibility with
the next generation of browser. Your website is a beautiful thing, now and in the future.
Easy Theme System
WordPress comes bundled with two default themes, but if they aren’t for you there’s a theme
directory with thousands of themes for you to create a beautiful website. None of those to your taste?
Upload your own theme with the click of a button. It only takes a few seconds for you to give your
website a complete makeover.
Extend with Plugins
WordPress comes packed full of features for every user, for every other feature there’s a plugin
directory with thousands of plugins. Add complex galleries, social networking, forums, social media
widgets, spam protection, calendars, fine-tune controls for search engine optimization, and forms.
Built-in Comments
Your blog is your home, and comments provide a space for your friends and followers to engage with
your content. WordPress’s comment tools give you everything you need to be a forum for discussion
and to moderate that discussion.
Search Engine Optimized
WordPress is optimized for search engines right out of the box. For more fine-grained SEO control,
there are plenty of SEO plugins to take care of that for you.
Multilingual
WordPress is available in more than 70 languages. If you or the person you’re building the website for
would prefer to use WordPress in a language other than English, that’s easy to do.
Easy Installation and Upgrades
WordPress has always been easy to install and upgrade. If you’re happy using an FTP program, you can
create a database, upload WordPress using FTP, and run the installer.
Own Your Data
Hosted services come and go. If you’ve ever used a service that disappeared, you know how traumatic
that can be. If you’ve ever seen adverts appear on your website, you’ve probably been pretty annoyed.
Using WordPress means no one has access to your content. Own your data, all of it — your website,
your content, your data.
Freedom
WordPress is licensed under the GPL which was created to protect your freedoms. You are free to use
WordPress in any way you choose: install it, use it, modify it, distribute it. Software freedom is the
foundation that WordPress is built on.
Community
As the most popular open source CMS on the web, WordPress has a vibrant and supportive
community. Ask a question on the support forums and get help from a volunteer, attend a WordCamp
or Meetup to learn more about WordPress, read blogs posts and tutorials about WordPress.
Community is at the heart of WordPress, making it what it is today.
Contribute
You can be WordPress too! Help to build WordPress, answer questions on the support forums, write
documentation, translate WordPress into your language, speak at a WordCamp, write about
WordPress on your blog. Whatever your skill, we’d love to have you!

63

Contact Form 7 can manage multiple contact forms, plus you can customize the form and the
mail contents flexibly with simple markup. The form supports Ajax-powered submitting,
CAPTCHA, Akismet spam filtering and so on.

Yoast SEO is the favorite tool of millions of users, ranging from the bakery around the corner to
some of the most popular sites on the planet. With Yoast SEO, you get a solid toolset that helps
you aim for that number one spot in the search results. Yoast: SEO for everyone. Yoast SEO
does everything in its power to please both visitors and search engine spiders.

Akismet checks your comments and contact form submissions against our global database of
spam to prevent your site from publishing malicious content. You can review the comment
spam it catches on your blog’s “Comments” admin screen. Major features in Akismet include:
Automatically checks all comments and filters out the ones that look like spam. Each comment
has a status history, so you can easily see which comments were caught or cleared by Akismet
and which were spammed or unspammed by a moderator. URLs are shown in the comment
body to reveal hidden or misleading links. Moderators can see the number of approved
comments for each user. A discard feature that outright blocks the worst spam, saving you disk
space and speeding up your site.

Jetpack by WordPress.com
Hassle-free design, marketing, and security — all in one place. Create and customize your
WordPress site from start to finish. Jetpack helps you with: Hundreds of professional themes
for any kind of site Intuitive and powerful customization tools Unlimited and high-speed image
and video content delivery network Lazy image loading for a faster mobile experience
Integration with the official WordPress mobile apps

64

Network as a Service (NaaS)

65

Software Defined Networking (SDN)

Software-defined networking (SDN) is an approach to computer networking that
allows network administrators to manage network services through abstraction of
lower-level functionality.

This is done by decoupling the control plane from the forwarding or data plane.
Enables automation and orchestration of network services via Open programmatic
interfaces

Provides a basis for optimising existing applications, services, and infrastructure

SDN is a complementary approach to network functions virtualization (NFV) for
network management. While they both manage networks, both rely on different
methods.

SDN offers a centralized view of the network, giving an SDN Controller the ability to
act as the “brains” of the network

66

Network Functions Virtualization (NFV)

Network Functions Virtualization (NFV) is a network architecture concept that intends
to virtualize entire classes of network node functions making them building blocks
that may be connected, or chained, together to create communication services.

Relocates network functions from dedicated appliances to generic servers

Think of Firewalls, Load Balancers, WAN Optimization, and so on.

NFV also includes telecommunications functions such as IP/PBX, SMS/MMS, IP/TV, an
other Telco functions usually found on dedicated appliances

NFV and SDN are complementary and independent frameworks.

NFV Specification is maintained by ETSI Industry Specification Group

Many Telecommunications functions comply with the ETSI spec when refactored into
NFV

Many IT networking equipment product do not follow the ETSI spec

67

A closely related concept to SDN and to NFV is NaaS (“Network as a Service”)

The slide contains an illustration showing this relationship.

NaaS Shapes novel network services built on VNFs and SDN apps to fit in an easy and
user-friendly context

OpenNaaS is an organization promoting open source implementation of NaaS

OpenNaaS is an Open Source Framework for:

Managing (physical and virtual) networks

Virtualizing network resources

Deploying dynamic network infrastructures

Supporting heterogeneous network devices

Implementing multi-tenancy through slicing

Offering the Network as a Service (NaaS)

68

OpenNaaS Value

OpenNaaS Provides lightweight Hardware Abstraction Layer operational model

Decoupled from actual vendor-specific details

Flexible enough to accommodate different designs and orientations

Fixed enough so common tools can be build and reused across plugins

OpenNaaS allows the creation of a virtual representation of physical resources (i.e.
network, router, switch, optical device or computing server)
Virtualization support through slicing or aggregation

Recursive delegation of access right over managed resources

Supports ITU-T OAMP (Operations, Administration, Management, Provisioning)
model

69

The slide contains an illustration showing the OpenNaaS Architecture

Note the OpenNaaS architecture layers

Platform
NaaS and Resource

Network Intelligence

70

NaaS in Detail

This layer is mainly composed by extensions leveraging abstract platform base
components. It is here where support for specific resource types, capabilities, and
devices are added.

Resource

Represents a manageable unit inside the NaaS concept
It can be a switch, a router, a link, a logical router, a network, etc…

Decomposed in:
A model.
An array of Capabilities.

Capability

An interface to a given Resource functionality.
For a router:

OSPF, IPv6, create/manage logical routers, etc…
This interface is, as the Model, abstracted and vendor neutral
Internally, Capabilities need a way to abstract implementation details of the devices, we
called these Actions.

Actions

A vendor (and protocol) specific implementation of a configuration modification.
It can be Queued.

It can be undone (rollback).
The QueueManager is used to stack all Actions to be executed (supports rollback).

71

Example: Senet

72

Senet Inc. is an American Low Power Wide Area Network (LPWAN) provider

for IoT/M2M applications. The Senet Network is described as "the first and only

public provider of LPWA networks with class leading LoRa® modulation for IoT/M2M

applications in North America”. Its platform is positioned to meet the needs of the

growing “Internet of Things” (IoT) ecosystem.

The Senet Network adheres to the open global networking standards as proposed by

the LoRa® Alliance, and enables low power, machine to machine (M2M) connectivity

across wide geographic areas. It is designed to remove the barriers traditionally

associated with managing remote devices such as reliability, range, battery life,

bidirectional capability, mobility, and cost.

73

Senet’s origins began in 2009 with EnerTrac, a fuel delivery automation solution that

remotely monitors propane and oil tanks for the residential heating industry. By

reducing unnecessary deliveries and runouts, EnerTrac reduces operational costs for

fuel delivery companies.

The success of the EnerTrac solution prompted EnerTrac to consider its technology

for other markets, and in 2014 the company was restructured as Senet Inc., a public

LPWA Network. The Senet Network is designed to accommodate other applications,

such as water metering, smart building and smart agriculture. EnerTrac was renamed

to EnerTracSE, and the EnerTracSE heating fuel delivery automation solution

continues as one of Senet’s significant offerings.

Senet joined the LoRa® Alliance in 2015 and deployed LoRaWAN technology into the

Senet Network. With this deployment the Senet Network became the first IoT

network in North America to adopt the LoRa networking standards.

74

Until Senet, cost and complexity were barriers to IoT connectivity. Now, we make it
easy for you to get connected with our complete, end-to-end networking and IoT
platform services. All you have to do is subscribe. We’ll do the rest.

75

Database as a Service (DaaS)

76

More information here:
https://searchcloudapplications.techtarget.com/definition/cloud-database

72

77

73

78

74

79

80

81

82

83

84

This slide shows main service options in DBaaS

85

86

Example: Google Cloud Datastore

87

Official documentation: https://cloud.google.com/datastore/docs/concepts/overview

88

Official documentation: https://cloud.google.com/datastore/docs/concepts/overview

89

90

91

92

Function as a Service (FaaS)

93

94

Great article, that describes what is exactly FaaS and what does it mean:
https://stackify.com/function-as-a-service-serverless-architecture/

95

Great article, that describes what is exactly FaaS and what does it mean:
https://stackify.com/function-as-a-service-serverless-architecture/

96

Existing FaaS providers are as follows:

Microsoft/Azure Functions — https://azure.microsoft.com/en-us/services/functions/
proposes

•Tooling, bindings & triggers

•Logic apps — visual designer with 25+ connectors and function orchestration

•Event grid

•Local debugging

AWS Lambda Functions — https://aws.amazon.com/lambda/ proposes

•Functions,
•APIs,
•Tables

Google Cloud Functions / Firebase — https://cloud.google.com/functions/ proposes
•Cloud storage,
•Cloud pub/sub,
•HTTPS,
•Stackdriver logs

97

Summary and take away

Cloud IaaS represents all generic Cloud Computing properties and is the most widely

used cloud service type

Cloud IaaS Architecture includes functionalities to virtualise physical resources

(Compute, Storage, Network), support provisioned on-demand cloud IaaS services

deployment and management

There is a variety of Cloud IaaS platforms

Big Cloud IaaS Providers use their own proprietary platforms

There is a variety of Open Source Cloud Management platforms

OpenStack, OpenNebula, Eucalyptus, Nimbus are the most popular

And finally, in this tutorial we discussed the Amazon Web Services Cloud and its main

functionality

Historically first, current AWS Cloud represents all the

generic IaaS cloud properties. Understanding the basic AWS

Cloud properties will provide a good basis for understanding other cloud

platforms

98

In this Lesson we covered

Cloud PaaS Architecture includes functionalities to simplify applications creation and
deployment

Cloud PaaS is widely used for migrating enterprise processes to cloud and brings all
generic Cloud Computing benefits on-demand provisioning, elasticity, pay per use,
multi-tenancy

Microsoft Azure represents an example of the generic PaaS features implementation

There is a number of Open Source Cloud Management platforms

99

100

Lecture 2. Deployment Models

101

Overview

102

103

104

This slide illustrates the four Cloud IaaS deployment models which are defined in the
NIST SP 800-145 standard: private, public, hybrid, community clouds. Two additional
evolved recently: federated cloud and Intercloud.

105

Private Cloud

106

The cloud infrastructure is provisioned for exclusive use by a single organization
comprising multiple consumers (e.g., business units). It may be owned, managed, and
operated by the organization, a third party, or some combination of them, and it may
exist on or off premises

107

108

Examples

109

110

Public Cloud

111

The cloud infrastructure is provisioned for open use by the general public. It may be
owned, managed, and operated by a business, academic, or government
organization, or some combination of them. It exists on the premises of the cloud
provider

112

113

Examples

114

115

Hybrid Cloud

116

The cloud infrastructure is a composition of two or more distinct cloud infrastructures
(private, community, or public) that remain unique entities, but are bound together
by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds)

117

118

Examples

119

120

Community Cloud

121

[NIST SP800-145] The cloud infrastructure is provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations). It may be
owned, managed, and operated by one or more of the organizations in the
community, a third party, or some combination of them, and it may exist on or off
premises.
-Cloud platform simplifies creation and management of shared resources

122

-Typically solved with Federated Clouds and Federated Identity management

123

Two type of cloud federation
-Provider side federation for resources sharing and provisioning
-User/customer side federation that allows creation of multi-provider
heterogeneous cloud infrastructures

-Allows hierarchical IaaS-PaaS-SaaS cloud integration

-Requires and is possible when using well defined cloud standards

-Should address issues: Control and management, intercloud federations
management, operations issues

124

There are many ways clouds can interoperate. This slide uses an illustration from a
research group from University of Melbourne, who polished a paper on the taxonomy
of different cloud interoperability approaches. Please study the illustration.

Intercloud Architecture Framework (ICAF) is based on the multi-layer Cloud Services
Model (CMS) and separates control, management, federation and operational
aspects in Intercloud. Developed by UvA, currently implemented in the European
project GEANT.

125

It is easier to understand these different cloud interoperability approaches when one
visualizes the resultant topologies. The illustration in this slide shows the same four
categories from the previous slide but from a topology view.

It is easy to see that the multi-cloud approach will work for a user wanting to access a
small number of clouds more or less manually and must “string together” the

resources from each cloud themselves. This approach is ideal for scientists who want
to access simple cloud resources (like VMs) to create large clusters for Hadoop or for
Grid calculations. The responsibility for understanding the variations amongst the
clouds falls with the user in this case.

It is easy to see that the Federations approach is a much more scalable and
interconnected architecture. This approach is ideal for systems which might span
multiple cloud providers, or span private and public clouds. It also places the
responsibility of understanding the variations amongst the clouds with the
infrastructure, not the end user. This is an important point which we will examine
more later.

126

Federated Cloud

127

A federated cloud refers to a business model in which multiple external and internal
cloud computing services deployed and managed to achieve a common goal.
A Federated cloud (also called cloud federation) is the deployment and management
of external and internal cloud computing services to match business needs.
A federation is the union of several small parts that perform a common action.

128

These end-user capabilities must be provided via community agreed APIs that can be
integrated with the following EGI services:

AAI to provide Single Sign-On for authentication and authorization
across the whole cloud federation.

Configuration Database, to record information about the topology of
the e-infrastructure.

Accounting to collect, aggregate and display usage information.

Monitoring to perform federated service availability monitoring and
reporting of the distributed cloud service endpoints, and to retrieve this information
programmatically. Integration with monitoring is a passive activity of the resource
center, the monitoring is performed using the end-user APIs with regular user
credentials from EGI AAI.

129

These tools include
IaaS provisioning systems that allow to define infrastructure as code and
manage and combine resources from different providers, thus enabling the
portability of application deployments between them (e.g. IM or Terraform);
Cloud brokers, that provide matchmaking for workloads to available providers
(e.g. the INDIGO-DataCloud Orchestrator); and
Cloud Management Software that provides a unified console for accessing
resources and deploy workloads following a set of user-defined established
policies (e.g. Scalr or RightScale)

130

EGI does not mandate deploying any particular or specific Cloud Management
Framework; it is the responsibility of the Resource Center to investigate, identify and
deploy the solution that fits best their individual needs whilst ensuring that the
offered services implement the required interfaces and domain languages of the
federation realms they are member of.

131

Inter Cloud and Multi-Cloud

132

133

134

135

The title of this module is: “Technologies and Types of Cloud Computing”.

This lecture 3 is about “Providers of Cloud Computing Services”.

136

Lecture 3. Providers of Cloud

Computing Services

This lecture is about:

the providers of Cloud Computing services with the more detailed description of:

 proprietary (commercial) solutions:
 Amazon AWS and Google GAE,
 Microsoft Azure and IBM Bluemix,
 open source solutions:
 OpenNebula and OpenStack,
 CloudFoundry and OpenShift.

Here their components, typical use cases, advantages, disadvantages, etc. are described
in details.

137

Overview

Let’s start from the overview of cloud service providers …

138

This chart lists the major players in the Cloud Computing technology space. While it is
not full one thing that is evident is that there are a large number of major companies
who are investing significant R&D in Cloud offerings.

The chart shows the different delivery ways (public cloud services, or private cloud
software).

The chart also shows the layers of Cloud technology (Hardware, IaaS, or PaaS)

Finally the chart indicates whether the vendor makes available their offering as Open
Source as a key strategy.

Note:
some SaaS providers with domain specific PaaS environments, such as
Salesforce.com, or Netsuite, or Workday, have been excluded.

That is why the selection of the optimal technology direction can be complicated in
this context!

139

Proprietary Solutions

Let’s consider some commercial solutions…

140

Example: Amazon AWS

The fist example is dedicated to Amazon AWS that represents an example of
Infrastructure as a Service.

141

The most popular IaaS cloud is Amazon AWS. For that reason we will reference this
platform in providing example solutions.

The AWS architecture contains many, many services. The first and most basic ones
are “EC2” computing and the associated core parts that come with it (S3 and EBS
storage for example).

Therefore let us investigate AWS more.

142

AWS offers two major services

Elastic Compute Cloud (EC2) that provides resizable compute capacity
Simple Storage Service (S3)

AWS also offer many many other services, For example, all kinds of databases are
offered, many kinds of VM’s, and middleware components, all “as a service”.

Amazon EC2 and S3 API became a standard-de-facto interfaces for accessing and
managing cloud services

AWS has several availability zones to choose from.

143

This is the “conceptual architecture” of AWS.
This illustration is a convenient way to get impression about layers and groups of the
various AWS services.

Note:
The low level building blocks contain the core AWS functions as well as options in
other core functions like DNS, networking, and cache.

The higher level building blocks are more recently constructed, and implement

higher level functions such as search and content delivery.
Cross service features include security related mechanisms like authentication,
monitoring, and application control.

AWS lets one access it through the original low level commands and interfaces to
tools supplied.

144

This slide illustrates the AWS cloud architecture that can be viewed as a reference IaaS cloud
implementation. It contains all the major functional components of the generic Cloud IaaS
architecture.
Elastic Block Store (EBS) provides highly available and reliable storage volumes that are
independent and persistent across the life of an VM/AMI

These volumes can be used as a boot partition for a particular instance or as a
storage space with backend replication for long-term durability

Virtual Private Cloud (VPC) allows organizations to use AWS resources along with their
existing infrastructure in a VPN (Virtual Private Network) to increase compute capabilities
beyond the local resources.
Elastic IP Address is a persistent IP address which can be allocated to a particular user
account and allows the user to dynamically assign it to any user VM.

Can be configured to switch to a replacement instance in the event of a failure of the
running VM

CloudWatch is a service to monitor AWS resource utilization, operational performance, and
overall demand patterns
Auto Scaling allows users to dynamically provision and relinquish resources used by their
applications depending upon demand in run-time

To handle sudden spikes in demand without the need to pre-over-provision
resources

Elastic Load Balancing can balance load between multiple VMs located within a single
availability zone or multiple zones

Can be used to create fault tolerance system that monitors health of each VM and
distributes load between active instances

VM Import/Export is a service that provides functionality to upload custom VM images and
store a live instance as an image

Saves efforts to create custom VM instance (including infrastructure components,
applications, security and compliance features etc).

145

Let us now look more closely at EC2.

EC2 AMIs (Amazon Machine Instances) forms the basic infrastructure on which
applications can be deployed just as any other server

The slide lists three different ways to obtain EC2’s. Just to be clear, once you get a
certain size EC2, they are all the “same”, there is no inherent difference between a
“small” obtain through Spot or Reserved.

AMIs allow to use several controls over the provisioned infrastructure.
The slide lists these controls. There are supposed to be a minimum of them to
“maximize simplicity” in use.

146

Amazon has many machine types.
These are the “types” and sizes of EC2 attributes one can “order”.

Note: the naming rules allow to understand configuration behind the names.

Note: there is no “standard Elastic Compute Unit” or other real measurement of
capacity. While the different machine types are quite explicit in what they consist of,
any notion of derived performance or standardized benchmark is not to be seen.

147

CloudFormation is system (or tool really) which AWS provides as a option, to help
with the automation of provisioning. It takes a specification on the resources needed
for each element in the collection of elements that make up the application.

This slide details some of the features of Cloud Formation.

It is a very handy toolset for creating and maintaining AWS deployments. It is
proprietary to Amazon.

While there are some efforts (OpenStack “heat” project) to re-create a compatible
system as a portable, Open Source implementation, the developer should realize that
this toolset is not available anywhere else but AWS. For this reason many developers
use Chef or Puppet as much as possible and then interface that to CloudFormation.

148

Every IaaS system has a specific “personality” about how it works and one of the
main aspects of this personality” is how networking is set up for a VM.
AWS uses a very specific networking set up which lacks many networking features
(like Multicast or VLAN).

This slide details the networking context of AWS.

149

The rules of a security group control the inbound traffic that's allowed to reach the
instances that are associated with the security group and the outbound traffic that's
allowed to leave them.

By default, security groups allow all outbound traffic.
• You can add and remove rules at any time.
• Your changes are automatically applied to the instances associated with the security
group after a short period.
• You can either edit an existing rule in a security group, or delete it and add a new
rule.
• You can copy the rules from an existing security group to a new security group.
• You can't change the outbound rules for EC2-Classic.

Security group rules are always permissive; you can't create rules that deny access.
For each rule, you specify the following:
• The protocol to allow (such as TCP, UDP, or ICMP): TCP and UDP, or a custom
protocol.
• The range of ports to allow ICMP, ICMP type and code
• One or the following options for the source (inbound rules) or destination
(outbound rules) as detailed on this slide.

150

Amazon Virtual Private Cloud (Amazon VPC) is a logically isolated section of the AWS
Cloud where you can launch AWS resources in a virtual network defined by you.

VPC allows complete control over created virtual networking environment,
including selection of own IP address range, creation of subnets, and configuration of
route tables and network gateways.

For example. You can create a public-facing subnet for your webservers with
access to the Internet. Then you can create private-facing subnet where you
can place your backend systems such as databases or application servers with
no Internet access.

VPC allows connect enterprise network via Virtual Private Network (VPN) and
extend enterprise datacenter into AWS cloud

VPC allows to leverage multiple layers of security including security groups and
network access control lists in each subnet.

151

Example: Microsoft Azure

The second example is dedicated to Microsoft Azure that represents an example of
Platform as a Service (PaaS).

152

The Microsoft Azure Cloud was first released as Windows Azure and was strictly a
PaaS platform aimed at providing Cloud services to Windows developers. After
adding IaaS abilities including the ability to run Linux VM’s, Azure has become an
important player in Cloud.

Microsoft Azure provides a comprehensive set of services that can be selectively
compose to build user cloud applications, for example:

Global Data Center Footprint
99.95% Monthly SLA. Pay only for what you use.

Flexible & Open Compute Options
Virtual Machines, Web Sites, Cloud Services, Windows and Linux OS

Managed Building Block Services
SQL Database, Cache, Service Bus

Multiple Languages
Java, PHP, python, .net, node,js, mobile

153

Microsoft has one of the three largest footprints of computing counting all the cloud
vendors (Microsoft, Google, and Amazon).
54 massive datacenters are installed now worldwide and available in 140 countries.
Microsoft delivers many services from their Cloud, ranging from Azure, to Xbox Live,
to Outlook.com, to Windows Update, and every SaaS application in between.
So they really have invested in a global infrastructure.

154

The Azure platform is pretty much like other cloud platforms as to it’s structure with
the exception that the data and application services are very closely integrated with
the underlying core cloud services.

The slide illustrates the Microsoft Azure 3 structural layers :

Microsoft Azure core services includes Compute, Storage, and Connect network
connectivity service.

SQL Azure includes Database service and additionally Reporting and Data
Synchronisation.

Microsoft AppFabric applications provides a number of services for service
integration such as Service Bus, Access Control and Caching.

155

This slide illustrates the “Marketecture”, that is Market-Architecture, of Microsoft
Azure.

It can be seen that it is organized into several Functional Layers:

 Data Layer
 Application Layer
 Integration Layer
 Client Layer (on premises)

As you can see from this picture, each layer contains a considerable amount of
functional capabilities.

156

One of the other advantages of Microsoft Azure is possibility to use a number of
Application Building Blocks.

Application Building Blocks are managed services that Microsoft runs to provide a lot
of value so the developer can avoid standing up the infrastructure for common
capabilities.

The developer can stand up VMs and put anything wanted there.

In many cases the developer will find that Microsoft have built in services that are
directly delivered or that are delivered by their partners.

A developer can use any of these services with a VM, with a Web Site, or with a Cloud
Service – so there is flexibility in how one will consume them.

The slide illustrates variety of these Application building blocks.

157

A key concept in the Azure PaaS environment is the Service Role.

Service Roles mostly determine what kind of traffic is directed towards that service,

For example, Web Role runs web applications accessed outside, from the Internet. All
outside connectivity goes through Web Service Role entities. Load Balancing
(inherent in Azure) spreads incoming traffic across Web Service Role entities.

But the other Worker Role runs internal computational tasks and can be clustered for
complex tasks. Connectivity of Worker Role entities is limited to internal traffic only
(to/from other Worker Role entities, or to/from Web Role entities)

A role instance is a set of code, configuration, and local data, deployed in a dedicated
VM.
A role definition specifies:

• VM size
• Communication Endpoints
• Local storage resources

Cloud Service is a management, configuration, security, networking and service
model boundary – consisting of a group of Service Roles.

158

This slide includes an illustration of the high-scale view on the Microsoft Azure
Service Architecture:

Key points here are
• all external connections come through a load balancer (LB)
• inter-role communication (notice there is no load balancer) and TCP ports directly

to Worker Roles (or Web Roles)
• the storage is used to communicate asynchronously and reliably via queues for a

lot of options
• inter-role communication fills in when you need direct synchronous

communication.

The load balancers are a key to Windows Azure.

159

This slide contains an illustration of a scale-out application

• High scale applications often follow this sort of an pattern
• Inbound connectivity comes through a load balancer

• Requests are routed in a round robin way
• Load balancer is typically aware of the state of the web servers

• There are one or more tiers or groups of stateless web or app servers
• By stateless we mean that they do not hold state between client requests
• Stateless means that simple load balancing works – no need for sticky sessions
• Stateless means that the failure of a web server does not cause major issues for

application- it is simply removed from the load balancer
• A stateful or storage tier

• This will generally involve some sort of scale out approach for large apps
• Often using partitioned databases
• Often some sort of queuing mechanism

• Applications will often perform processing in the background.
• Improves response time for users
• Allows load peaks to be buffered in queues

160

Microsoft Azure Service components and configuration are defined in a form of XML
document.

Services Definition
• describes the shape of the Microsoft Azure Service
• defines Roles, Ports, Certificates, Configuration Settings, Startup Tasks, IIS
Configuration, and more…

XML example of a Service Definition is shown in this slide.

161

In this example the service configuration file defines account name and access
related information: username, encrypted password, and related Certificate
fingerprint.

162

This slide contains a table aimed at understanding how and why to change the VM
Size for a Windows Azure role.

When you create your service model, you can specify the size of the virtual machine

(VM) to which to deploy instances of your role, depending on its resource
requirements.

The size of the VM determines
• the number of CPU cores
• the memory capacity
• the local file system size allocated to a running instance

Each physical machine in Windows Azure contains 8 processor cores. You need to
specify an XL instance to reserve an entire machine
• Network is shared but burstable
• Can burst beyond your 1/8th allocation when using a small VM
• May be limited to just your allocation
• For guaranteed high network throughput use an XL VM

163

The illustration on this slide addresses Windows Azure Storage Abstractions and
allows to understand each of the storage types at a high level.

The Windows Azure storage services provide storage for binary and text data,
messages, and structured data in Windows Azure.

The storage services include:
• The Blob service, for storing binary and text data
• The Queue service, for storing messages that may be accessed by a client
• The Table service, for structured storage for non-relational data
• Windows Azure drives, for mounting an NTFS volume accessible to code running in

your Windows Azure service

For developers, access to the Blob, Queue, and Table services is available via the
Windows Azure Managed Library and the Windows Azure storage services REST API.

164

Now we will look a the networking included with a Cloud Service

1. Cloud Service gets a Virtual IP assigned for a deployment slot
• No ports opened up by default
• Need to define endpoints to open up ports

2. Input endpoint is a port
• It is load balanced
• Mapped across all role instances
• Port mapipng is supported

3. Internal endpoint enables inter-role-instance communication
• Ports for inter-vm communication are closed by default
• Need to define an internal endpoint for communication
• Internal endpoints can be port ranges

4. DNS resolution
• Only service-level name resolution is supported
• Need to use runtime APIs for instance name resolution.

The whole stack of network/communication technologies used in connecting enterprise and
hosted cloud services includes the following layers:

• Secure site-to-site network connectivity: Windows Azure Virtual Network
• Secure machine-to-machine connectivity: Windows Azure Connect
• Application layer connectivity and messaging: Service Bus Messaging
• Data synchronisation: SQL Data Sync

Since April 2014, Windows Azure intra- and inter-datacenter network (and storage network
in particular) has been upgraded to specially designed fully meshed network based on Non-
blocking 10 Gbps Ethernet.

This made possible many practical high bandwidth scenarios such as flat storage
infrastructure, High-Performance Computing (HPC) on distributed clusters,
MapReduce based parallel processing tasks, etc.

165

This slide illustrates how the Microsoft stack is structured to provide connectivity
between on-premise and cloud.

There are several facilities which can be used depending on the connectivity objective

At the lowest level, a VPN based connectivity can be achieved using Azure Virtual
Network. This is analogous to AWS Virtual Private Cloud, it is based on IPSEC
tunneling.

Azure Connect is more specific, connecting server (VM) to server as illustrated

There are many application level connectivity option but the most common
implements a reliable message transport (pub/sub) Service Bus (MS MQ protocol)

Finally, a new feature in SQL Server called SQL Sever Always On synchronizes AQL
Server instances across a network.

166

This slide describes Virtual Network Features.

VNET requires Hosted VPN Gateway that enables site-to-site connectivity
• Automated provisioning & management
• Support existing on-premises VPN devices

It provides for Customer-managed private virtual networks within Windows Azure
• “Bring your own IPv4 addresses”

• Control over placement of Windows Azure Roles within the network

• Stable IPv4 addresses for VMs

• Only provides for IP Addresses in a Virtualized Network

• It also allows one to Carve out IP subnets with a Virtualized Network

• Cavetas: overlapping subnets are not allowed, and the IP address stays with
the VM for it’s lifetime

This allows customers to use on-premise DNS servers for name resolution
• Enables customers to use their on-premise DNS servers for name resolution

• Enables VMs running in Windows Azure to be joined to corporate domains

running on-premise (use your on-premise Active Directory)

Microsoft manages the gateway at the customer site, which is software, and runs in
active / passive mode for high availability.

167

Example: Google App Engine (GAE)

The second example is dedicated to Google App Engine (GAE) that represents an
example of Platform as a Service (PaaS).

168

Normal Cloud Servers (like Amazon AWS) give you a virtual server in the cloud. You
get an abstraction of a physical machine, and you have to do everything else yourself.
To build a website here, you would need to install an OS (like Linux), then install a
webserver (like Apache), then add in an interpreter for your preferred language in the
webserver (like modpython for Python), and install a database (like MySQL). Of
course, if you want to use multiple servers or multiple databases or multiple
webserver for scalability, you're completely on your own. And, you pay per server per
month.

One level higher than this are players like Heroku or Webfaction. They have the OS
installed, they have the Webserver installed, they have the interpreter installed, and
they have the Database installed. You just need to write your app, and wire all the
above pieces together. As before, if you want to use multiple servers or multiple
databases or multiple webserver for scalability, you're completely on your own.
Usually, in such shared hosts, you pay for the "number of instances" that you have
running of any application, and the size of each (in terms of memory or bandwidth
consumed).

Google AppEngine is one level higher than this. Here, you are not exposed to the
webserver or the database. You just get a platform where you start writing Python or
Java code (or a whole bunch of other languages are now supported), and there is a
data-storage API which you use directly without worrying about which database it is
stored in. And here, you pay separately each resource consumed (like memory,
bandwidth, GB of storage, MB of data in the database, number of emails sent, etc).

169

As we all know, Google is at the forefront of what you may call the Internet revolution.

Besides being the number 1 search engine, the company is also leveraging Cloud and has
come up with different products to help developers launch new scalable web and mobile
apps.

Amongst its various Cloud based products, Google app engine has become quite popular.

The app engine is a Cloud based platform, is quite comprehensive and combines
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service
(SaaS). The app engine supports the delivery, testing and development of software on
demand in a Cloud computing environment that supports millions of users and is highly
scalable.

The company extends its platform and infrastructure to the Cloud through its app engine. It
presents the platform to those who want to develop SaaS solutions at competitive costs.

It is a platform-as-a service (PaaS) Cloud computing platform that is fully managed and uses
in-built services to run your apps. You can start development almost instantly after

downloading the software development kit (SDK). You can go on to the developer’s guide

right away when you click on the language you wish to develop your app in.

170

Google App Engine (often referred to as GAE) is a web framework and cloud
computing platform for developing and hosting web applications in Google-
managed data centers.

Applications are sandboxed and run across multiple servers.

GAE was first released as a preview version in April 2008 and came out of preview in
September 2011.

171

The App Engine standard environment is based on container instances running on
Google's infrastructure. Containers are preconfigured with one of several available
runtimes (Java 7, Java 8, Python 2.7, Go and PHP). Each runtime also includes libraries
that support App Engine Standard APIs. For many applications, the standard
environment runtimes and libraries might be all you need.

The App Engine standard environment makes it easy to build and deploy an
application that runs reliably even under heavy load and with large amounts of data.
It includes the following features which are shown in this figure:
 Persistent storage with queries, sorting, and transactions.
 Automatic scaling and load balancing.
 Asynchronous task queues for performing work outside the scope of a request.
 Scheduled tasks for triggering events at specified times or regular intervals.
 Integration with other Google cloud services and APIs.

Applications run in a secure, sandboxed environment, allowing App Engine standard
environment to distribute requests across multiple servers, and scaling servers to
meet traffic demands. Your application runs within its own secure, reliable
environment that is independent of the hardware, operating system, or physical
location of the server.

172

On this slide you can see a list of GAE key features.
Data storage. Google App Engine storage consists of DataStore and BlobStore.
BlobStore serve data objects larger than allowable for Datastore.
Logs. App Engine standard environment maintains two kinds of logs: application logs
contain arbitrary messages with a timestamp and log level, request logs contain
entries for each request handled by your app.
MapReduce. MapReduce is an open source library that is built on top of App Engine
services. It provides a programming model for large-scale distributed data processing,
automatic parallelization and distribution within existing codebase and other useful
features. MapReduce is available on GitHub for Java and Python. It is described in the
separate module and lectures.
Memcache. App Engine standard environment supports two classes of the
memcache service: shared memcache provides cache capacity on a best-effort basis
and is subject to the overall demand of all applications served by App Engine;
dedicated memcache provides a fixed cache capacity assigned exclusively to client’s
application.
Task Queue. If some application needs to execute some background work, it can use
the Task Queue API to organize that work into small, discrete units, called tasks. The
app adds tasks to task queues to be executed later.
Communication. App Engine standard environment applications can communicate
with other applications or access other resources on the web by fetching URLs.

More information can be obtained by the reference shown here.

173

App Engine is regional, which means the infrastructure that runs your apps is located
in a specific region and is managed by Google to be redundantly available across all
the zones within that region.

Client can choose where to locate applications to meet latency, availability and
durability requirements.

Regions are independent geographic areas that consist of zones.

Google Cloud Platform services are available in locations across North America, South
America, Europe, Asia, and Australia.

More information can be obtained by the reference shown here.

174

For GAE, supported programming languages include Java (and, by extension,
other JVM languages such as Kotlin, Groovy, JRuby, Scala, Clojure), Python, PHP, Go
and Ruby. Node.js and .NET Framework are also available in the flexible environment.

Google App Engine supports many Java standards and frameworks. Core to this is
the servlet 2.5 technology using the open-source Jetty Web Server along with
accompanying technologies such as JSP. A newer release of App Engine Standard Java
in Beta supports Java8, Servlet 3.1 and Jetty9.

Python web frameworks that run on Google App Engine
include Django, CherryPy, Pyramid, Flask, web2py and webapp2. Any Python
framework that supports the WSGI using the CGI adapter can be used to create an
application; the framework can be uploaded with the developed application. Third-
party libraries written in pure Python may also be uploaded.

Developers can use Go, Java, PHP or Python to write an app engine application. They
can develop and test an app locally using the SDK containing tools for deploying apps.
Every language has its own SDK and runtime.

More information can be obtained by the reference shown here.

175

Аpp Engine is Google’s PaaS platform and robust development environment.
The SDK for App Engine supports development and deployment of the application to
the cloud.
App Engine supports multiple application versions, which enables easy rollout of new
application features and traffic splitting to support A/B testing.

The Memcache and Task Queue services are integrated in the App Engine standard
environment. Memcache is an in-memory cache shared across the App Engine
instances. This provides extremely high speed access to information cached by the
web server (e.g. authentication or account information).

Task Queues provide a mechanism to offload longer running tasks to backend servers,
freeing the front end servers to service new user requests.

Finally, App Engine features a built-in load balancer (provided by the Google Load
Balancer) which provides transparent Layer 3 and Layer 7 load balancing to
applications.

176

This slide describes how GAE works.

Front-End Server balancing the application between an App Engine Instances and
their backends.

Running apps accessing the storages as Datastore, Blobstore and Cloud SQL.

Running code operating with MapReduce library and Tasks queues.

Both apps and code can use other services such as memcache, email etc.

Developers control the processes through the IDE plugin and GAE Management
dashboard.

177

This slide describes how Application Server works.

Application is running on server in a sandbox.

Google App Engine connecting running app with internal and external services.

Internal services are using Google infrastructure implements in Memcache and
BigTable technologies.

External services provides connection to the Internet.

178

The key differences of Google App Engine from other providers are as follows:
• Compared to other scalable hosting services such as Amazon EC2, GAE provides

more infrastructure to make it easy to write scalable applications, but can only run
a limited range of applications designed for that infrastructure.

• App Engine's infrastructure removes many of the system administration and
development challenges of building applications to scale to hundreds of requests
per second and beyond. Google handles deploying code to a cluster, monitoring,
failover, and launching application instances as necessary.

• While other services let users install and configure nearly any *NIX compatible
software, App Engine requires developers to use only its supported languages,
APIs, and frameworks. Google Cloud SQL can be used for App Engine applications
requiring a relational MySQL compatible database backend.

• Per-day and per-minute quotas restrict bandwidth and CPU use, number of
requests served, number of concurrent requests, and calls to the various APIs, and
individual requests are terminated if they take more than 60 seconds or return
more than 32MB of data.

• Google App Engine's integrated Google Cloud Datastore database has a SQL-like
syntax called "GQL". GQL does not support the Join statement. Instead, one-to-
many and many-to-many relationships can be accomplished using
ReferenceProperty(). This shared-nothing approach allows disks to fail without the
system failing.

179

Developers should take into account the following restrictions:
 Developers have read-only access to the filesystem on App Engine. Applications can
use only virtual filesystems, like GAE-filestore.
 App Engine can only execute code called from an HTTP request (scheduled
background tasks allow for self calling HTTP requests).
 Users may upload arbitrary Python modules, but only if they are pure-
Python; C modules are not supported.
 Java applications may only use a subset (listed in JRE Class White List) of the classes
from the JRE standard edition. This restriction does not exist with the App Engine
Standard Java8 runtime.
 A process started on the server to answer a request can't last more than 60 seconds
(with the 1.4.0 release, this restriction does not apply to background jobs anymore).
 Does not support sticky sessions (a.k.a. session affinity), only replicated sessions are
supported including limitation of the amount of data being serialized and time for
session serialization.

180

Google App Engine is free up to a certain level of consumed resources.

On this slide you can see a table with resources and corresponding free default limits.

Fees are charged for additional storage, bandwidth, or instance hours required by the
application etc.

More information can be obtained by the reference shown here.

181

This slide describe the numerous advantages of the app engine:
Infrastructure for Security
Internet infrastructure that Google has is probably the most secure in the world.
You can be sure that your app will be available to users worldwide at all times since
Google has several hundred servers globally. Google’s security and privacy policies are
applicable to the apps developed using Google’s infrastructure.
Scalability
For any app’s success, this is among the deciding factors. Google creates its own apps
using GFS, Big Table and other such technologies. You only have to write the code for
the app and Google looks after the testing on account of the automatic scaling
feature that the app engine has. Regardless of the amount of data or number of users
that your app stores, the app engine can meet your needs by scaling up or down as
required.
Performance and Reliability
In the past 15 years, the company has created new benchmarks based on its services’
and products’ performance. The app engine provides the same reliability and
performance as any other Google product.
Cost Savings
You don’t have to hire engineers to manage your servers or to do that yourself. You
can invest the money saved in to other parts of your business.

182

This slide describe some disadvantages of the app engine:

You're limited to languages: Java, PHP, Go and Python

You're limited to using AppEngine's services (queues, search, memcache, logging etc).
If you need anything beyond that - it'll be hard.

You're limited to AppEngine's runtime (for example: in Python you can't have any 3rd
party dependencies that are in C... image processing, etc - out of the question)

The bottom line is that you're limited - you have the set of services AppEngine
provide and you're locked into those services. Anything beyond that will require some
hacking to circumvent its limitations.

183

Finally, lets compare the advantages and disadvantages of Google App Engine Usage.

The advantages include ready infrastructure, scalability, reliability and wide range of
tools.

The disadvantages include dependence on Google platform and restrictions,
described earlier.

Integration with Google’s service may be advantage and disadvantage at the same
time.

184

Google App Engine enables you to build web applications for your business leveraging
Google’s infrastructure.

App Engine applications are easy to develop, maintain, and can scale as your traffic
and data storage needs grow.

With App Engine, you don’t end up paying for large server spaces and then spend on
resources maintaining them. You just upload your application, and it’s ready to serve
to your users. Rest is taken care by Google Cloud.

185

Example: IBM Cloud (Bluemix)

The next example is dedicated to IBM Cloud (the former name was IBM Bluemix) that
represents an example of Platform as a Service (PaaS).

186

IBM Bluemix is a cloud platform as a service (PaaS) developed by IBM to build, run,
deploy and manage applications on the cloud.

It took a team of people located in different places only 18 months to build Bluemix.
It was announced as a public beta in February 2014 and generally available in June.

Bluemix supports Java, Node.js, Go, PHP, Swift, Python, Ruby Sinatra, Ruby on
Rails and can be extended to support other languages such as Scala through the use
of buildpacks.

On October 2017, IBM announced that they are merging the Bluemix brand with the
IBM Cloud brand.
That is why we will investigate the IBM Cloud docs for Bluemix.

More information can be obtained by the reference shown here.

187

IBM Cloud offers nearly 60 data centers into 6 regions and 18 availability zones
globally. around the world to help you meet the needs of your global business.

Its possible to deploy apps to different regions for latency or security consideration,
with the option to deploy to one region or across multiple regions.

188

IBM Bluemix is a PaaS offering based on the Cloud Foundry open source project.
Cloud Foundry platform consists of the next components.

Note: here Diego is the container management system, and Diego Cell directly
manages and maintains Tasks and Requests. Diego Brain distribute Tasks and
Requests to Diego Cells.

Router routes incoming traffic to the appropriate component, either a Cloud
Controller component or a hosted application running on a Diego Cell.
OAuth2 server (User Account and Authentication server - UAA) and Login Server

work together to provide identity management.
Cloud Controller then directs the Diego Brain through the CC-Bridge components to
coordinate individual Diego cells to stage and run applications.
Blobstore is a repository for large binary files.

Garden containers. Application instances, application tasks, and staging tasks all run
as Garden containers on the Diego Cell VMs.
Service broker is responsible for providing the particular service instance.
Diego’s Bulletin Board System (BBS) stores frequently updated and disposable data.
NATS Message Bus uses the NATS protocol to broadcast the latest routing tables to
the routers.

Consul server stores longer-lived control data.

The metrics collector gathers metrics and statistics from the components.
The App Log Aggregator streams application logs to developers.

189

Increasingly the most pragmatic and practical mode for enterprises is a hybrid cloud
strategy.

This allows them to leverage data and IT assets that already exist and bring new cloud
services as well as moving some existing functionality to the cloud.

To support this IBM offers public and private cloud-based platforms for building,
running and managing applications.

Public cloud is multi-tenant, and hosted in a vendor’s data center.

Private cloud is single-tenant, and/or hosted in a corporate data center.

Allow for further flexibility, Bluemix environments can be deployed in a single-tenant
private cloud environment (Bluemix Dedicated)
or
private on-premises in a customer data center (Bluemix Local).

190

Bluemix runs on the SoftLayer infrastructure. On this slide you can see its main components.
Bare metal servers provide the raw horsepower demanded for processor-intensive and disk
I/O-intensive workloads.
Virtual Servers can be deployed in a matter of minutes from virtual server images in the
geographic region that makes sense for particular workloads.
Block Storage is a persistent iSCSI based storage with high-powered performance and
capacity up to 12TB.
File Storage is a fast and flexible NFS-based file storage with capacity options from 20GB to
12TB.
Object Storage is a highly scalable cloud storage service, designed for storing, managing and
accessing data via self-service portal and RESTful APIs.
VMware Cloud Foundation on IBM Cloud brings together VMware vSphere, vSAN, and NSX
into a natively-integrated stack of virtual compute, virtual storage, and virtual networking
built on IBM Cloud compute dedicated infrastructure.
VMware vSphere on IBM Cloud provides maximum flexibility to build IBM-hosted
environment using VMware-compatible hardware and the right set of VMware components
that fit business needs and expertise.
VMware vCenter Server on IBM Cloud is a hosted private cloud that delivers the VMware
vSphere stack as a service.
Kubernetes cluster lets securely manage the resources needed to quickly deploy, update, and scale
applications.
Container registry can be detached from IBM Cloud Kubernetes Service in order to store and
distribute Docker images via a stateless, highly scalable server side application.

Available network services will be described on the next slide.

191

Content Delivery Network service distributes content where it is needed.

The first time content is requested, it’s pulled from the host server to the network
and stays there for other users to access it.

Domain name service. IBM Cloud offers domain registration services complete with
dedicated support staff, knowledgeable customer service, and reasonable prices, all
delivered over a secure network.

Virtual Private Netwrok (VPN). It access is designed to allow users to remotely
manage all servers and services associated with their account over our private
network.

Load balancer service distribute traffic among application servers residing locally
within data center.

VPN Spanning. It connects all private network VLANs on an account, allowing devices
on separate VLANs to communicate with each other.

Virtual Router Appliance (VRA) provides the latest Vyatta Network Operating System

for x86 bare metal servers.
Its is possible to create virtual routers, firewalls, and VPNs that fit unique application
requirements.

More information can be obtained by the reference shown here.

192

The IBM Cloud dashboard provides access to the IBM Cloud services available from
IBM and third-party providers.

These include Watson, Internet of Things, Data & Analytics, Mobile, and DevOps
services.

On this slide you can see a short descriptions for each service.

More information can be obtained by the reference shown here.

193

IBM Bluemix includes IBM's Function as a Service (FaaS) system, or Serverless
computing offering, that is built using open source from the Apache OpenWhisk
incubator project largely credited to IBM for seeding.

OpenWhisk is an open source, distributed serverless computing platform able to
execute application logic (Actions) in response to events (Triggers) from external
sources (Feeds) or HTTP requests governed by conditional logic (Rules).

It provides a programming environment supported by a REST API-based Command
Line Interface (CLI) along with tooling to support packaging and catalog services.

More information can be obtained by the reference shown here.

194

Watson is an IBM Cloud service for cognitive computing with the following components:
IBM Watson Studio accelerates the machine and deep learning workflows required to infuse AI
into business to drive innovation.
IBM Watson Knowledge Catalog powers intelligent, self-service discovery of data, models and
more, activating them for artificial intelligence, machine learning and deep learning.
Watson Discovery feature does a cognitive search and content analytics to identify patterns,
trends and actionable insights to drive better decision-making.
Discovery News means discovering trends and patterns in sentiment with aggregate analysis in
order to see new perspectives on how news unfolds across the globe.
Natural language understanding. It allows to analyze text to extract meta-data from content
such as concepts, entities, keywords, categories, emotion, relations, semantic roles.
Speech to Text service converts the human voice into the written word.
Text to Speech service processes text and natural language to generate synthesized audio
output complete with appropriate cadence and intonation.
Watson Language Translator allows to dynamically translate text and instantly publish content
in multiple languages.
Natural Language Classifier service applies cognitive computing techniques to return the best
matching classes for a sentence or phrase.
Personality Insights derives insights from transactional and social media data to identify
psychological traits which determine purchase decisions, intent and behavioral traits.
Tone Analyzer leverages cognitive linguistic analysis to identify a variety of tones at both the
sentence and document level.
Watson Assistant provides a natural language interface to automate interactions with users.
Visual Recognition allows to analyze images for scenes, objects, faces, and other content.

More information can be obtained by the reference shown here.

195

On the last slide you can see differences of Google and IBM Clouds in some key
points.

196

Open Source Solutions

Let’s consider some Open Source solutions…

197

There are several different Cloud Middleware stacks.

These “stacks” are often called a “CloudOS”, even though they are actually
Middleware.

Each of the servers in a Cloud is actually running an Operating System such as Linux or
Windows, and includes a virtualization component such as Xen, KVM, ESX, or Hyper-
V.

In this part of the lecture we start from OpenStack…

198

Example: OpenNebula

The first example is dedicated to OpenNebula that represents an example of
Infrastructure as a Service (IaaS).

199

OpenNebula was first established as a research project back in 2005 from the EC funded
project RESERVOIR. Since its first public release of software in March 2008, it has evolved
through open-source releases and now operates as an open source project.

The first version 1.0 was released in 2008, and since then, the project is being
sponsored by the Distributed Systems Architecture Research Group (http://dsa-
research.org) at the Universidad Computense de Madrid.

The OpenNebula technology has matured thanks to an active and engaged community of
users and developers. Its software was downloaded several thousands times per month from
the site. Besides an exponential growth in its number of users, different projects, research
groups and companies have built new virtualization and cloud components to complement
and to enhance the functionality provided by this widely used open-source toolkit for cloud
computing.

In March 2010, the main authors of OpenNebula founded C12G Labs to provide the value-
added professional services that many enterprise IT shops require for internal adoption and
to allow the OpenNebula project to not be tied exclusively to public financing, contributing to
its long-term sustainability. In September 2013, OpenNebula organized its first ever
community conference, which included presentations by leading organizations worldwide.

OpenNebula provides users more control over its features, options for customization, and a
standard libvirt interface for managing virtual machines. Uses NFS for storing disk images.
OpenNebula has a scheduler which can do the basic tasks of scheduling virtual machines.

http://dsa-/
http://dsa-/

200

OpenNebula features advanced multi-tenancy with powerful users and groups management,
fine-grained resource allocation, and resource quota management to track and limit
computing, storage and networking utilization.

User Management: OpenNebula can validate users using its own internal user database
based on passwords, or external mechanisms, like ssh, x509, ldap or Active Directory
OpenNebula Virtualization: Various hypervisors are supported in the virtualization manager,
with the ability to control the complete lifecycle of Virtual Machines and multiple hypervisors
in the same cloud infrastructure.

Virtualization: Several hypervisor technologies are fully supported, like Xen, KVM and
VMware. Monitoring: OpenNebula provides its own customized monitoring system and also
integrates with data center monitoring tools like Ganglia.

OpenNebula Hosts: The host manager provides complete functionality for the management
of the physical hosts in the cloud.

OpenNebula has strong Networking. Dynamic creation of Clusters as pools of hosts that share
datastores and virtual networks for load balancing, high availability, and high performance
computing.

OpenNebula Networking: An easily adaptable and customizable network subsystem is
present in OpenNebula in order to better integrate with the specific network requirements of
existing data centers and to allow full isolation between virtual machines that composes a
virtualised service.

OpenNebula Storage: Multiple backends are supported like the regular (shared or not)
filesystem datastore supporting popular distributed file systems like NFS, Lustre, GlusterFS,;
the VMware datastore specialized for the VMware hypervisor, iSCSI/LVM datastore to store
disk images in a block device form; and Ceph for distributed block device.

201

This slide contains the general view on the OpenNebula architecture with the
following main components:
1.CLI - command-line interface
2.GUI – graphical user interface
3.CloudServer
4. OCA - OpenNebula Cloud API
5. Sheduler
6.XML_RPC API
7. OpenNebula core
8. Monitoring services
9. Storage services
10. Network services
11. Virtualization services
12. Images
13.Authentication services
14.DB – database services

Here the supported languages are also shown with the percentage of their users
worldwide.

202

Cloud interfaces enable you to manage virtual machines, networks and images
through a simple and easy-to-use REST API. The Cloud interfaces hide most of the
complexity of a Cloud and are specially suited for end-users. OpenNebula implements
two different interfaces, namely:

 EC2-Query API. OpenNebula implements the functionality offered by the Amazon's
EC2 API, mainly those related to virtual machine management. In this way, you can
use any EC2 Query tool to access your OpenNebula Cloud.

 OCCI-OGF. This web service enables you to launch and manage virtual machines in
your OpenNebula installation using the latest draft of the OGF OCCI API specification.

203

This slide describes OpenNebula core technologies behind its components.

Advanced Control and Monitoring of Virtual Infrastructure

Image Repository Subsystem with catalog and complete functionality for VM image
management. Template Repository Subsystem with catalog and complete functionality for
VM template management. Full control of VM instance life-cycle and complete functionality
for VM instance management. Advanced functionality for VM dynamic management like
system and disk snapshotting, capacity resizing, or NIC hotplugging. Programmable VM
operations, so allowing users to schedule actions
Storage Subsystem with support for multiple data stores to balance I/O operations between
storage servers, or to define different SLA policies (e.g. backup) and performance features for
different VM types or users. It supports any backend configuration with different datastore
types.

Flexible Network Subsystem.

Hypervisor agnostic Virtualization with broad hypervisor support (Xen, KVM and VMware),
centralized management of environments with multiple hypervisors, and support for multiple
hypervisors within the same physical box.
Hybrid Cloud Computing and Cloudbursting. Extension of the local private infrastructure
with resources from remote clouds.
Authorization framework. Secure and efficient Users and Groups Subsystem for
authentication and authorization of requests with complete functionality for user
management.
Advanced Multi-tenancy with Group Management. Administrators can groups users into
organizations that can represent different projects, division.
Database. Highly scalable database back-end with support for MySQL and SQLite

204

This slide describes OpenNebula Drivers Interfaces.

The interactions between OpenNebula and the Cloud infrastructure are performed by
specific drivers each one addressing a particular area:

Storage. The OpenNebula core issue abstract storage operations (e.g. clone or delete)
that are implemented by specific programs that can be replaced or modified to
interface special storage backends and file-systems.

Virtualization. The interaction with the hypervisors are also implemented with
custom programs to boot, stop or migrate a virtual machine. This allows you to
specialize each VM operation so to perform custom operations.

Monitoring. Monitoring information is also gathered by external probes. You can add
additional probes to include custom monitoring metrics that can be later used to
allocate virtual machines or for accounting purposes

Authorization. OpenNebula can be also configured to use an external program to
authorize and authenticate user requests. In this way, you can implement any access
policy to Cloud resources.

DataBase. OpenNebula saves its state and lots of accounting information in a
persistent data-base. OpenNebula can use MySQL or SQLite database that can be
easily interfaced with any of DB tool.

205

In OpenNebula the hptional integration with datacenter monitoring tools like Ganglia is
possible.

Note: Ganglia is a scalable, distributed monitoring tool for high-performance computing
systems, clusters and networks.

If you already have ganglia deployed in your cluster you can use the ganglia drivers provided
by OpenNebula to get information about hosts and virtual machines from it. These drivers
should make the monitoring more performant in a big installation as they don't use ssh
connections to the nodes to get the information. On the other side they require more work
on the system administrator as ganglia should be properly configured and cron jobs must be
installed on the nodes to provide virtual machine information to ganglia system.

The component that deals with the hypervisor to create, manage and get information about
virtual machine objects is called Virtual Machine Manager (VMM for short).

The following drivers for the main hypervisors are already written:

 KVM Driver 4.0 - KVM (Kernel-based Virtual Machine) is a complete virtualization
technique for Linux. It offers full virtualization, where each Virtual Machine interacts with its
own virtualized hardware.
 Xen Driver 4.0 - The XEN hypervisor offers a powerful, efficient and secure feature set for
virtualization of x86, IA64, PowerPC and other CPU architectures. It delivers both
paravirtualization and full virtualization.
 VMware Drivers 4.0 - The VMware Drivers enable the management of an OpenNebula
cloud based on VMware ESX and/or VMware Server hypervisors. They use feature a simple
configuration process that will leverage the stability, performance and feature set of any
existing VMware based OpenNebula cloud.

206

This slide contains description of how the Virtualization drivers are written.

This component has the following two parts:
• the first one resides in the core and holds most of the general functionality common
to all the drivers (and some specific),
• the second is the driver that is the one able to translate basic VMM actions to the
hypervisor.

The possible actions are:
DEPLOY - Tells the hypervisor to create a new VM
SHUTDOWN - Sends shutdown signal to a VM
CANCEL - Destroys a VM
SAVE - Saves the state of a VM (suspend)
RESTORE - Restores a VM to a previous saved state
MIGRATE - Performs live migration of a VM
POLL - Gets information about a VM
MIGRATE - Performs live migration of a VM

Every action should have an executable program (mainly scripts) located in the
remote directory that performs the desired action.

207

The Storage subsystem is highly modular.

These drivers are separated into two logical sets:

DS: Datastore drivers. They serve the purpose of managing images: register, delete,
and create empty datablocks.
TM: Transfer Manager drivers. They manage images associated to instantiated VMs.

The Disk images registered in a datastore are transferred to the hosts by the transfer
manager (TM) drivers. These drivers are specialized pieces of software that perform
low-level storage operations (e.g. setting up iSCSI targets or file movements).

208

The transfer mechanism is defined for each datastore. In this way a single host can
simultaneously access multiple datastores that uses different transfer drivers. Note
that the hosts must be configured to properly access each data-store type (e.g.
mount FS shares).

OpenNebula is shipped with different datastore types:
1. System, to hold images for running VMs, depending on the storage technology

used.
2. File-system, to store disk images in a file form.
3. iSCSI/LVM, to store disk images in a block device form.
4. VMware, a datastore specialized for the VMware hypervisor.
5. vmfs, a datastore specialized in VMFS format to be used with VMware

hypervisors.
6. Ceph, to store disk images using Ceph block devices.
7. Files, this is a special datastore used to store plain files and not disk images. The

plain files can be used as kernels, ramdisks or context files.

209

Datastore is any storage medium used to store disk images for VMs, previous versions
of OpenNebula refer to this concept as Image Repository.

An OpenNebula installation can have multiple datastores of several types to store
disk images. OpenNebula also uses a special datastore, the system datastore, to hold
images of running VMs. You can take advantage of the multiple datastore features of
OpenNebula to better scale the storage for your VMs, in particular:

Balancing I/O operations between storage servers
Different VM types or users can use datastores with different performance features
Different SLA policies (e.g. backup) can be applied to different VM types or users
Easily add new storage to the cloud

There are some limitations and features depending on the transfer mechanism you
choose for your system and image datastores (check each datastore guide for more
information). The table summarizes the valid combinations of Datastore and transfer
drivers.

210

This slide describes OpenNebula Interfaces

XML-RPC interface
It is the primary interface for OpenNebula, and it exposes all the functionality to
interface the OpenNebula daemon. Through the XML-RPC interface you can control
and manage any OpenNebula resource, including virtual machines, networks, images,
users, hosts and clusters.
XML-RPC interface should be used if you are developing specialized libraries for Cloud
applications or you need a low-level interface with the OpenNebula core.

OpenNebula Cloud API (OCA)
It provides a simplified and convenient way to interface the OpenNebula core. The
OCA interfaces exposes the same functionality as that of the XML-RPC interface.
OpenNebula includes two language bindings for OCA: Ruby and JAVA.
OCA interface should be used if you are developing advanced IaaS tools that need full
access to the OpenNebula functionality.

211

The OpenNebula Cloud API Specification for Ruby has been designed as a wrapper for
the XML-RPC methods, with some basic helpers.

Here the Code Sample is presented to perform shutdown for all the VMs of the Pool.
The code flow would be as follows:
 Create a new Client, setting up the authorization string. You only need to create it
once.
 Get the VirtualMachine pool that contains the VirtualMachines owned by this User.
 You can perform “actions” over these objects right away, like myVNet.delete();. In
this example all the VirtualMachines will be shut down.

212

libvirt virtualization API

It can be used as interface for private cloud computing. libvirt version includes
OpenNebula driver that provides a libvirt interface to a distributed virtual
infrastructure consisting of local resources running VMware, KVM or Xen; and Cloud
resources on Amazon EC2 or ElasticHosts.

libvirt is evolving into a very rich and widely used interface to manage the
virtualization capabilities of a server, including virtual network, storage and domain
management. So, libvirt can be a very effective administration interface for a private
cloud exposing a complete set of VM and physical node operations. In this way, libvirt
+ OpenNebula provides a powerful abstraction for your private cloud

213

Deployment of OpenNebula
OpenNebula assumes that your physical infrastructure adopts a classical cluster-like
architecture with a front-end, and a set of hosts where Virtual Machines (VM) will be
executed. There is at least one physical network joining all the hosts with the front-
end. The basic components of an OpenNebula system are:
 Front-end, executes the OpenNebula services.
 Hosts, or Noes, hypervisor-enabled hosts that provide the resources needed by the
VMs.
 Datastores hold the base images of the VMs.
 Service Network, physical network used to support basic services: interconnection
of the storage servers and OpenNebula control operations
 VM Networks physical network that will support VLAN for the VMs.

Front-End. The machine that holds the OpenNebula installation is called the front-
end. This machine needs to have access to the storage Datastores (e.g. directly mount
or network), and network connectivity to each host. OpenNebula services include:
Hosts. The hosts are the physical machines that will run the VMs. During the
installation you will have to configure the OpenNebula administrative account to be
able to ssh to the hosts, and depending on your hypervisor you will have to allow this
account to execute commands with root privileges or make it part of a given group.
Storage. OpenNebula uses Datastores to handle the VM disk Images. VM Images are
registered, or created (empty volumes) in a Datastore. In general, each Datastore has
to be accessible through the front-end using any suitable technology.

214

Here some software is listed that is required for OpenNebula:

Head node
• ssh, ruby
• OpenNebula: oned, mm_sched, sunstone, …

Worker nodes
• Hypervisor (like KVM, Xen or VMWare)
• ssh, ruby (for Xen & KVM)

Optional
• Storage Backends (like LVM, iSCSI, Ceph, …)
• Networking systems (like VLAN, Open vSwitch, …)
• Ganglia, LDAP, Apache, Nginx

215

Clusters are pools of hosts that share datastores and virtual networks. Clusters are
used for load balancing, high availability, and high performance computing. Hosts can
be grouped in Clusters.

Hosts can be created directly in a Cluster. Hosts can be in only one Cluster at a time.

Datastores and Virtual Networks can be added to one Cluster. This means that any
Host in that Cluster is properly configured to run VMs using Images from the
Datastores, or is using leases from the Virtual Networks.
For instance, if you have several Hosts configured to use the iSCSI datastore drivers
and Open vSwitch networks, you would group them in the same Cluster.

System Datastore for a Cluster. You can associate an specific System Datastore to a
cluster to improve its performance (e.g. balance VM I/O between different servers) or
to use different System Datastore types (e.g. shared and ssh). To use a specific System
Datastore with your cluster, instead of the default one, just create it, and associate it
just like any other datastore.

216

The Storage system allows OpenNebula administrators and users to set up images,
which can be operative systems or data, to be used in Virtual Machines easily. These
images can be used by several Virtual Machines simultaneously, and also shared with
other users.

There are different types of images:
OS: An OS image contains a working operative system. Every VM template
must define one DISK referring to an image of this type.
CDROM: This images are readonly data. Only one image of this type can be
used in each VM template.
DATABLOCK: A datablock image is a storage for data, which can be accessed
and modified from different Virtual Machines. This images can be created
from previous existing data, or as an empty drive.
KERNEL: A plain file to be used as kernel. Note that KERNEL file images can be
registered only in File Datastores.
RAMDISK: A plain file to be used as ramdisk Note that RAMDISK file images
can be registered only in File Datastores.
CONTEXT: A plain file to be included in the context CD-ROM. Note that
CONTEXT file images can be registered only in File Datastores.

217

This slide contains explanations for description of OpenNebula Virtula Machine.

A template file consists of a set of attributes that defines a Virtual Machine.

For compatibility with previous versions, you can also create a new Virtual Machine
directly from a template file.

218

One of the most difficult aspects of effectively utilizing any Cloud computing
infrastructure is the need to adequately understand the life-cycle that a Cloud-
managed virtual machine will progress through.

This is principal scheme of such life-cycle.

219

There are two contextualization mechanisms available in OpenNebula:
• the automatic IP assignment, and
• the more generic way to give any file and configuration parameters.

Automatic IP Assignment. With OpenNebula you can derive the IP address assigned
to the VM from the MAC address using the MAC_PREFFIX:IP rule. In order to achieve
this there are context scripts for Debian, Ubuntu, CentOS and openSUSE based
systems.

Generic Contextualization. The method is provided to give configuration parameters
to a newly started virtual machine using an ISO image (OVF recommendation). This
method is network agnostic so it can be used also to configure network interfaces. In
the VM description file you can specify the contents of the iso file (files and
directories), tell the device the ISO image will be accessible and specify the
configuration parameters that will be written to a file for later use inside the virtual
machine.

In this example we see a Virtual Machine with two associated disks. The Disk Image
holds the filesystem where the Operating System will run from. The ISO image has
the contextualization for that VM.

220

OpenNebula installation packages include the following parts:

opennebula-common: provides the user and common files
libopennebula-ruby: all ruby libraries
opennebula-node: prepares a node as an opennebula-node
opennebula-sunstone: OpenNebula Sunstone Web Interface
opennebula-tools: Command Line interface
opennebula-gate: Gate server that enables communication between VMs and
OpenNebula
opennebula-flow: Manages services and elasticity
opennebula: OpenNebula Daemon

221

OpenNebula automatically generates a number of CPU shares proportional to the
CPU attribute in the VM template.

For example, consider a host running 2 VMs (73 and 74) with the various shares of
CPUs for them.
If everything is properly configured you should see:

222

When a new Virtual Machine is launched, OpenNebula will connect its network
interfaces (defined in the NIC section of the template) to the bridge or physical device
specified in the Virtual Network definition. This will allow the VM to have access to
different networks, public or private. This functionality is provided through Virtual
Network Manager drivers.

To make an effective use of your VM deployments you'll probably need to make one
or more physical networks accessible to them. For example, a typical host with two
physical networks, one for public IP addresses (attached to eth0 NIC) and the other
for private virtual LANs (NIC eth1) should have two bridges (as the illustration shows).

223

OpenNebula administrator may associate one of the following drivers to each Host:

dummy: Default driver that doesn't perform any network operation. Firewalling rules
are also ignored.

fw: Firewall rules are applied, but networking isolation is ignored.

802.1Q: restrict network access through VLAN tagging, which also requires support
from the hardware switches.

ebtables: restrict network access through Ebtables rules. No special hardware
configuration required.

ovswitch: restrict network access with Open vSwitch Virtual Switch.

VMware: uses the VMware networking infrastructure to provide an isolated and
802.1Q compatible network for VMs launched with the VMware hypervisor.
Note that some of these drivers also create the bridging device in the hosts.

The network is needed by the OpenNebula front-end daemons to access the hosts to
manage and monitor the hypervisors; and move image files. It is highly
recommended to install a dedicated network for this purpose. To offer network
connectivity to the VMs across the different hosts, the default configuration connects
the virtual machine network interface to a bridge in the physical host.

224

Now let’s compare OpenNebula and OpenStack which will be considered in the next
section (and left for the self-guided work).

OpenStack is a much larger and more complex framework than OpenNebula to
understand and install.

OpenStack supported by a large and growing developers community

Sometimes referred to as a “modern Linux”

The basic concepts are still the same, for example
Sunstone GUI (Graphical User Interface) in OpenNebula is functionally
equivalent to the Horizon Dashboard GUI in OpenStack

VM images handling
OpenStack has the distinct component Glance
OpenNebula provides such functionality internally

OpenStack provides more functionality which are not present in OpenNebula, such as
a scalable object store (Swift), and an identity manager (KeyStone).

OpenStack can be deployed on a single machine for development and test versions

225

The following final notes should be made as to OpenNebula:

 OpenNebula is one of popular cloud management platforms

 OpenNebula has flexible management functionality

 OpenNebula can be easily extended by user

 OpenNebula has good documentation and devoted community

226

Example: OpenStack

This section and following ones are left for the self-guided work.

227

OpenStack came about in a very round-about fashion, as the illustration portrays. This
is actually a little known story.

The inspiration for OpenStack came from the University of California, Santa Barbara
Eucalyptus Project, which NASA has done significant work on. However, NASA was
unable to give their changes back to the Eucalyptus project, as it had become a
spinoff company already and was pursuing a “closed source” strategy. As NASA was
required by law to make the improvements available somehow (they were owned by
the citizens of the United States, as NASA is funded with taxpayer money), when
Rackspace was approached to host a repository, they decided to throw in their code
as well and create OpenStack as we largely know it today.

In July 2010 Rackspace Hosting and NASA jointly launched an open-source cloud-
software initiative known as OpenStack. The OpenStack project intended to help
organizations which offer cloud-computing services running on standard hardware.
The first official release, code-named Austin, appeared four months later, with plans
to release regular updates of the software every few months. The early code came
from the NASA Nebula platform and from the Rackspace Cloud Files platform. In July
2011, Ubuntu Linux developers adopted OpenStack.

228

The OpenStack Foundation, established September 2012, is an independent body providing
shared resources to help achieve the OpenStack Mission by protecting, empowering, and
promoting OpenStack software and the community around it. This includes users,
developers and the entire ecosystem.

Founded by Rackspace Hosting and NASA, OpenStack has grown to be a global software
community of developers collaborating on a standard and massively scalable open source
cloud operating system.

The OpenStack Foundation promotes the development, distribution and adoption of the
OpenStack cloud operating system. As the independent home for OpenStack, the
Foundation has already attracted more than 7,000 individual members from 100 countries
and 850 different organizations. It has also secured more than $10 million in funding.

All of the code for OpenStack is freely available under the Apache 2.0 license.

Some OpenStack users include: PayPal / eBay, NASA, CERN, Yahoo! Rackspace Cloud HP
Public Cloud, Mercado, Libre.com, AT&T, KT (formerly Korea Telecom), Deutsche
Telekom, Wikimedia Labs, Hostalia of Telef nica Group, SUSE Cloud solution, Red Hat
OpenShift PaaS solution Zadara Storage, etc.

229

OpenStack is based on a coordinated 6-month release cycle with frequent
development milestones.

The creation of OpenStack took an estimated 249 years of effort (COCOMO model).

In a nutshell, OpenStack has:
64,396 commits made by 1,128 contributors, with its first commit made in May,
2010.
908,491 lines of code. OpenStack is written mostly in Python with an average number
of source code comments.
A code base with a long source history.
Increasing Y-O-Y commits.
A very large development team comprised of people from around the world.

230

OpenStack has a modular architecture with various code names for its components.
OpenStack has several shared services that span the three pillars of compute, storage
and networking, making it easier to implement and operate your cloud. These
services - including identity, image management and a web interface - integrate the
OpenStack components with each other as well as external systems to provide a
unified experience for users as they interact with different cloud resources.

These are

Nova: OpenStack Compute: Provision and manage large networks of virtual machines

Swift and Cinder: OpenStack Storage: Object and Block storage for use with servers
and applications

Neutron: OpenStack Networking: Pluggable, scalable, API-driven network and IP
management

Horizon : A Dashboard

Keystone: Identity Services

Glance: Image Services

231

Dashboard(Horizon) provides administrators and users a graphical interface to access, provision and
automate cloud-based resources.
Compute (Nova). The OpenStack cloud operating system enables enterprises and service providers
to offer on-demand computing resources, by provisioning and managing large networks of virtual
machines. Compute resources are accessible via APIs for developers building cloud applications and
via web interfaces for administrators and users. The compute architecture is designed to scale
horizontally on standard hardware.
Block Storage(Cinder) provides persistent block level storage devices for use with OpenStack
compute instances. The block storage system manages the creation, attaching and detaching of the
block devices to servers.
Object Storage(Swift). In addition to traditional enterprise-class storage technology, many
organizations now have a variety of storage needs with varying performance and price requirements.
OpenStack has support for both Object Storage and Block Storage, with many deployment options
for each depending on the use case.
Networking(Neutron). Today's data center networks contain more devices than ever before. From
servers, network equipment, storage systems and security appliances, many of which are further
divided into virtual machines and virtual networks. The number of IP addresses, routing
configurations and security rules can quickly grow into the millions. Traditional network management
techniques fall short of providing a truly scalable, automated approach to managing these next-
generation networks. At the same time, users expect more control and flexibility with quicker
provisioning.
Identity Service(Keystone) provides a central directory of users mapped to the OpenStack services
they can access. It acts as a common authentication system across the cloud operating system and
can integrate with existing backend directory services like LDAP.
Image Service(Glance)
Image Service (Glance) provides discovery, registration and delivery services for disk and server
images.

232

OpenStack APIs are compatible with Amazon EC2 and Amazon S3 and thus client
applications written for Amazon Web Services can be used with OpenStack with
minimal porting effort.

233

The subsequent slides contain architectural diagrams of OpenStack internals.

Very specific conventions are used to indicate the type of element. Please refer to
this diagram when studying the following diagrams.

234

Conceptual Architecture

The OpenStack project as a whole is designed to deliver a massively scalable cloud
operating system. To achieve this, each of the constituent services are designed to
work together to provide a complete Infrastructure-as-a-Service (IaaS). This
integration is facilitated through public application programming interfaces (APIs) that
each service offers (and in turn can consume). While these APIs allow each of the
services to use another service, it also allows an implementer to switch out any
service as long as they maintain the API. These are (mostly) the same APIs that are
available to end users of the cloud.

Dashboard ("Horizon") provides a web front end to the other OpenStack services
Compute ("Nova") stores and retrieves virtual disks ("images") and associated
metadata in Image ("Glance")
Network ("Neutron") provides virtual networking for Compute.
Block Storage ("Cinder") provides storage volumes for Compute.
Image ("Glance") can store the actual virtual disk files in the Object Store("Swift")
All the services authenticate with Identity ("Keystone")
End users can interact through a common web interface (Horizon) or directly to each
service through their API
All services authenticate through a common source (facilitated through keystone)
Individual services interact with each other through their public APIs (except where
privileged administrator commands are necessary)

235

OpenStack Compute (Nova) is a cloud computing fabric controller (the main part of an IaaS
system). It is written in Python and uses many external libraries such as Eventlet (for
concurrent programming), Kombu (for AMQP communication), and SQLAlchemy (for
database access). Nova's architecture is designed to scale horizontally on standard hardware
with no proprietary hardware or software requirements and provide the ability to integrate
with legacy systems and third party technologies. It is designed to manage and automate
pools of computer resources and can work with widely available virtualization technologies,
as well as bare metal and high- performance computing (HPC) configurations. KVM and
XenServer are available choices for hypervisor technology, together with Hyper-V and Linux
container technology such as LXC. In addition to different hypervisors, OpenStack runs on
ARM.

Popular Use Cases:
Service providers offering an IaaS compute platform or services higher up the stack IT
departments acting as cloud service providers for business units and project teams
Processing big data with tools like Hadoop

Scaling compute up and down to meet demand for web resources and applications
High-performance computing (HPC) environments processing diverse and intensive
workloads

Nova is the most complicated and distributed component of OpenStack. A large number of
processes cooperate to turn end user API requests into running virtual machines. Below is a
list of these processes and their functions:

236

nova-api accepts and responds to end user compute API calls. It supports OpenStack
Compute API, Amazon's EC2 API and a special Admin API (for privileged users to perform
administrative actions). It also initiates most of the orchestration activities (such as running
an instance) as well as enforces some policy (mostly quota checks).

The nova-compute process is primarily a worker daemon that creates and terminates virtual
machine instances via hypervisor's APIs (XenAPI for XenServer/XCP, libvirt for KVM or QEMU,
VMwareAPI for VMware, etc.). The process by which it does so is fairly complex but the
basics are simple: accept actions from the queue and then perform a series of system
commands (like launching a KVM instance) to carry them out while updating state in the
database.

nova-volume manages the creation, attaching and detaching of z volumes to compute
instances (similar functionality to Amazon’s Elastic Block Storage). It can use volumes from a
variety of providers such as iSCSI or Rados Block Device in Ceph. A new OpenStack project,
Cinder, will eventually replace nova-volume functionality. In the Folsom release, nova-
volume and the Block Storage service will have similar functionality.

The nova-network worker daemon is very similar to nova-compute and nova-volume. It
accepts networking tasks from the queue and then performs tasks to manipulate the
network (such as setting up bridging interfaces or changing iptables rules). This functionality
is being migrated to Neutron, a separate OpenStack project. In the Folsom release, much of
the functionality will be duplicated between nova-network and Neutron.

The nova-schedule process is conceptually the simplest piece of code in OpenStack Nova: it
takes a virtual machine instance request from the queue and determines where it should run
(specifically, which compute server host it should run on).

The queue provides a central hub for passing messages between daemons. This is usually
implemented with RabbitMQ today, but could be any AMQP message queue (such as Apache
Qpid). New to the Folsom release is support for Zero MQ.

The SQL database stores most of the build-time and runtime state for a cloud infrastructure.
This includes the instance types that are available for use, instances in use, networks
available and projects. Theoretically, OpenStack Nova can support any database supported
by SQL-Alchemy but the only databases currently being widely used are SQLite3 (only
appropriate for test and development work), MySQL and PostgreSQL.

Nova also provides console services to allow end users to access their virtual instance's
console through a proxy. This involves several daemons (nova-console, nova- novncproxy
and nova-consoleauth).

Nova interacts with many other OpenStack services: Keystone for authentication, Glance for
images and Horizon for web interface. The Glance interactions are central. The API process
can upload and query Glance while nova-compute will download images for use in launching
images.

237

Block storage volumes are fully integrated into OpenStack Compute and the Dashboard
allowing for cloud users to manage their own storage needs. In addition to local Linux server
storage, it can use storage platforms including Ceph, CloudByte, Coraid, EMC (VMAX and
VNX), GlusterFS, IBM Storage (Storwize family, SAN Volume Controller, and XIV Storage
System), Linux LIO, NetApp, Nexenta, Scality, SolidFire and HP (Store Virtual and StoreServ
3Par families). Block storage is appropriate for performance sensitive scenarios such as
database storage, expandable file systems, or providing a server with access to raw block
level storage. Snapshot management provides powerful functionality for backing up data
stored on block storage volumes. Snapshots can be restored or used to create a new block
storage volume.
A few points on OpenStack Block Storage:
OpenStack provides persistent block level storage devices for use with OpenStack compute instances.

The block storage system manages the creation, attaching and detaching of the block
devices to servers. Block storage volumes are fully integrated into OpenStack Compute and
the Dashboard allowing for cloud users to manage their own storage needs.

In addition to using simple Linux server storage, it has unified storage support for numerous
storage platforms including Ceph, NetApp, Nexenta, SolidFire, and Zadara.

Block storage is appropriate for performance sensitive scenarios such as database storage,
expandable file systems, or providing a server with access to raw block level storage.

238

Snapshot management provides powerful functionality for backing up data stored on block
storage volumes. Snapshots can be restored or used to create a new block storage volume.

Cinder separates out the persistent block storage functionality that was previously part of
OpenStack Compute (in the form of nova-volume) into its own service. The OpenStack Block
Storage API allows for manipulation of volumes, volume types (similar to compute flavors)
and volume snapshots.
cinder-api accepts API requests and routes them to cinder-volume for action.

cinder-volume acts upon the requests by reading or writing to the Cinder database to
maintain state, interacting with other processes (like cinder-scheduler) through a message
queue and directly upon block storage providing hardware or software. It can interact with
a variety of storage providers through a driver architecture. Currently, there are drivers for
IBM, SolidFire, NetApp, Nexenta, Zadara, linux iSCSI and other storage providers.
Much like nova-scheduler, the cinder-scheduler daemon picks the optimal block storage
provider node to create the volume on.
Cinder deployments will also make use of a messaging queue to route information between
the cinder processes as well as a database to store volume state.
Like Neutron, Cinder will mainly interact with Nova, providing volumes for its instances.

239

OpenStack Object Storage (Swift) is a scalable redundant storage system. Objects and files are
written to multiple disk drives spread throughout servers in the data center, with the OpenStack
software responsible for ensuring data replication and integrity across the cluster. Storage clusters
scale horizontally simply by adding new servers. Should a server or hard drive fail, OpenStack
replicates its content from other active nodes to new locations in the cluster. Because OpenStack
uses software logic to ensure data replication and distribution across different devices, inexpensive
commodity hard drives and servers can be used.

Object Storage is ideal for cost effective, scale-out storage. It provides a fully distributed, API-
accessible storage platform that can be integrated directly into applications or used for backup,
archiving and data retention. Block Storage allows block devices to be exposed and connected to
compute instances for expanded storage, better performance and integration with enterprise
storage platforms, such as NetApp, Nexenta and SolidFire.
A few details on OpenStack’s Object Storage
OpenStack provides redundant, scalable object storage using clusters of standardized servers capable
of storing petabytes of data

Object Storage is not a traditional file system, but rather a distributed storage system for static data
such as virtual machine images, photo storage, email storage, backups and archives. Having no
central "brain" or master point of control provides greater scalability, redundancy and durability.

Objects and files are written to multiple disk drives spread throughout servers in the data center,
with the OpenStack software responsible for ensuring data replication and integrity across the
cluster.

240

Storage clusters scale horizontally simply by adding new servers. Should a server or hard drive fail,
OpenStack replicates its content from other active nodes to new locations in the cluster. Because
OpenStack uses software logic to ensure data replication and distribution across different devices,
inexpensive commodity hard drives and servers can be used in lieu of more expensive equipment.
The swift architecture is very distributed to prevent any single point of failure as well as to scale
horizontally.
It includes the following components:

Proxy server (swift-proxy-server) accepts incoming requests via the OpenStack Object API or just raw
HTTP. It accepts files to upload, modifications to metadata or container creation. In addition, it will
also serve files or container listing to web browsers. The proxy server may utilize an optional cache
(usually deployed with memcache) to improve performance.
Account servers manage accounts defined with the object storage service.
Container servers manage a mapping of containers (i.e folders) within the object store service.
Object servers manage actual objects (i.e. files) on the storage nodes.
There are also a number of periodic processes which run to perform housekeeping tasks on the large
data store. The most important of these is the replication services, which ensures consistency and
availability through the cluster. Other periodic processes include auditors, updaters and reapers.
Authentication is handled through configurable WSGI middleware (which will usually be Keystone).

241

OpenStack Image Service (Glance) provides discovery, registration and delivery services for disk
and server images. Stored images can be used as a template. They can also be used to store and
catalog an unlimited number of backups. The Image Service can store disk and server images in a
variety of back-ends, including OpenStack Object Storage. The Image Service API provides a
standard REST interface for querying information about disk images and lets clients stream the
images to new servers.

Capabilities of the Image Service include:

 Administrators can create base templates from which their users can start new compute
instances Users can choose from available images, or create their own from existing
servers

 Snapshots can also be stored in the Image Service so that virtual machines can be backed
up quickly

 A multi-format image registry, the image service allows uploads of private and public
images in a variety of formats, including:
 Raw
 Machine (kernel/ramdisk outside of image, also known as AMI) VHD (Hyper-V)
 VDI (VirtualBox) qcow2 (Qemu/KVM) VMDK (VMWare)
 OVF (VMWare, others)

242

The Glance architecture has stayed relatively stable since the Cactus release. The biggest
architectural change has been the addition of authentication, which was added in the Diablo
release. Just as a quick reminder, Glance has four main parts to it:

1) glance-api accepts Image API calls for image discovery, image retrieval and image storage.
2) glance-registry stores, processes and retrieves metadata about images (size, type, etc.).
3) A database to store the image metadata. Like Nova, you can choose your database

depending on your preference (but most people use MySQL or SQLite).
4) A storage repository for the actual image files. In the diagram above, Swift is shown as the

image repository, but this is configurable. In addition to Swift, Glance supports normal
filesystems, RADOS block devices, Amazon S3 and HTTP. Be aware that some of these
choices are limited to read-only usage.

There are also a number of periodic processes which run on Glance to support caching. The most
important of these is the replication services, which ensures consistency and availability through
the cluster. Other periodic processes include auditors, updaters and reapers.

As you can see from the diagram in the Conceptual Architecture section, Glance serves a central
role to the overall IaaS picture. It accepts API requests for images (or image metadata) from end
users or Nova components and can store its disk files in the object storage service, Swift.

243

OpenStack Networking (Neutron, formerly Quantum) is a pluggable, scalable and API-driven
system for managing networks and IP addresses. Like other aspects of the cloud operating
system, it can be used by administrators and users to increase the value of existing data
center assets. OpenStack Networking ensures the network will not be the bottleneck or
limiting factor in a cloud deployment and gives users real self-service, even over their
network configurations.

OpenStack Networking is a system for managing networks and IP addresses. Like other
aspects of the cloud operating system, it can be used by administrators and users to increase
the value of existing data center assets. OpenStack Networking ensures the network will not
be the bottleneck or limiting factor in a cloud deployment and gives users real self-service,
even over their network configurations.

OpenStack Neutron provides networking models for different applications or user groups.
Standard models include flat networks or VLANs for separation of servers and traffic.
OpenStack Networking manages IP addresses, allowing for dedicated static IPs or DHCP.
Floating IPs allow traffic to be dynamically re routed to any of your compute resources,
which allows you to redirect traffic during maintenance or in the case of failure. Users can
create their own networks, control traffic and connect servers and devices to one or more
networks. Administrators can take advantage of software-defined networking (SDN)
technology like OpenFlow to allow for high levels of multi-tenancy and massive scale.
OpenStack Networking has an extension framework allowing additional network services,
such as intrusion detection systems (IDS), load balancing, firewalls and virtual private
networks (VPN) to be deployed and managed.
Networking Capabilities

244

OpenStack provides flexible networking models to suit the needs of different
applications or user groups. Standard models include flat networks or VLANs for
separation of servers and traffic.

OpenStack Networking manages IP addresses, allowing for dedicated static IPs or DHCP.
Floating IPs allow traffic to be dynamically re-routed to any of your compute resources,
which allows you to redirect traffic during maintenance or in the case of failure.
Users can create their own networks, control traffic and connect servers and devices to one or more
networks.
The pluggable backend architecture lets users take advantage of commodity gear or
advanced networking services from supported vendors.

Administrators can take advantage of software-defined networking (SDN) technology like
OpenFlow to allow for high levels of multi-tenancy and massive scale.

OpenStack Networking has an extension framework allowing additional network services,
such as intrusion detection systems (IDS), load balancing, firewalls and virtual private
networks (VPN) to be deployed and managed.

245

Neutron provides "network connectivity as a service" between interface devices managed
by othe neutron-server accepts API requests and then routes them to the appropriate
Neutron plug-in for Neutron plug-ins and agents perform the actual actions such as
plugging and unplugging ports, cre
The common agents are L3 (layer 3), DHCP (dynamic host IP addressing) and the specific
plug-in ag

Most Neutron installations will also make use of a messaging queue to route information
between

Neutron will interact mainly with Nova, where it will provide networks and connectivity
for its insta

246

Starting from the Folsom release (September 2012), network management is performed by
the independent component Neutron (previously called Quantum)

Previously network management has been performed by the Network Controller in Nova

Neutron network manager adds the following new functionalities:

Give cloud tenants an API to build rich networking topologies, and configure
advanced network policies in the cloud; e.g. create multi-tier web application
topology

Enable innovation plugins (open and closed source) that introduce advanced
network capabilities; e.g. use L2-in-L3 tunneling to avoid VLAN limits, provide
end-to-end QoS guarantees, used monitoring protocols like NetFlow

Allows building advanced network services (open and closed source) that plug into
Openstack tenant networks; e.g. VPN-aaS, firewall-aaS, IDS-aaS, data-center-
interconnect-aaS

Logically Neutron (and Nova) supports two types of IP address:

Fixed which are associate with virtual machine instance at creation and remain
associated till termination

Floating which can be dynamically attached/detached to/from a running virtual
machine instance at run-time from Horizon or using the nova-api

247

For fixed IPs, Neutron (and Nova) supports following three modes of networking:

Flat mode provides each virtual machine instance with a fixed IP associated with a
default network bridge. This can be manually configured before an instance is
booted. This mode is currently applicable to linux operating systems, which manage
network configurations in

/etc/network/interfaces (Debian & Ubuntu).

Flat DHCP mode improves upon Flat mode by creating a DHCP server to provide
fixed IPs to virtual machine instances.

VLAN DHCP Mode is the default networking mode in which Nova creates a vlan and
bridge for each project. Virtual machine instances in the project are allocated a
private IP address from range of IPs. This private IP address is accessible only within
the vlan. Users can access these instances by using a special VPN instance called
'cloudpipe' which uses a certificate and key to create a VPN (Virtual Private Network).

248

This slide illustrates how Neutron based software networking can be applied to result
is many different networking topologies for the user

Note the ability to create virtual switch components as well as multiple network
segments.

249

The Ceilometer project aims to become the infrastructure to collect measurements
within OpenStack so that no two agents would need to be written to collect the same
data. Its primary targets are monitoring and metering, but the framework should be
easily expandable to collect for other needs. To that effect, Ceilometer should be able
to share collected data with a variety of consumers.

An agent runs on each OpenStack node (Bare Metal machine) and harvests the data
locally
If a meter is available from the existing OpenStack component it should be used
A standalone ceilometer agent implements the meters that are not yet available from
the existing OpenStack components
A storage daemon communicates with the agents to collect their data and aggregate
them
The agents collecting data are authenticated to avoid pollution of the metering
service
The data is sent from agents to the storage daemon via a trusted messaging system
(RabbitMQ?)
The data / messages exchanged between agents and the storage daemon use a
common messages format
The content of the storage is made available thru a REST API providing aggregation
The message queue is separate from other queues (such as the nova queue)
The messages in queue are signed and non repudiable

250

Heat is the main project in the OpenStack Orchestration program. It implements an
orchestration engine to launch multiple composite cloud applications based on templates in
the form of text files that can be treated like code. A native Heat template format is evolving,
but Heat also endeavours to provide compatibility with the AWS CloudFormation template
format, so that many existing CloudFormation templates can be launched on OpenStack.

Heat provides both an OpenStack-native ReST API and a CloudFormation-compatible Query
API.

A Heat template describes the infrastructure for a cloud application in a text file that is
readable and writable by humans, and can be checked into version control, diffed, &c.
Infrastructure resources that can be described include: servers, floating ips, volumes, security
groups, users, etc.

Heat also provides an autoscaling service that integrates with Ceilometer, so you can include
a scaling group as a resource in a template.

Templates can also specify the relationships between resources (e.g. this volume is
connected to this server). This enables Heat to call out to the OpenStack APIs to create all of
your infrastructure in the correct order to completely launch your application.

Heat manages the whole lifecycle of the application - when you need to change your
infrastructure, simply modify the template and use it to update your existing stack. Heat
knows how to make the necessary changes. It will delete all of the resources when you are
finished with the application, too.

Heat primarily manages infrastructure, but the templates integrate well with software
configuration management tools such as Puppet and Chef. The Heat team is working on
providing even better integration between infrastructure and software.

251

A load balancer is a logical device. It is used to distribute workloads between multiple
back-end systems or services called nodes, based on the criteria defined as part of its
configuration.

Atlas Load Balancer is a new component in OpenStack that allows users to apply load
balancing to an existing configuration instead of adding a custom implementation for
a particular application

Designed to provide functionality similar to Amazon's ELB (Elastic Load Balancing) and
provides a RESTful API for users

A virtual IP is an Internet Protocol (IP) address configured on the load balancer for use
by clients connecting to a service that is load balanced. Incoming connections and
requests are distributed to back-end nodes based on the configuration of the load
balancer.

A health monitor is a feature of each load balancer. It is used to determine whether
or not a back-end node of the load balancer is usable for processing a request. The
load balancing service supports two health monitoring modes: passive and active.

252

The design allows for third party products and services, such as billing, monitoring
and additional management tools. Service providers and other commercial vendors
can customize the dashboard with their own brand.

The dashboard is just one way to interact with OpenStack resources. Developers can
automate access or build tools to manage their resources using the native OpenStack
API or the EC2 compatibility API.

253

OpenStack Identity (Keystone) provides a central directory of users mapped to the
OpenStack services they can access. It acts as a common authentication system
across the cloud operating system and can integrate with existing backend directory
services like LDAP. It supports multiple forms of authentication including standard
username and password credentials, token-based systems, and Amazon Web Services
log in credentials such as those used for EC2.

Additionally, the catalog provides a query-able list of all of the services deployed in an
OpenStack cloud in a single registry. Users and third-party tools can programmatically
determine which resources they can access.

The OpenStack Identity Service enables administrators to:

Configure centralized policies across users and systems
Create users and tenants and define permissions for compute, storage, and
networking resources by using role-based access control (RBAC) features
Integrate with an existing directory, like LDAP, to provide a single source of
authentication across the enterprise

The OpenStack Identity Service enables users to:

List the services to which they have access
Make API requests
Log into the web dashboard to create resources owned by their account

254

Keystone provides a single point of integration for OpenStack policy, catalog, token
and authentication.

Keystone handles API requests as well as providing configurable catalog, policy, token
and identity services.

Identity service provides validation of users authorization credentials, Roles, Tenants
and associated metadata

Token service validates tokens that are used by users or tenants for authentication

Endpoint discovery and endpoint registry services are provided by the Catalog service

Rule based authorization is provided by the Policy service.

The Keystone service can use various format of credentials and storages such as file,
SQL, PAM or LDAP

Each Keystone function has a pluggable backend which allows different ways to use
the particular service. Most support standard backends like LDAP or SQL, as well as
Key Value Stores (KVS).

Most people will use this as a point of customization for their current authentication
services.

255

The diagram in this slide shows the Sequences for how Keystone is used.

256

OpenStack is one of popular cloud management platforms; it has flexible
management functionality and can be easy extended by user

OpenStack is included into the major Linux installations such as Ubuntu, Fedora,
CentOS and has growing community

257

Example: Cloud Fondry

258

Cloud Foundry is an Open Source PaaS platform under Apache 2.0 license, Apache 2.0 is the least
restrictive license. Developed code can be used for both commercial and non-commercial purposes.
Part of Pivotal Software initiative founded by VMware/EMC Corporation and IBM Cloud Foundry
Foundation has more 32 members including large business oriented IT companies such as HP, EMC,
Rackspace, CenturyLink, SAP
Promoted as specially designed to evolve enterprise applications from traditional services silo to
cloud based ecosystem

Services offered on Cloud Foundry:
 MySQL - The open source relational database
 Postgres - Relational database based on PostgreSQL
 MongoDB - scalable, open, document-based database
 Redis - open key-value data structure server
 RabbitMQ - Reliable, scalable, and portable messaging for applications

Supported runtimes and frameworks include:
 Java on Spring Framework 3.1
 Ruby on Rails and Sinatra
 Node.js and Scala on Play 2.0

259

This slide shows an illustration of the “Marketechture” of Cloud Foundry.

The next slide will over each area specifically.

260

Router: Routes incoming traffic to the appropriate component, usually the Cloud Controller
or a running application on a DEA node.

Authentication: The OAuth2 server (the UAA) and Login Server work together to provide
identity management.

Cloud Controller: Responsible for managing the lifecycle of applications

Cloud Controller stores the raw application bits, creates a record to track the application metadata, and
directs a DEA node to stage and run the application

Cloud Controller also maintains records of organizations, spaces, services, service instances, user roles,
and more.

Health Manager: Monitor applications to determine their state (e.g. running, stopped,
crashed, etc.), version, and number of instances.

Direct Cloud Controller to take action to correct any discrepancies in the state of applications.

Droplet Execution Agent (DEA) manages application instances, tracks started instances, and
broadcasts state messages.

Blob Store: Holds Application code, Buildpacks, Droplets

Service Brokers: Provides service instances when binding them to applications

Message Bus: Messaging system for internal communication between components

Cloud Foundry uses NATS, a lightweight publish-subscribe and distributed queueing messaging system

Logging and Statistics: Collects metrics from the components

261

This slides illustrates a more technically accurate structure of Cloud Foundry,

In the center one sees the Droplet Execution Engine, which runs the notion of an
“application” in Cloud Foundry.

In the front of these applications are software routers which move traffic from the
internet (the browser, or web services) to the Applications.

On the other side, the back end of the applications, as the applications need services
such as database or storage, the services gateway connects the Application and DEA
to the right type of service.

The message bus NATS orchestrates these different tiers to talk to each other. NATS is
driven by the cloud controller which controls the whole system. Other modules
include management, authorization and authentication, and other modules typical to
an application server environment,

Note the inherently distributed architecture of Cloud Foundry. It is not like the tightly
coupled Remote Procedure Call based multi-tier application servers of years past. The
idea that all the parts are connected a transactional message queue – the same
technique which the clouds use to hold themselves together at the IaaS level – is
designed for the distributed environment. Also perfect for clouds, is the replication of
the DEAs and therefore the applications. This scales with the sale-out cloud model.

262

The illustration in this slide explodes the data flow inside of Cloud Foundry. Solid lines
indicate traffic of the application, eg, HTTP. Dotted lines indicate control messages
traffic, eg, from NATS.

One can see the central role that the Router plays in application traffic, All application
traffic is directed by the Router.

The business end of Cloud Foundry is the VM where the Drople Execution Engine
runs, Each VM runs a Droplet Execution Agent and multiple Warden service
containers.
The Warden container manages isolated, ephemeral, and resource-controlled environments.

263

NOSH is a tool which was created to build Cloud Foundry itself, In normal situations,
Cloud Foundry application developers will see little if any BOSH.

Developers of services and addons to Cloud Foundry will use BOSH,

While BOSH can be applied to build other application frameworks, being that it is
portable to pretty much any IaaS platform, it has not seen any real use outside of
Cloud Foundry development

The rest of this slide details how BOSH is used to create and in the runtime of Cloud
Foundry.

264

Example: OpenShift

265

Now we turn our attentions to understanding RedHat OpenShift

OpenShift has two basic functional units - the Broker and Node servers.
Communication between the Broker and Nodes is done through a message queuing
service just as with CloudFoundry.

The Broker is the single point of contact for all application management activities,
including User logins, DNS, application state, and general orchestration of the
applications. Customers contact the Broker via the Web console, CLI tools, or the
JBoss Tools IDE over a REST based API. The Broker uses an MCollective client (based
on ActiveMQ messaging service) to send instructions to the Nodes that actually host
user applications

Node servers host the Gears and built-in Cartridges. Gears are container where the
user applications are stored and served, A Gear represents the slice of the Node’s CPU,
RAM and base storage that is made available to each application. Gears combine the
partitioning capabilities with the security features of SELinux. Cartridges represent
pluggable components that can be combined within a single application, e.g. language
or environment cartridge or database cartridge

266

This slide has a detailed architecture illustration, showing the components of OpenShift.

In the most straightforward topology, OpenShift is divided as shown, where the Origin
Broker is on one node, and the OpenSHift node with the Cartridge is on another node.

However, Numerous system topologies are supported by the Broker and
Node servers

All components on one host

One Broker + ActiveMQ host, multiple Node hosts Load-balanced Brokers,
standalone ActiveMQ host, separate replicated MongoDB servers, multiple
Node hosts

StickShift is an OpenShift core API internally; one would use Stickshift to add
cartridges to the system.

267

This slide shows more detailed architecture of the OpenShift based application
hosting, development and management environment.

In particular it shows User browser based client, Developer host, Broker Host and
Node Host components.

Node that a single node host (on a VM) can host many gears and cartridges,

1

Cloud Computing
Lecture Manual

Volume 5

Module 5

Distributed Data Processing Systems
in Cloud Computing

2

Content
Lecture 1. MapReduce .. 4

Overview ... 6

Programming Model ... 10

Example .. 18

Usage .. 20

Comparison ... 23

MapReduce and MPI .. 25

MapReduce and DBMS ... 30

Design Patterns ... 33

Applications .. 39

Lecture 2. Hadoop .. 44

Overview ... 46

Architecture .. 50

YARN ... 54

HDFS .. 58

Data Locality ... 66

Fault Tolerance ... 68

Version Differences... 69

Replication .. 71

HDFS Erasure Encoding Architecture .. 72

Usage .. 74

Apache Pig .. 80

Apache Hive .. 82

HBase .. 84

3

In this lecture we will consider a model of distributed processing of large
data sets, called MapReduce.
Frameworks that implement this model provide good horizontal
scaling, and hide from a developer many technical details related to
the parallelization, scheduling, data transfer, error handling and
recovery from hardware failures.

4

Lecture 1. MapReduce

This lecture is dedicated to overview of:
- MapReduce motivation
- MapReduce Workflow
- Programming Model
- MapReduce compared to other approaches of large-scale data
processing
- Most popular MapReduce implementations

5

What is MapReduce
MapReduce design goals
Challenges
Solutions
Programming model
“Original” flow diagram
MapReduce flow
Map phase
Reduce phase
Phases between Map and Reduce
Example program – Word count
What is MapReduce good for
What is MapReduce not good for
Popular implementations
Comparing to other approaches

Comparing to MPI
Comparing to DBMS

Data locality
MapReduce design patterns

Summarization patterns
Filtering patterns
Data transformation patterns
Join patterns

Areas where MapReduce is used
Summary and take away

6

Overview

MapReduce is a programming model and an associated
implementation for processing large data sets.
MapReduce originated from functional programming and was introduced
by Google
in a paper called “MapReduce: Simplified Data Processing on Large
Clusters.”
One of Google’s first challenges was to figure out how to index the
exploding volume of content on the web.
To solve this, Google “invented” a new style of data processing known as
MapReduce to manage large-scale data processing across large clusters of
commodity servers.
Google’s MapReduce implementation is a proprietary solution and has
not yet been released to the public.

7

The main design goals were:

First, scalability to large data volumes.
This is not about a cluster of several, or several tens of computers. It’s
about
thousands and more computers with disks.

Second, cost-efficiency.
Commodity computers and network equipment should be used. It means
that hardware failures is rule rather than exception.
So, at the software level, there should be built-in failover and recovery
functions. Some abstraction should hide from the developer complex
technical details related to parallelization and scheduling, inter-machine
communications, handling hardware failures.
Those specific knowledge should not be required.
This allows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system.

8

Consider the challenges that can be encountered when developing such a
system.

First challenge is a mean time between failures. For one node is three
years, but for thousand of nodes is about one day, because any of nodes
can fail and the whole system will fail.

Second challenge is a commodity network. If there is no special
high-speed interconnect between nodes, the bandwidth is low
and the latency is high.
Intensive data exchange between processes on different nodes will
reduce the overall system performance.

Third, programming distributed systems is hard. It require specific
knowledge.

9

Consider possible solutions

First challenge is a mean time between failures.
The solution is to build fault-tolerance into the system.

Second problem is a commodity network.
The solution is to push computation to the data.

Third, programming distributed systems is hard.
The solution is to create a simple programming model. Here we
have only two functions- Map and Reduce. Framework will take
care of the rest.

10

Programming Model

In general form the model looks like this:
Map function maps input key/value pairs to a set of intermediate
key/value pairs. Maps are the individual tasks that transform input
records into intermediate records. The transformed intermediate
records do not need to be of the same type as the input records.
Reduce function reduces a set of intermediate values which share a key to
a smaller set of values.

11

FUNCTIONAL PROGRAMMING CONCEPTS
MapReduce programs are designed to compute large volumes of data in a
parallel fashion. This requires dividing the workload across a large number
of machines.
This model would not scale to large clusters (hundreds or thousands of
nodes) if the
components were allowed to share data arbitrarily.
The communication overhead required to keep the data on the nodes
synchronized at all times would prevent the system from performing
reliably or efficiently at large scale.
Instead, all data elements in MapReduce are immutable, meaning that
they cannot be updated. If in a mapping task you change an input (key,
value) pair, it does not get reflected back in the input files;
communication occurs only by generating new output (key, value)
pairs which are then forwarded by the system into the next phase of
execution.

12

This is the original flow diagram from the paper "MapReduce: Simplified
Data Processing on Large Clusters" by Jeffrey Dean, published in 2014.

13

Conceptually, MapReduce programs transform lists of input data
elements into lists of output data elements.
A MapReduce program will do this twice, using two different list
processing
idioms: map, and reduce. These terms are taken from list processing
languages such
as LISP.

14

The first phase of a MapReduce program is called mapping. A list of data
elements are provided, one at a time, to a function called the Mapper,
which transforms each element individually to an output data element.
Mapping creates a new output list by applying a function to individual
elements of an
input list.
As an example of the utility of map: Suppose you had a function
toUpper(str) which returns an uppercase version of its input string. You
could use this function
with map to turn a list of strings into a list of uppercase strings.
Note that we are not modifying the input string here: we are returning a
new string that will form part of a new output list.

15

Reducing lets you aggregate values together. A reducer function
receives an iterator of input values from an input list. It then combines
these values together, returning a single output value.
Reducing is often used to produce "summary" data, turning a large
volume of data into a smaller summary of itself. For example, "+" can be
used as a reducing function, to return the sum of a list of input values.

16

The MapReduce framework takes these concepts and uses them to process large
volumes of information. A MapReduce program has two components: one that
implements the mapper, and another that implements the reducer. The Mapper and
Reducer idioms described above are extended slightly to work in this environment,
but the basic principles are the same.

Keys and values: In MapReduce, no value stands on its own. Every value has
a key associated with it. Keys identify related values.
The mapping and reducing functions receive not just values, but (key, value) pairs.
The output of each of these functions is the same: both a key and a value must be
emitted to the next list in the data flow.
Keys divide the reduce space: A reducing function turns a large list of values into one
(or a few) output values. In MapReduce, all of the output values are not usually
reduced together. All of the values with the same key are presented to a single
reducer together. This is performed independently of any reduce operations occurring
on other lists of values, with different keys attached.
On the diagram, different colors represent different keys. All values with the same key
are presented to a single reduce task.

17

Partition & Shuffle: After the first map tasks have completed, the nodes may still be
performing several more map tasks each.
But they also begin exchanging the intermediate outputs from the map tasks to
where they are required by the reducers.
This process of moving map outputs to the reducers is known as shuffling.
A different subset of the intermediate key space is assigned to each reduce node;
these subsets (known as "partitions") are the inputs to the reduce tasks.
Each map task may emit (key, value) pairs to any partition; all values for the same key
are always reduced together regardless of which mapper is its origin.
Therefore, the map nodes must all agree on where to send the different pieces of the
intermediate data.
The Partitioner determines which partition a given (key, value) pair will go to. The
default partitioner computes a hash value for the key and assigns the partition based
on this result.

Sorting
It is just sorting the data based on keys

Merging:
This happens on reducer side. Reducer can get data from multiple map tasks and
through merging it merges the data of different map tasks in one single unit,
maintaining the sorting order.

18

Example

Now look at the example program in pseudo-code. It counts word
occurrences in a text.
Several instances of the mapper function are created on the different
machines in our cluster. Each instance receives a different input file (it
is assumed that we have many such files).
The mappers output (word, 1) pairs which are then forwarded to
the reducers. Several instances of the reducer method are also
instantiated on the different machines.
Each reducer is responsible for processing the list of values associated
with a different word.
The list of values will be a list of 1's; the reducer sums up those ones into
a final count associated with a single word. The reducer then emits the
final (word, count) output which is written to an output file.

19

Let’s understand each of the stages depicted in the above diagram.
Input: This is the input data to be processed.
Split: Framework splits the incoming data into smaller pieces called
"splits".
Map: In this step, MapReduce processes each split according to the logic
defined in map() function. One mapper works on one split at a time. Each
mapper is treated as a task.
Shuffle & Sort: In this step, outputs from all the mappers is shuffled,
sorted to put them in order, and grouped before sending them to the next
step.
Reduce: This step is used to aggregate the outputs of mappers using the
reduce() function. Output of reducer is sent to the next and final step.
Each reducer is treated as a task.
Output: Finally the output of reduce step is written to a file.

20

Usage

There are many cases where MapReduce is appropriate, such as:
- When you have to handle lots of input data (e.g., aggregate or
compute statistics over large amounts of data).
- When you need to take advantage of parallel and distributed computing,
data

storage, and data locality.
- When you can do many tasks independently without synchronization.
- When you can take advantage of sorting and shuffling.
- When you need fault tolerance and you cannot afford job failures.

21

Is MapReduce good for everything? The simple answer is no. When we
have big data, if we can partition it and each partition can be processed
independently, then we can start to think about MapReduce algorithms.
But here are other scenarios where MapReduce should not be used:
- If the computation of a value depends on previously computed values.

One good example is the Fibonacci series, where each value is a
summation of the previous two values:
F(k + 2) = F(k + 1) + F(k)
- If the data set is small enough to be computed on a single machine.
- If synchronization is required to access shared data.
- If all of your input data fits in memory.
- If one operation depends on other operations.
- If basic computations are processor-intensive.

22

Google’s MapReduce implementation isn’t available outside
Google. Other well-known implementations are based on
Apache Hadoop.
Cloudera, founded in 2008, was the first company to develop and
distribute Apache Hadoop-based software and still has the largest user
base with most number of clients.
Although the core of the distribution is based on Apache Hadoop, it also
provides a proprietary services and tools.
Hortonworks, founded in 2011, has quickly emerged as one of the leading
vendors of Hadoop.
The distribution provides open source platform based on Apache
Hadoop for analysing, storing and managing big data.
Hortonworks is the only commercial vendor to distribute complete open
source Apache Hadoop without additional proprietary software.
MapR replaces HDFS component (will be described later) and instead uses
its own proprietary file system, called MapR FS.

23

Comparison

Inspired by functional programming, the computing paradigm of
MapReduce is simple and easy to understand.
Because of automatic parallelization, no explicit handling of data transfer
and synchronization in programs, and no deadlock, this model is very
attractive. Meanwhile it is sufficient for simple computations mentioned
earlier. In contrast, the learning curve of much more comprehensive MPI
is steep.

Fault tolerance. Because hardware failures are common in the large
clusters of commodity PCs, MapReduce puts a lot of emphasis on fault
tolerance. In MPI, it is mainly application developers’ job to make
program fault tolerance.

24

Assuming the input data is too big to fit into the memory (combined from
all nodes), MapReduce employs a data flow model, which also provides a
simple I/O interface to access large amount of data in distributed file
system.
It also exploits data locality for efficiency. In most cases, we don’t need
to worry about I/O at all. Although it sounds trivial, it is actually an
important improvement for big data analytics.

25

MapReduce and MPI

Consider some differences between MPI and MapReduce.
In the MPI programming model, a computation comprises one or more
processes that communicate by calling library routines to send and
receive messages to other processes
MapReduce model based on two functins – map and reduce.
MPI allows explicit communication between processes at runtime. A
developer decides, when and where to send the message.
In MapReduce, communication is implicit. It is assumed that data
exchange occurs only at certain stages of execution.
In MPI, usually all nodes of the cluster are connected to the shared
storage. A computing node and a data storage are different nodes.
In contrast, in MapReduce typically the compute nodes and the storage
nodes are the same.

26

In many traditional data processing systems, storage (where the data is
at rest) and compute (where the data gets processed) have been kept
separate.
In these systems, data would be moved over a very fast network to
computers that would then process it. Moving data over a network is
really expensive in terms of time.

27

Data locality seems like a really straightforward idea, but the concept of
not moving data over the network and processing it in place is actually
pretty novel.
MapReduce frameworks, were among the first general-purpose and
widely available
systems that took that approach.
It turns out that shipping the instructions for computation (i.e., a
compiled program containing code for map and reduce functions, which is
relatively small) over the network is much faster than shipping a petabyte
of data to where the program is.
Data locality fundamentally removes the network as a bottleneck for
linear scalability.

28

Usually, the MapReduce is used to process huge amounts of data.
In MPI, task partitioning is a developer’s responsibility. In MapReduce,
partitioning is automatic.
A large-scale MPI cluster won’t work well without high-speed
interconnect. Map-reduce is easier to learn, while MPI is distinctly
more complex with lots of functions.

29

Summing up the above, map-reduce is more suitable for data-intensive
task, while MPI is more appropriate for computation-intensive task.

30

MapReduce and DBMS

First difference is a data size. A database management systems store
and process gigabytes of data, while MapReduce deals with
petabytes.
Second, traditional Database Management Systems allows both
interactive and batch
access, while MapReduce framework – only batch access.
Write, read and modify the same data multiple types are ordinary actions
for DBMS, while MapReduce follows WORM principle (write once, read
many times)
Next, DBMS is suitable for OLTP (online transaction processing), and
MapReduce frameworks is good for BigData.
In DBMS, data integrity is high. Recall ACID (atomicity, consistency,
isolation, and durability).
Scaling is an advantage of MapReduce. In the ideal case, MapReduce
framework provides linear scaling.

31

Schema-on -rite has been the standard for many years in relational
databases. Before any data is written in the database, the
structure of that data is strictly defined.
For MapReduce, schema is not defined when data is stored. When
someone is ready
to use that data, they define what pieces are essential to their
purpose. DBMS support indexing out of the box, while
MapReduce frameworks not. Programming model is Declarative
in DBMS (SQL language is used).
In MapReduce, programming model is imperative. You should define
map and reduce functions (for example, Java code).

32

Summing up the above, Database Management System is more suitable
for Online Transaction Processing, while MapReduce is good for Big Data
Analysis.

33

Design Patterns

The MapReduce paradigm is simple and powerful, but it does not provide
a general solution how to solve any problem in a big data field.
A design pattern (in general) is a reusable solution to a commonly
occurring problem. So let's see how to solve some common types of tasks
within the MapReduce paradigm.

34

Patterns can be divided into such categories:
Summarization patterns: get a top-level view by summarizing and
grouping data
Filtering patterns: view data subsets such as records generated from one
user
Data organization patterns: reorganize data to work with other systems,
or to make
MapReduce analysis easier
Join patterns: analyze different datasets together to discover interesting
relationships There are also meta-patterns and input/output patterns.

35

Summarization Patterns.
The word count example (described earlier) falls under the pattern of
summarizing
data. The basic pattern is:
Map: Find all instances of data, possibly meeting some criteria and
returning them.
Reduce: Count, average, or other calculation on the returned data.
Beyond word counting, this pattern is useful for counting social network
connections per person, or counting any type of value in an input file (e.g.
words of a certain length, etc).

36

Filtering patterns
Filtering data by some criteria is very common and basic task.
Map: Return data that meets criteria as key-value pair, where the key is
null and the
value is the data.
Reduce: Return the list of values

Example applications are: Log Analysis, Data Querying, ETL, Data
Validation

37

A common task is transforming data, such as format conversions. In this
case the map phase does all of the work.
Map: Transform data and return key-value pair, where the key is the
(new) file name
and the value is the transformed data.
Reduce: Simply pass the key-value pair through.

38

Joins are very important in Relational Database Management Systems,
but among the most complex operations in MapReduce .
MapReduce is good in processing datasets by looking at each record in
isolation, but
joining/combining datasets does not fit gracefully into the MapReduce
paradigm.
A detailed review of this topic is beyond the scope of this course.
For more details please refer, for example, this book
“MapReduce Design Patterns: Building Effective Algorithms and
Analytics for Hadoop and Other Systems”

39

Applications
Data Analytics:
MapReduce is one of the most preferred solution for data analytics. Now most common data
analytics include things like calculating and analyzing unique clicks or visitors on a website,
finding top visited/searched products per month on an e-commerce website.
Crawling of data:
There are services and projects which crawl the data on the internet for example applications
which crawl twitter data and to find some facts or reach to some conclusions. These kind of
application need to deal with a large amount of data. MapReduce is a good solution for
crawling and processing this kind of data.
Data Mining:
Data Mining is another kind of problem where MapReduce is used. For example, we need to
mine a large amount of data (lets say the whole archives of a newspaper company) and
person some kind of text classification or clustering on those archives. Again here also if the
amount of data is large which can’t be processed on a single system, MapReduce is used on
top of Hadoop Cluster.
Search Engines:
Google was the company which developed MapReduce first and then based on the Google’s
research paper, open source version called Hadoop MapReduce was developed. Most
probably Google developed MapReduce for text-indexing. Now obviously, Google or any such
company need to retrieve information from the large amount of data/documents they have
and the results should be quick. So these kind of data need to be indexed to improve the
performance. MapReduce is used for creating inverted indexes of those documents etc.
Inverted Index is a data structure which stores the map from the content to its location in the
file/document. MapReduce is used for creating such inverted indexes.
Graph Processing:
Lets assume there is a network of entities and relationships between them. Now we need to
calculate a state of each entity on the basis of properties of the neighboring entities. This
problem is also termed as Graph Processing or Graph Analysis which is most of the times
used in Social Network analysis. MapReduce can be used for this type of graph processing
also as social network graph tends to be quite big

40

Alibaba Cloud Elastic MapReduce (E-MapReduce) is a big data processing
solution to quickly process huge amounts of data.
Based on open source Apache Hadoop and Apache Spark, E-MapReduce
flexibly manages your big data use cases such as trend analysis, data
warehousing, and analysis of continuously streaming data.
E-MapReduce simplifies big data processing, making it easy, fast, scalable
and cost- effective for you to provision distributed Hadoop clusters and
process your data.
This helps you to streamline your business through better decisions based
on massive data analysis completed in real time.

41

Some reports and conference materials mention that China Mobile
deployed a large Hadoop cluster.
While deployment, the company's engineers encountered some
challenges and
successfully overcame it.
In the near future the number of cluster nodes will increase to 14,000.

42

42

In this Lesson we covered

MapReduce is a simple programming model and an associated
implementation for
processing and generating large data-sets.
Developer should implement only two functions- Map and Reduce.
Modern MapReduce frameworks is highly scalable (up to 10000 nodes
and more), fault-tolerant, can run on commodity (cheap) hardware.
MapReduce is not a “silver bullet”. There are some cases where
MapReduce doesn’t work very well.

43

44

Lecture 2. Hadoop

This lecture is dedicated to overview of:
• What is Hadoop
• Apache Hadoop architecture
• Main components
• Short HDFS overview
• Key features
• Hadoop Fault Tolerance
• Hadoop ecosystem

45

Outline
What is Hadoop
Hadoop history
Hadoop key
features
Hadoop main
components
Architecture
YARN
HDFS filesystem
HDFS shell
commands HDFS
replication
Data locality optimization
Hadoop 1.x vs 2.x vs 3.x
comparison Hadoop
ecosystem
Apache Pig
Apache
Hive
Apache
HBase

46

Overview

Apache Hadoop is a top level project, open-source
implementation of frameworks for reliable, scalable, distributed
computing and data storage.
It is a flexible and highly-available architecture for large scale computation
and data processing on a network of commodity hardware.

47

Doug Cutting and Mike Cafarella, the founders of Hadoop, were inspired
by Google’s GFS and MapReduce architecture.
Google introduced GFS (Google File System) system for storing huge size
of data sets in a distributed manner in a cluster of commodity hardware’s
and MapReduce the technology for processing the data sets present in
these distributed systems.
In 2004, Google published its GFS and MapReduce white papers. Doug
Cutting and Mike Cafarella, who were then working in Nutch, got
inspired by Google’s technology and started to build their own search
engine called Nutch, on top of the Google’s file system and MapReduce
technology.
Hadoop was originally developed to support distribution for the Nutch
search engine project.
And in 2006, Yahoo! hired Doug Cutting and introduced Hadoop
framework to the world named the project after his son’s toy elephant.
Now, with the help of this framework, many organizations have started
analyzing huge data sets which remained unresolved for many decades.

48

Key Apache Hadoop features
• Abstract and facilitate the storage and processing of large and/or
rapidly growing data sets

• Structured and non-structured data
• Simple programming models

• High scalability and availability
• Use commodity (cheap) hardware with little redundancy
• Fault-tolerance
• Move computation rather than data

49

Components of Hadoop
The core components in the first iteration of Hadoop were MapReduce, the Hadoop
Distributed File System (HDFS) and Hadoop Common, a set of shared utilities and
libraries. As its name indicates, MapReduce uses map and reduce functions to split
processing jobs into multiple tasks that run at the cluster nodes where data is stored
and then to combine what the tasks produce into a coherent set of results.
MapReduce initially functioned as both Hadoop's processing engine and cluster
resource manager, which tied HDFS directly to it and limited users to running
MapReduce batch applications.
That changed in Hadoop 2.0, which became generally available in October 2013
when version 2.2.0 was released. It introduced Apache Hadoop YARN, a new cluster
resource management and job scheduling technology that took over those functions
from MapReduce. YARN -- short for Yet Another Resource Negotiator but typically
referred to by the acronym alone -- ended the strict reliance on MapReduce and
opened up Hadoop to other processing engines and various applications besides
batch jobs.

The Hadoop 2.0 series of releases also added high availability (HA) and federation
features for HDFS, support for running Hadoop clusters on Microsoft Windows servers
and other capabilities designed to expand the distributed processing framework's
versatility for big data management and analytics.
Hadoop 3.0.0 was the next major version of Hadoop. Released by Apache in December
2017, it didn't expand Hadoop's set of core components. However, it added a YARN
Federation feature designed to enable YARN to support tens of thousands of nodes or
more in a single cluster, up from a previous 10,000-node limit. The new version also
included support for GPUs and erasure coding, an alternative to data replication that
requires significantly less storage space.

50

Architecture
Resource Manager is a Per-Cluster Level Component. Resource Manager is
divided into two components: Scheduler and Application Manager.
Resource Manager’s Scheduler is responsible to schedule required resources
to Applications (that is Per- Application Master).
It does only scheduling, and it does care about monitoring or tracking of those
Applications.
Application Master is a per-application level component. It is responsible for:

• Managing assigned Application Life cycle.
• It interacts with both Resource Manager’s Scheduler and Node Manager
• It interacts with Scheduler to acquire required resources.
• It interacts with Node Manager to execute assigned tasks and monitor those
task’s status.

Node Manager is a Per-Node Level component, and is responsible for:
• Managing the life-cycle of the Container.
• Monitoring each Container’s Resources utilization.

Each Master Node or Slave Node contains set of Containers.
Container is a portion of Memory in HDFS (Either Name Node or Data Node).

51

In Hadoop 2.0, the Job Tracker in YARN mainly depends on 3 important components
1. Resource Manager Component:
This component is considered as the negotiator of all the resources in the cluster.
Resource Manager is further categorized into an Application Manager that will
manage all the user jobs with the cluster and a pluggable scheduler. This is a relentless
YARN service that is designed for receiving and running the applications on the
Hadoop Cluster. In Hadoop 2.0, a MapReduce job will be considered as an application.
2. Node Manager Component:
This is the job history server component of YARN which will furnish the information
about all the completed jobs. The NM keeps a track of all the users’ jobs and their
workflow on any particular given node.
3. Application Master Component (aka User Job Life Cycle Manager):
This is the component where the job actually resides and the Application Master
component is responsible for managing each and every Map Reduce job and is
concluded once the job completes processing.
RM-Resource Manager
1. It is the global resource scheduler
2. It runs on the Master Node of the Cluster
3. It is responsible for negotiating the resources of the system amongst the competing applications.
4.It keeps a track on the heartbeats from the Node Manager

NM-Node Manager
1.Node Manager communicates with the
resource manager. 2.It runs on the Slave Nodes
of the Cluster
AM-Application Master
1.There is one AM per application which is application specific or
framework specific. 2.The AM runs in Containers that are created
by the resource manager on request.

52

In the previous lecture we discussed the MapReduce programming model.
Let’s recall the main points of MapReduce dataflow.
Hadoop limits the amount of communication which can be performed by the
processes, as each individual record is processed by a task in isolation from one
another.
While this sounds like a major limitation at first, it makes the whole
framework much more reliable. Hadoop will not run just any program and
distribute it across a cluster.
Programs must be written to conform to a particular programming
model, named "MapReduce." In MapReduce, records are processed in
isolation by tasks called Mappers.
The output from the Mappers is then brought together into a second set of tasks
called Reducers, where results from different mappers can be merged together.

53

You can see components of the example "Word Count" application on this detailed
diagram.
Input files: Here is the data for a task is initially stored (typically in HDFS).
InputFormat defines how input files are split and read. Several InputFormats are
provided with Hadoop. InputSplits: describes a unit of work that comprises a single
map task in a MapReduce program. Map tasks may read a whole file or just only part
of a file.
The InputSplit defines a slice of work, but does not describe how to access it. The
RecordReader actually loads the data from its source and converts it into (key,
value) pairs suitable for reading by the Mapper.
The Mapper performs user-defined work of the Map phase. Given a key and a
value, the map() method emits (key, value) pair(s) which are forwarded to the
Reducers.
After the first map tasks have completed, the nodes may still be performing several
more map tasks each. But they also begin exchanging the intermediate outputs from
the map tasks to where they are required by the reducers. This process of moving
map outputs to the reducers is known as shuffling.
Each reduce task is responsible for reducing the values associated with several
intermediate keys. The set of intermediate keys on a single node is automatically
sorted by Hadoop before they are presented to the Reducer. Reducer is an instance
of user-provided code that performs the Reduce phase.
The way how (key, value) pairs they are written is defined by the OutputFormat.
The OutputFormat functions is like the InputFormat class described earlier.
The OutputFormat class is a factory for RecordWriter objects; these are used to write the individual records to
the files as defined by the OutputFormat.
The output files written by the Reducers are then stored in HDFS.

54

YARN

Apache Hadoop YARN is the resource management and job scheduling technology in
the open
source Hadoop distributed processing framework. One of Apache Hadoop's core
components, YARN is responsible for allocating system resources to the various
applications running in a Hadoop cluster and scheduling tasks to be executed on
different cluster nodes.

55

What YARN does:
YARN enhances the power of a Hadoop compute cluster in the following ways:
Scalability: The processing power in data centers continues to grow quickly. Because
YARN ResourceManager focuses exclusively on scheduling, it can manage those larger
clusters much more easily.
Compatibility with MapReduce: Existing MapReduce applications and users can run
on top of YARN without disruption to their existing processes.
Improved cluster utilization: The ResourceManager is a pure scheduler that
optimizes cluster utilization according to criteria such as capacity guarantees,
fairness, and SLAs. Also, unlike before, there are no named map and reduce slots,
which helps to better utilize cluster resources.
Support for workloads other than MapReduce: Additional programming models
such as graph processing and iterative modeling are now possible for data
processing.
Agility: With MapReduce becoming a user-land library, it can evolve
independently of the underlying resource manager layer and in a much more agile
manner.

56

The fundamental idea of YARN is to split up the functionalities of resource management and
job scheduling/monitoring into separate daemons.
The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster
(AM). An application is either a single job or a DAG of jobs.
The ResourceManager and the NodeManager form the data-computation framework. The
ResourceManager is the ultimate authority that arbitrates resources among all the
applications in the system. The NodeManager is the per-machine framework agent who is
responsible for containers, monitoring their resource usage (cpu, memory, disk, network)
and reporting the same to the ResourceManager/Scheduler.
The per-application ApplicationMaster is, in effect, a framework specific library and is tasked
with negotiating resources from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks. The ResourceManager has two main
components: Scheduler and ApplicationsManager.
The Scheduler is responsible for allocating resources to the various running applications
subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in
the sense that it performs no monitoring or tracking of status for the application. Also, it
offers no guarantees about restarting failed tasks either due to application failure or
hardware failures. The Scheduler performs its scheduling function based on the resource
requirements of the applications; it does so based on the abstract notion of a resource
Container which incorporates elements such as memory, cpu, disk, network etc.
The Scheduler has a pluggable policy which is responsible for partitioning the cluster
resources among the various queues, applications etc. The current schedulers such as the
CapacityScheduler and the FairScheduler would be some examples of plug-ins.
The ApplicationsManager is responsible for accepting job-submissions, negotiating the first
container for executing the application specific ApplicationMaster and provides the service
for restarting the ApplicationMaster container on failure. The per-application
ApplicationMaster has the responsibility of negotiating appropriate resource containers from
the Scheduler, tracking their status and monitoring for progress.
MapReduce in hadoop-2.x maintains API compatibility with previous stable release (hadoop-
1.x). This means that all MapReduce jobs should still run unchanged on top of YARN with just
a recompile.

57

In YARN, there are at least three actors:
- the Job Submitter (the client)
- the Resource Manager (the master)
- the Node Manager (the slave)
The application startup process is the following:
1. a client submits an application to the Resource Manager
2. the Resource Manager allocates a container
3. the Resource Manager contacts the related Node Manager
4. the Node Manager launches the container
5. the Container executes the Application Master

The Resource Manager is a single point of failure in YARN. Using
Application Masters, YARN is spreading over the cluster the metadata
related to running applications. This reduces the load of the Resource
Manager and makes it fast recoverable.

58

HDFS

The HDFS is the storage system of the Hadoop framework.
It is a distributed file system that can conveniently run on commodity
hardware for processing unstructured data.

59

HDFS is the primary distributed storage used by Hadoop applications.
HDFS is well suited for distributed storage and distributed processing using
commodity hardware. It is fault tolerant, scalable, and extremely simple to expand.
HDFS is highly configurable with a default configuration well suited for many
installations. Most of the time, configuration needs to be tuned only for very
large clusters.
Hadoop is written in Java and is supported on all
major platforms. Hadoop supports shell-like
commands to interact with HDFS directly.
Have built in web servers that makes it easy to check current status of the cluster.

60

Top HDFS features
1. Fault Tolerance
The fault tolerance in Hadoop HDFS is the working strength of a system in
unfavorable conditions. It is highly fault-tolerant. Hadoop framework divides data
into blocks. After that creates multiple copies of blocks on different machines in the
cluster. So, when any machine in the cluster goes down, then a client can easily
access their data from the other machine which contains the same copy of data
blocks.
2. High Availability
Hadoop HDFS is a highly available file system. In HDFS, data gets replicated among
the nodes in the Hadoop cluster by creating a replica of the blocks on the other
slaves present in HDFS cluster. So, whenever a user wants to access this data, they
can access their data from the slaves which contain its blocks. At the time of
unfavorable situations like a failure of a node, a user can easily access their data
from the other nodes. Because duplicate copies of blocks are present on the other
nodes in the HDFS cluster.
3. High Reliability
HDFS provides reliable data storage. It can store data in the range of 100s of
petabytes. HDFS stores data reliably on a cluster. It divides the data into blocks.
Hadoop framework stores these blocks on nodes present in HDFS cluster. HDFS
stores data reliably by creating a replica of each and every block present in the
cluster. Hence provides fault tolerance facility. If the node in the cluster containing
data goes down, then a user can easily access that data from the other nodes. HDFS
by default creates 3 replicas of each block containing data present in the nodes. So,

61

data is quickly available to the users. Hence user does not face the problem of data
loss. Thus, HDFS is highly reliable.
4. Replication
Data Replication is unique features of HDFS. Replication solves the problem of data
loss in an unfavorable condition like hardware failure, crashing of nodes etc. HDFS
maintain the process of replication at regular interval of time. HDFS also keeps
creating replicas of user data on different machine present in the cluster. So, when
any node goes down, the user can access the data from other machines. Thus, there
is no possibility of losing of user data.
5. Scalability
Hadoop HDFS stores data on multiple nodes in the cluster. So, whenever requirements
increase you can scale the cluster. Two scalability mechanisms are available in HDFS:
Vertical and Horizontal Scalability.
6. Distributed Storage
All the features in HDFS are achieved via distributed storage and replication. HDFS
store data in a distributed manner across the nodes. In Hadoop, data is divided into
blocks and stored on the nodes present in the HDFS cluster. After that HDFS create
the replica of each and every block and store on other nodes. When a single machine
in the cluster gets crashed we can easily access our data from the other nodes which
contain its replica.

62

NameNode and DataNodes
HDFS has a master/slave architecture. An HDFS cluster consists of a single
NameNode, a master server that manages the file system namespace and regulates
access to files by clients. In addition, there are a number of DataNodes, usually one
per node in the cluster, which manage storage attached to the nodes that they run
on. HDFS exposes a file system namespace and allows user data to be stored in files.
Internally, a file is split into one or more blocks and these blocks are stored in a set of
DataNodes. The NameNode executes file system namespace operations like opening,
closing, and renaming files and directories. It also determines the mapping of blocks
to DataNodes. The DataNodes are responsible for serving read and write requests
from the file system’s clients. The DataNodes also perform block creation, deletion,
and replication upon instruction from the NameNode.
The NameNode and DataNode are pieces of software designed to run on commodity
machines. These machines typically run a GNU/Linux operating system (OS). HDFS is
built using the Java language; any machine that supports Java can run the NameNode
or the DataNode software. Usage of the highly portable Java language means that
HDFS can be deployed on a wide range of machines. A typical deployment has a
dedicated machine that runs only the NameNode software. Each of the other
machines in the cluster runs one instance of the DataNode software. The architecture
does not preclude running multiple DataNodes on the same machine but in a real
deployment that is rarely the case.
The existence of a single NameNode in a cluster greatly simplifies the architecture of
the system. The NameNode is the arbitrator and repository for all HDFS metadata.
The system is designed in such a way that user data never flows through the
NameNode.

63

The File System Namespace
HDFS supports a traditional hierarchical file organization. A user or an application can
create directories and store files inside these directories. The file system namespace
hierarchy is similar to most other existing file systems; one can create and remove
files, move a file from one directory to another, or rename a file. HDFS supports user
quotas and access permissions. HDFS does not support hard links or soft links.
However, the HDFS architecture does not preclude implementing these features.
The NameNode maintains the file system namespace. Any change to the file system
namespace or its properties is recorded by the NameNode. An application can
specify the number of replicas of a file that should be maintained by HDFS. The
number of copies of a file is called the replication factor of that file. This information
is stored by the NameNode.
Data Replication
HDFS is designed to reliably store very large files across machines in a large cluster. It
stores each file as a sequence of blocks. The blocks of a file are replicated for fault
tolerance. The block size and replication factor are configurable per file.
All blocks in a file except the last block are the same size, while users can start a new
block without filling out the last block to the configured block size after the support
for variable length block was added to append and hsync. An application can specify
the number of replicas of a file. The replication factor can be specified at file creation
time and can be changed later. Files in HDFS are write-once (except for appends and
truncates) and have strictly one writer at any time.
The NameNode makes all decisions regarding replication of blocks. It periodically
receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.
Receipt of a Heartbeat implies that the DataNode is functioning properly. A
Blockreport contains a list of all blocks on a DataNode.

64

The File System shell includes various shell-like commands that directly
interact with the Hadoop Distributed File System (HDFS) as well as other
file systems that Hadoop supports.
All commands fall into such categories:

• List Files (for example, ls command)
• Read/Write Files (text, cat, appendToFile)
• Upload/Download (get, put, copyFromLocal, copyToLocal)
• File management (cp, mv, etc)

65

• Ownership and Validation commands (such as chmod, chown, etc)
• Filesystem commands (du and df)
• Administration commands (fsck, format, etc)
Commands and how to use them will be discussed in details in the Lab

66

Data Locality
In Hadoop it means moving computation close to data rather than moving data
towards computation. Hadoop stores data in HDFS, which splits files into blocks and
distribute among various data nodes. When a mapReduce job is submitted, it is
divided into map jobs and reduce jobs. A Map job is assigned to a datanode according
to the availability of the data, ie it assigns the task to a datanode which is closer to or
stores the data on its local disk. Data locality refers the process of placing computation
near to data , which helps in high throughput and faster execution of data.
Categories of Data locality:
1. Data Local
If a map task is executing on a node which has the input block to be processed, its
called data local.
2. Intra- Rack
Its always not possible to run map task on the same node where data is located
due to network constraints. In that case, mapper runs on another machine, but on
the same rack. So the data need to be moved between the nodes for execution.
3. Inter-Rack
In certain cases Intra- Rack local is also not possible. In such cases, the mapper will
execute from a different rack.In order to execute the mapper, the data need to be
copied from the node which stores the data to the node which is executing the
mapper between the racks.
Map jobs read data from the input blocks and generate intermediate results. Since
map jobs work on blocks from HDFS and are data-parallel, data locality is important
for better performance and faster execution of the map jobs.

67

There are two benefits of data Locality in MapReduce. Let’s discuss them
one by one-
Faster Execution
In data locality, the program is moved to the node where data resides
instead of moving large data to the node, this makes Hadoop faster.
Because the size of the program is always lesser than the size of data, so
moving data is a bottleneck of network transfer.
High Throughput
Data locality increases the overall throughput of the system.

68

Fault Tolerance

Failures are detected by the master program which reassigns
the work to a different node. Restarting a task does not affect
the nodes working on other portions of the data.
If a failed node restarts, it is added back to the
system and assigned new tasks. The master can
redundantly execute the same task to avoid slow
running nodes.

69

Version Differences

Here is Hadoop 1.x comparison with Hadoop 2.x table.
The main differences are that Hadoop 2 uses YARN for resource
management, support both MapReduce and non- MapReduce jobs, more
scalable (up to 10000 nodes), and more fault tolerant. It also can run on
Windows.

70

Comparing to 2.x, Hadoop 3.x requires less storage space for the same
data (through erasure coding and not duplication), more scalable, and has
intra-DataNode balancer.

71

Replication
Replication is expensive – the default 3x replication scheme in HDFS has 200%
overhead in storage space and other resources (e.g., network bandwidth). However,
for warm and cold datasets with relatively low I/O activities, additional block replicas
are rarely accessed during normal operations, but still consume the same amount of
resources as the first replica.
Therefore, a natural improvement is to use Erasure Coding (EC) in place of replication,
which provides the same level of fault-tolerance with much less storage space. In
typical Erasure Coding (EC) setups, the storage overhead is no more than 50%.
Replication factor of an EC file is meaningless. It is always 1 and cannot be changed
via -setrep command.
In storage systems, the most notable usage of EC is Redundant Array of Inexpensive
Disks (RAID). RAID implements EC through striping, which divides logically sequential
data (such as a file) into smaller units (such as bit, byte, or block) and stores
consecutive units on different disks. In the rest of this guide this unit of striping
distribution is termed a striping cell (or cell). For each stripe of original data cells, a
certain number of parity cells are calculated and stored – the process of which is
called encoding. The error on any striping cell can be recovered through decoding
calculation based on surviving data and parity cells.
Integrating EC with HDFS can improve storage efficiency while still providing similar
data durability as traditional replication-based HDFS deployments. As an example, a
3x replicated file with 6 blocks will consume 6*3 = 18 blocks of disk space. But with
EC (6 data, 3 parity) deployment, it will only consume 9 blocks of disk space.

72

HDFS Erasure Encoding Architecture
NameNode Extensions – The HDFS files are striped into block groups, which have a
certain number of internal blocks. Now to reduce NameNode memory consumption
from these additional blocks, a new hierarchical block naming protocol was
introduced. The ID of a block group can be deduced from the ID of any of its internal
blocks. This allows management at the level of the block group rather than the block.

Client Extensions – After implementing Erasure Encoding in HDFS, NameNode works
on block group level & the client read and write paths were enhanced to work on
multiple internal blocks in a block group in parallel. On the output/write path,
DFSStripedOutputStream manages a set of data streamers, one for each DataNode
storing an internal block in the current block group. A coordinator takes charge of
operations on the entire block group, including ending the current block group,
allocating a new block group, etc.On the input/read
path, DFSStripedInputStream translates a requested logical byte range of data as
ranges into internal blocks stored on DataNodes. It then issues read requests in
parallel. Upon failures, it issues additional read requests for decoding.

73

DataNode Extensions – The DataNode runs an additional ErasureCodingWorker
(ECWorker) task for background recovery of failed erasure coded blocks. Failed EC
blocks are detected by the NameNode, which then chooses a DataNode to do the
recovery work. Reconstruction performs three key tasks:Read the data from source
nodes and reads only the minimum number of input blocks & parity blocks for
reconstruction.New data and parity blocks are decoded from the input data. All
missing data and parity blocks are decoded together.Once decoding is finished, the
recovered blocks are transferred to target DataNodes.

ErasureCoding policy – To accommodate heterogeneous workloads, we allow files
and directories in an HDFS cluster to have different replication and EC policies.
Information about encoding & decoding files is encapsulated in an
ErasureCodingPolicy class. It contains 2 pieces of information, i.e. the ECSchema &
the size of a stripping cell. Intel ISA-L Intel ISA-L stands for Intel Intelligent Storage
Acceleration Library. ISA-L is an open-source collection of optimized low-level
functions designed for storage applications. It includes fast block Reed-Solomon type
erasure codes optimized for Intel AVX and AVX2 instruction sets. HDFS erasure coding
can leverage ISA-L to accelerate encoding and decoding calculation. ISA-L supports
most major operating systems, including Linux and Windows. ISA-L is not enabled by
default. See the instructions below for how to enable ISA-L

74

Usage
Yahoo: Used for scaling tests.
Facebook: Used as a source for reporting and machine learning.
Twitter: To store and process tweets, log files using LZO
which is a portable lossless data compression library written
in ANSI C. It is fast and
also helps release CPU for other tasks.
LinkedIn: LinkedIn's data flows through Hadoop clusters.
User activity, server metrics, images, transaction logs stored
in HDFS are used by data
analysts for business analytics like discovering
people whom you may know.
JPMorgan: Analytics on the transactions of the customers.
Amazon: Data processing by analyzing the customer reviews and requirements.
Adobe: Social services to structured data storage.
Ebay: With 300+ million users browsing more than
350 million products listed on their website, eBay has
one of the largest Hadoop clusters
in the industry that is run prominently on
MapReduce Jobs. Hadoop is used by eBay for Search
Optimization and Research.
Netflix: For decision making.
Aol: Targets machines and dual processors.
Alibaba: Analyzes vertical search engine.

75

IBM: Client projects in finance, telecom and retail,
Machine learning with Watson Analytics.
Infosys: Client projects in finance, telecom and retail.
TCS: Client projects in finance, telecom and retail.
Spotify: Used for content generation and data aggregation.

76

Types of Commercial Hadoop Distribution Models
To fulfill the need of enterprises to deploy Hadoop for taming Big Data, several
companies came up with commercial distribution models for Hadoop. Commercial
Hadoop distributions are majorly categorized in three primary kinds. They are as
follows:
Distributions that provide paid support and training for the Apache Hadoop (e.g.
Cloudera, HortonWorks, MapR, IBM, etc.).
Distributions that offer a set of supporting tools for deployment and management of
Apache Hadoop as an alternative (e.g. Cloudera, HortonWorks, MapR).
Distributions that enable adding vendor specific features and code, paid
enhancements, to enhance or customize the Apache Hadoop deployment and align it
to the business needs (e.g. Cloudera, HortonWorks, MapR, IBM, etc.) Now the big
question is, how do you choose a Hadoop distribution from the numerous options
that are available in the market? Let’s take a look at some of the criteria that may
guide you to choose the suitable Hadoop distribution for you.

77

Cloudera
The US-based software and solutions provider for Apache Hadoop technology and
the first vendor to offer Hadoop as a package, Cloudera, still continues to be a
market leader in Hadoop distributions. Cloudera’s CDH that comprise all the open
source components targets enterprise-class deployments and is one of the most
popular commercial Hadoop distributions.
Known for its innovations, Cloudera was the first to offer SQL-for-Hadoop with its
Impala query engine. Other additions of Cloudera include security, user interface, and
interfaces for integration with third party applications. Cloudera supports its
distribution through the Cloudera Enterprise subscription service.
Hortonworks
Hortonworks develops and supports Apache Hadoop for the distributed processing of
large data sets across computer clusters. The Hortonworks Data Platform (HDP) is an
entirely open source platform designed to maneuver data from many sources and
formats. The platform includes various Hadoop technology such as the Hadoop
Distributed File System, MapReduce, Zookeeper, HBase, Pig, and Hive, and additional
components.
Hortonworks is known for making acquisitions of other companies with useful code
and releasing the code into the open source community. A new trend towards
consolidation in the market has resulted in the growing popularity of Hortonworks’
product. Recently, both Amazon and IBM has started offering Hortonworks as
options on their own platforms alongside their own Hadoop distributions. HDP also
serves as the core of the Open Data Platform Initiative, a group aiming to simplify
and standardize specifications in the Big Data ecosphere.

78

MapR
Rather than a managed service provider like Amazon and Microsoft, MapR is a
platform-focused Hadoop solutions provider, just like Hortonworks and Cloudera.
MapR integrates its own database system, known as MapR-DB, while offering
Hadoop distribution services. MapR-DB is claimed to be four to seven times faster
than the stock Hadoop database, HBase, running on other distributions. Thanks to
its speed, MapR is often seen as a preferred choice for large Big Data projects.
Amazon Elastic MapReduce
Amazon offers a pay-as-you-go model in a cloud-only platform. It provides Hadoop-
as-a-Service platform through its Amazon Web Services arm. The key advantage of
the pay-as-you-go model is the scalability. This model allows you to scale up or down
as demands change. Amazon Elastic MapReduce also seamlessly connects with
Amazon’s other cloud services infrastructure such as Amazon S3 and DynamoDB for
storage, EC2 for cloud processing, and AWS IoT for collecting data from Internet of
Things-enabled devices.
Microsoft
Microsoft also offers a cloud-only service in the form of Azure HDInsight platform
that offers managed installations of several open source Hadoop distributions,
including Cloudera, Hortonworks, and MapR. HDInsight integrates different Hadoop
distributions with its own Azure Data Lake platform to provide a complete solution
for cloud-based storage and analytics. Additionally, HDInsights provides Hive, Spark,
Kafka, and Storm cloud services along with its own cloud security framework.
Opting for the right Hadoop Distribution entirely depends on the obstacles and
problems an organization is facing in implementing Hadoop in the enterprise. Each
commercial Hadoop distribution has its own pros and cons.
Therefore, it is imperative to consider the risk and cost along with the additional
value offered by each Hadoop distribution, for the distribution to prove beneficial
for your business needs.

79

Hadoop HDFS – Distributed storage layer for Hadoop.
Yarn Hadoop – Resource management layer
introduced in Hadoop 2.x. Hadoop Map-Reduce –
Parallel processing layer for Hadoop.
HBase – It is a column-oriented database that runs on top of HDFS. It is a NoSQL
database which does not understand the structured query. For sparse data set, it suits
well.
Hive – Apache Hive is a data warehousing infrastructure based on Hadoop
and it enables easy data summarization, using SQL queries.
Pig – It is a top-level scripting language. As we use it with Hadoop. Pig enables writing
complex data processing without Java programming.
Flume – It is a reliable system for efficiently collecting large amounts of log data
from many different sources in real-time.
Sqoop – It is a tool design to transport huge volumes of data between Hadoop and
RDBMS.
Oozie – It is a Java Web application uses to schedule Apache Hadoop jobs. It combines
multiple jobs sequentially into one logical unit of work.
Zookeeper – A centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services.
Mahout – A library of scalable machine-learning algorithms, implemented on top of
Apache Hadoop and using the MapReduce paradigm

80

Apache Pig

Apache Pig is a platform for analyzing large data sets, is
an abstraction over MapReduce. To write data analysis
programs, Pig provides a high-level language known as
Pig Latin.
Pig Latin lets you specify a sequence of data transformations such as
merging data sets, filtering them, and applying functions to records or
groups of records. Pig comes with many built-in functions but you can
also create your own user-defined functions to do special-purpose
processing.
Pig Latin programs run in a distributed fashion on a cluster (programs are
complied into Map/Reduce jobs and executed using Hadoop).

81

Apache Pig is a platform for analyzing large data sets, is
an abstraction over MapReduce. To write data analysis
programs, Pig provides a high-level language known as
Pig Latin.
Pig Latin lets you specify a sequence of data transformations such as
merging data sets, filtering them, and applying functions to records or
groups of records. Pig comes with many built-in functions but you can
also create your own user-defined functions to do special-purpose
processing.
Pig Latin programs run in a distributed fashion on a cluster (programs are
complied into Map/Reduce jobs and executed using Hadoop).

82

Apache Hive

The Apache Hive data warehouse software facilitates reading, writing, and
managing large datasets residing in distributed storage and queried using
SQL syntax.
provides data summarization, query, and analysis in much easier manner
supports external tables which make it possible to process data without
actually storing in HDFS.
Using HiveQL doesn’t require any knowledge of programming language,
Knowledge of basic SQL query is enough. Hive provides standard SQL
functionality, including many of the later SQL:2003 and SQL:2011
features for analytics.
Hive's SQL can also be extended with user code via user defined functions
Hive is not designed for online transaction processing (OLTP) workloads. It
is best used for traditional data warehousing tasks.
Hive is designed to maximize scalability (scale out with more machines
added dynamically to the Hadoop cluster), performance, extensibility,
fault-tolerance, and loose-coupling with its input formats.

83

Here is a Apache Pig vs Hive comparison table.
Apache Pig uses a language called Pig Latin. It was
originally created at Yahoo. Hive uses a language
called HiveQL. It was originally created at Facebook.
Pig Latin is a data flow language. HiveQL is a query processing language.
Pig Latin is a procedural language and it fits in pipeline paradigm. HiveQL
is a declarative language.
Apache Pig can handle structured, unstructured, and semi-structured
data. Hive is mostly for structured data.

84

HBase

HBase is an open-source, distributed, versioned, non-relational
database modeled after Google's Bigtable paper. Just as Bigtable
leverages the distributed data storage provided by the Google File
System, Apache HBase provides Bigtable-like capabilities on top of
Hadoop and HDFS.
Linear and modular scalability.
Automatic and configurable sharding of tables
Hadoop/HDFS Integration: HBase supports HDFS out of the box as its
distributed file system.
MapReduce: HBase supports massively parallelized processing via
MapReduce for using HBase as both source and sink.

85

Here is a HBase vs RDBMS comparison table.
HBase is schema-less, it doesn't have the concept of fixed columns
schema; defines only column families. An RDBMS is governed by its
schema, which describes the whole structure of tables.
HBase is built for wide tables and horizontally scalable. RDBMS is thin
and built for small tables. Hard to scale. No transactions are there in
HBase, but most of RDBMS are transactional.
HBase has de-normalized data, but RDBMS have normalized data.
HBase is good for semi-structured as well as structured data, and RDBMS
is good for structured data.

86

Apache Hadoop is an open source, scalable,
and fault tolerant framework
Hadoop is mainly written in java. Some parts of it is written in C.
User focuses on application, not on complexities of
distributed computing
Hadoop efficiently processes large volumes of data on a cluster of
commodity hardware Main components:

HDFS (filesystem)
YARN (resource management) Common
(libraries and tools) MapReduce (processing
engine)

Apache Hadoop has inspired a rich ecosystem of projects and products
that benefit everyone interested in Big Data

1

Cloud Computing
Lecture Manual

Volume 6

Module 6

Distributed Data Systems in Cloud
Computing

2

Content
Module 6. Distributed Data Systems in Cloud Comoputing ... 5

Lecture 1. Big Data .. 6

Overview .. 7

History .. 14

Current Challenges .. 17

Solutions .. 22

Cloud-Based Solutions ... 27

Cloud Platform ... 32

Internet of Things .. 38

Decision Making ... 45

Lecture 2. Distributed File Systems .. 56

Storage Types... 57

Overview .. 57

Examples .. 65

File Systems in Cloud Computing ... 70

Overview .. 70

LVM .. 72

RAID ... 78

NFS ... 81

Lustre ... 83

Ceph ... 88

Gluster ... 95

HDFS ... 99

Lecture 3. NoSQL Databases in Cloud Computing ... 104

Overview .. 105

Databases... 114

SQL/Relational ... 114

BASE and ACID Paradigms ... 123

CAP Theorem ... 126

NoSQL .. 133

3

Overview .. 133

NoSQL Types .. 137

BigTable / Column .. 141

Document .. 158

Key-Value ... 162

Graph ... 168

Caches .. 171

4

The title of this module is “Distributed Data Systems in Cloud
Computing” This is the lecture number 1 about the problem of
Big Data and its context.

5

Module 6. Distributed Data
Systems in Cloud Computing

This module is about:

• Big Data history, current challenges, and available solutions and cloud-based
solutions for Big Data problem;
• Distributed file systems for cloud platforms;
• SQL and NoSQL databases in cloud-based solutions for Big Data problem, typical use
cases, advantages, disadvantages, and so on.

6

Lecture 1. Big Data

This lecture is dedicated to overview of:

• Big Data history, current challenges, and available solutions;
• Cloud-based solutions for Big Data problem;
• Cloud platforms for Big Data problem;
• Big Data and Internet of Things (IoT);
• Decision making on the basis of Cloud-based solutions for Big Data problem, typical
use cases, advantages, disadvantages, and so on.

7

Overview

Let’s start from the general view on the problem of Big Data…

8

Big Data is usually characterized as some bulk of data which is:

• Large
• Unstructured
• Real-Time

9

Big Data has transformed from:

• Thousands: Databases with thousands of sales figures

• Millions: Millions of Web Pages

• Billions: of Web Clicks

10

Big Data is Unstructured

The slide shows an illustration of web content, which stored and presented in Human
Consumable forms, which us unstructured as far as the machines are concerned

11

Big Data is Real-Time

Fast Data can be information generated by software or hardware. It can be log files, a
rapidly changing in-memory data set, sensor data from the Internet of Things
(IoT), geospatial data from populations of mobile applications, messages from
Email, Twitter, or SMS, weather or stock market information, or intelligence
information from the battlefield.

12

What is Big Data?

Big Data unlocks

intelligence

from

large,
unstructured,
real-time

data

13

As it was outlined in the introductory lecture 0, the current problem of Big Data
related with processing of the high volume of data generated by Internet of
People, Internet of Things, and Internet of Everything.

Big Data are characterized by 4 V:

The major drivers are:

• velocity at which you have to ingest data, along with the latency until it’s
usable, and

• volume of data you have to store and do something with.

 But it’s not a big data problem, if you have:

• a high peak load of messages for a couple of hours a day, and you don’t need to
see them frequently later

• terabytes of archival data that you don’t need to analyze, (they are just stored
for some regulatory reason)

14

History

Let’s consider the history and evolution of the Big Data problem…

15

Let’s recall the introductory lecture 0, where we considered the first big data
problem.

It occurred in the 1880s.

In the late 1800s, the processing of the U.S. census was beginning to take close to 10

years. The census runs every 10 years and the population, and thus the amount of
information was increasing — problem!

In 1886, Herman Hollerith started a business to rent machines that could read and

tabulate census data on punch cards. The 1890 census took <2 years to complete and
handled a larger population (62 million people) and more data points than the 1880

census.

Later Hollerith’s business merged with three others to form what became IBM!

16

In 1886, Herman Hollerith started a business to rent machines that could read and
tabulate census data on punch cards. The 1890 census took <2 years to complete and
handled a larger population (62 million people) and more data points than the 1880

census.

Later Hollerith’s business merged with three others to form what became IBM!

17

Current Challenges

Now, let’s recall the most crucial contemporary challenges…

18

Here you can see Moore’ Law:

Dependence of the number of transistors inside CPU versus dates of introduction.

The line corresponds to exponential growth with transistor count doubling every two
years.

You can see that this dependence is saturated during the last years due to physical
limitations on the size of elements.

Gordon Moore said in 2005:
“In terms of size *of transistors+ you can see that we're approaching the size of atoms
which is a fundamental barrier, but it'll be two or three generations before we get
that far—but that's as far out as we've ever been able to see. We have another 10 to
20 years before we reach a fundamental limit. By then they'll be able to make bigger
chips and have transistor budgets in the billions.”

But now the current development of single Central Processing Unit (CPU) computing
is not enough to response to the current challenges.

19

Now there are several other formulations of laws for characterization of technology
growth:

Moore’s Law – Individual computers double in processing power every 18 months

Storage Law – disk storage capacity doubles every 12 Months

Gilder’s Law – Network bandwidth doubles every 9 months (but is harder to install)

This exponential growth profoundly changes the landscape of Information technology

More and more data created (because sensors are smaller and processors are
cheaper) and stored (because disks are cheaper and more reliable than tape etc) and
accessed remotely (because networking is cheaper).

Note that the time needed to fill available storage in increasing (i.e. the speed of
writing data to disk is not increasing as quickly as the storage capacity)

20

Raymond Kurzweil is an American author, computer scientist, inventor and futurist.

Aside from futurism, he is involved in fields such as optical character recognition
(OCR), text-to-speech synthesis, speech recognition technology, and electronic
keyboard instruments.

He has written books on health, artificial intelligence (AI), singularity.

Kurzweil's first book, The Age of Intelligent Machines, presented his ideas about the
future in 1990. Kurzweil extrapolated trends in the improvement of computer chess
software performance to predict that computers would beat the best human players
"by the year 2000". In May 1997, chess World Champion Garry Kasparov was
defeated by IBM's Deep Blue computer in a well-publicized chess match.

21

Kurzweil suggests that this exponential technological growth is counter-intuitive to
the way our brains perceive the world—since our brains were biologically inherited
from humans living in a world that was linear and local—and, as a consequence, he
claims it has encouraged great skepticism in his future projections.

In the context of the before mentioned challenges and Big Data problems, the need
of the new paradigms for high-performance computing is very high and important.

22

Solutions

And what solutions can be proposed for Big Data problem…

23

This slide contains the map of numerous available tools and means for solving Bog
data problem.

The fast conclusion is that we have not SINGLE solution for this problem.

24

To select the best solution for your system we need to take into account the
following criteria:

• Type of your organization:

Enterprises prefer the branded vendors,

but startups — the cheap open source options.

• Data access patterns:

more reads OR more writes,
access based on the primary key OR the ad hoc queries,

simple relations (RDBMS?) OR back and forth traverse relations like walking a
social graph (graph databases?)

25

(continued from the previous slide)

• Type of Data Stored:

structured data (good for relational models) ,

semistructured data (XML/JSON is good for document and column stores)

unstructured data (good for file-based options like Hadoop).

• Change Frequency of Data Schema:
mostly fixed schemas (relational options?) ,
constantly changing schemas (document solutions?)

• Required Latency:
the fast access to the data (In-Memory DB -> IMDB solution),
the usual access to the data (standard on-disk DB solution)

26

Big Data is Driving Cloud Usage

Over the last decade two profound trends have emerged in computing. Enterprises
and Telecoms are transforming their IT infrastructures from collections of loosely
integrated applications, each running on their own servers and with their own
databases, into strategic, flexible, high performance platforms able to store every bit
of information the enterprise has access to, with enough on-demand computing to
provide for capabilities matching the imagination of the most creative CIO.

27

Cloud-Based Solutions

Let’s take into account the available cloud-based solutions…

28

This slide illustrates how a Big Data Cloud Based Service works

Examples are Search, scene completion service, log processing

Characteristics are Massive data and computation on cloud, but driven by small
queries and returning small results

The way Big Data is processed on a cloud is using a data pipeline, with a pipeline
management system such as Hadoop.

29

The Big Data Stack

This “Fast Data/Big Data Stack” includes ingestion, analysis, and storage. But there are
several arrangements and combinations used for different use cases.

30

YD: This is combined notes from few slides

In the Fast and Big data stack, ingestion is the first stage. The job of ingestion is to interface to the streaming data sources, and as needed to
transform and normalize the data. Then, ingestion will potentially partition the data stream, distributing to one or more of the Analytic/Decision
Engines of choice.

There are two choices for ingestion. The first choice is to use “Direct Ingestion” if possible, where a straight-through code module can hook
directly into the data generating API, capturing directly the entire stream at the speed that the API and the network will run, e.g., at “wire speed”.
In this case the Analytic/Decision Engines will have a Direct Ingestion “adapter” and with some amount of coding the Analytic/Decision Engines
can handle streams of data from an API pipeline and not have to stage or cache any of the data on disk.

If access to the data generating API is not available, usually the alternative is that the data is being served up in a Message Queue. In this case, an
ingestion system is needed to hook into that existing queue to get copy/subset of data. The ingestion queue handles partitioning, replication, and
ordering of data, can manage backpressure from slower downstream components.

Once the data in Ingested, it is ultimately handed to one or more Analytic/Decision engines to accomplish specific task on the data streaming in.
At this point the data is Fast Data and the challenge for the Analytic/Decision engines is to consume the velocity of the data stream.

Real-Time Decisions provide enough analysis in time for Decisions to be fed back “up-stream” and influence the “next step” of the processing.
Real-Time Decisions are doing a lot of work, in that they consume the velocity of the data stream and at the same time are usually processing
complex logic, all in time to complete the Real-Time Decision feedback loop. Real-Time Decisions have the following characteristics:

Continuous Query mode
OLTP Analytics Model

Programmatic Request-Response
Stored Procedures

Export for Pipelining

Streaming Analytics still need to consume the velocity of the data stream but are processing less complex logic, where the applications don’t
require Real-Time feedback into the applications. Streaming Analytics have the following characteristics:

Non-Query mode

Time Window Processing
Counting, Statistics

Rules
Triggers

Once the Fast Data Analytics are completed, the data can continue to move along in the pipeline for later processing. Usually the Streaming
Analytics relied on an Ingestion queue which is simply continued along to an Export stage. For Real-Time Decisions, which are processing the Fast
Data in a Continuous Query mode, an Export function is needed to transform and distribute the data to the Big Data Warehouse/Storage (OLAP)
Engines of choice.

31

This slide illustrates important technologies in the Big Data Space.
Note some are from vendors, some are open source
Note also some span functional areas

32

Cloud Platform

Now we go to the cloud platform for Big Data problem…

33

The Big Data Platform is Cloud!

Cloud Computing has emerged as a ubiquitous, essentially infinite computing
platform serving the needs for companies and smart applications to process data –
no matter how fast it comes in and no matter how large it gets. Clouds are designed
to have incredible capacity to move data, to dynamically apply processing power to
the data, and to store that data. We have learned that looking at the data in its entire
lifecycle – as it arrives, and as it accumulates – provides powerful insights. The scale-
out philosophy around which Clouds are designed allows for parallel, highly scalable
mechanisms for launching networking, computing, and storage elements to handle all
aspects of this processing. As the Internet has expanded into a seamless world of
Desktop Browsers and Mobile Devices for which smart applications are available for
every kind of task, the Cloud has become the engine which accomplishes all the
massive processing behind these apps. A person’s location, history, preferences, and
“what’s trending” are being leveraged to provide a brand new real-time on-line
experience, all powered by the Cloud.

34

In these following sections, then, some of the specific internal structures of Cloud will
be examined, and examined to understand how synergistic there platform attributes
are for Big and Fast Data solutions running on Cloud.

These comments apply to the way Public or Private clouds are constructed. One
might only find some of the more esoteric features mentioned here in special “High
Performance Computing (“HPC”) clouds, or sections of clouds (as a Public cloud
example), or one might purposefully architect as such acquiring the particular
software and hardware which enables these capabilities (as a Private cloud example).

35

Cloud instances are basically racks of servers connected together in an efficient
manner. The figure below shows a Cloud instance with 4 racks of servers, 8 servers in
each rack. Each server will contain multiple CPU chips and each CPU chip will contain
multiple cores, each core able to run multiple threads. When building a Cloud
instance, one must be careful not to oversubscribe the network in “upstream”
aggregation points. One technique which is done is to take an imaginary “slice”
through the cloud in any direction, and make sure each half of the cloud has 100%
bandwidth capability to the other half, across the imaginary slice. As a result of this
analysis, typical enterprise Top of Rack/Aggregation types of architectures have been
replaced by “Leaf and Spine” architectures. The net is that Big and Fast Data solutions
which scale-out and need to have inter-node communication, will find this
architecture very supportive of those traffic patterns.

36

Some Clouds Support Converged Network to Memory

While looking at Cloud networking models, one can find certain clouds which use a special
network capability designed to increase node to node networking drastically. Like most
operating system drivers, standard network drivers are kernel functions in the operating
systems of the cloud servers, which typically copy data from the network into the VM’s or the
Containers running the application modules. Some clouds are constructed using Converged
Ethernet or Infiniband allowing for hardware assisted data transfer from the network directly
to the application (in this case, the Big and Fast Data module). While this capability is not
typical it is becoming more and more available on specialty clouds or portions of clouds.

More and more cloud specialists know how to build private cloud supporting this capability. It
is a real “turbocharge” for certain classes of distributed applications. Big and Fast Data will be
amongst the first to take advantage of this capability as it becomes more common.

Some Clouds Support Converged Memory to Storage

When Storage Path Affinity cannot be implemented, e.g., when storage is based on NAS or
SAN, some networking equipment emulates the direct access capability by adding a special
capability in the network allowing from hardware assisted transfer from the memory of the
application on the server, Container, or VM to go directly to the corresponding Storage OS on
the SAN or NAS appliance. This is called Converged Memory to Storage networking and is yet
another of the esoteric optimizations found on cloud which are perfect for Big and Fast Data
problems.

37

Cloud Deployment Models – Virtual Machines, Containers, and Bare Metal

Whenever application performance is an issue, one needs to consider trade-offs in
cost, manageability, and specific performance (latencies for example), across the
various deployment options one has. For example, consider a highly load-variable
problem. One might consider using VM’s as a deployment vehicle for that. While one
pays a certain performance penalty in each node, in this example the cloud one is
running on has great automated elasticity/scale-out tools, and if the Big and Fast data
system itself can take advantage of dynamic scale-out, then the VM mechanisms are
extremely handy, and should be utilized.

Some Clouds will offer Container based isolation instead of VMs. Containers such as
Warden or Docker are based on underlying Linux Container (“lxc”) capability which
provided for less overhead than a VM. Even further, some Clouds allow deployment
on “bare metal” (directly to the server without even container mechanisms). These
mechanisms tend to provide better performance in accessing network, storage, or
memory – depends on implementation. Consider a rather static throughput and
velocity Big and Fast Data problem set that may not need any infrastructure variability
– Elasticity and Dynamic Scale-out are simply not needed. Therefore extensive
automation based on VM’s may not be needed either. Raw performance and hand
optimization on Containers or Bare Metal will prove to squeeze every last drop out of
each paid for CPU.

38

Internet of Things

The next REALLY Big aspect is Internet of Things as a source much Bigger Data than
ever…

39

IoT (Internet of Things) is a set of interconnected devices that generate and exchange
data from observations, facts, and other data, making it available to anyone. IoT
solutions are designed to make our knowledge of the world around us more timely
and relevant by making it possible to get data about anything from anywhere at any
time. It is clear there is potential for the number of IOT devices to exceed the human
population of the planet.

IOT solution is simply a set of devices designed to produce, consume, or present data
about some event or series of events or observations. This can include devices that
generate data such as a sensor, devices that combine data to deduce
something, devices or services designed to tabulate and store the data, and devices
or systems designed to present the data. Any or all of these may be connected to the
Internet.

IOT solutions may include one or all of these qualities whether they are combined in
a single device such as a web camera, use a sensor package and monitoring unit such
as a weather station, or use a complex system of dedicated sensors, aggregators, data
storage, and presentation such as a complete home automation system.

This popular picture shows a futuristic picture of all devices everywhere connected to
the Internet via either databases, data collectors or integrators, display services, and
even other devices.

40

Gathering and understanding all that data is complicated by how the data is stored or
more appropriately retrieved.

For example, what would happen if every device in your home, car, office, and so
on, were to produce data?

Add in the view of the increasing interest to wearable sensors and similar devices and
you’ve got the potential to generate more data than any human can manage or even
decipher.

Let's observe the short history of wearable computing on this slide.

41

This is Steve Mann and the short synopsis of his activities as a pioneer in wearable
computing and the multimedia data produced by wearable gadgets.

42

Big Data is further accelerated by the Internet of Things

The slide illustrates how Data generated from the Internet of Things will grow
exponentially as the number of connected nodes increases

43

On the left side of this slide are the IOT devices. These could be a simple sensor, an
entire sensor network, a device with one or more sensors, an embedded
microcontroller solution with sensors, a more sophisticated microprocessor-based
solution, or even a device such as a microwave oven, alarm clock, or television.
These devices are the more sophisticated devices with built-in networking
capabilities.

At the center is a user accessing the data via the Internet or a cloud service.
Naturally, this can be any type of device such as a
laptop, desktop, tablet, phone, watch, or other smart device or appliance (including
another IOT device).

On the next slide let’s consider the roles in IoT device architecture presented at the
bottom of this slide.

44

Let’s consider the roles in IoT device architecture presented at the previous slide…

45

Decision Making

Now let’s consider how Big Data processing can help us in the real life…

46

From this problem formulation:
Problem: system works with the huge multimedia data and it should sort-out
multichannel interactions (voice, e-mail, chats, posts, …); interactions come in
packs or in real-time regimes; they should be processed by business logic
according to their category.

we should find some solution which can be formalized as follows:

Solution: we should create system on the basis of the known patterns to
categorize these multichannel interactions in the view of the big data

In this connection, machine learning can be used, which is a field of computer
science that uses statistical techniques to give computer systems the ability to "learn“
with data, without being explicitly programmed.

The ‘machine learning’ term was proposed by Arthur Samuel in 1959.
It started from the study of pattern recognition and computational learning theory in
artificial intelligence.

Now it relates to research on algorithms that can learn from and make predictions on
data – such algorithms overcome following strictly static program instructions by
making data-driven predictions or decisions, through building a model from sample
inputs.

47

Let’s consider the latest example of Cambridge Analytica involvement in Big data
processing during elections in USA.

Cambridge Analytica Ltd (CA) was a British political consulting firm which combined
data mining, data brokerage, and data analysis (machine learning) with strategic
communication during the electoral processes.

The personal data of approximately 87 million Facebook users were acquired via the
270,000 Facebook users who used a Facebook app called "This Is Your Digital Life”.

48

They developed a profiling system using general online data, Facebook-likes, and
smartphone data. They showed that with a limited number of "likes", people can be
analyzed better than friends or relatives can do and that individual psychological
targeting is a powerful tool to influence people.

For each political client, CA could narrow voter segments from 32 different
personality styles it attributes to every adult in the United States. The personality
data would inform the tone of the language used in ad messages or voter contact
scripts, while additional data is used to determine voters' stances on particular issues.

CA worked for Donald Trump's presidential campaign, and CA had influenced Trump's
2016 US presidential campaign - actually helps Trump to win to surprise of many
political scientists.

49

In 2012 the inventor and futurist Ray Kurzweil (he was mentioned in the beginning of this

lecture) published his book “How to Create a Mind: The Secret of Human Thought Revealed”
about brains, both human and artificial. It became a New York Times Best Seller.[

Kurzweil suggests that the brain contains a hierarchy of pattern recognizers and the brain is a
"recursive probabilistic fractal" whose line of code is represented within the 30-100 million
bytes of compressed code in the genome.

Kurzweil then explains that a computer version of this design could be used to create an
artificial intelligence more capable than the human brain. It would employ techniques such as
hidden Markov models and genetic algorithms, strategies Kurzweil used successfully in his
years as a commercial developer of speech recognition software.

Artificial brains will require massive computational power (which Cloud Computing can
provide at the moment), so Kurzweil reviews his law of accelerating returns which explains
how the compounding effects of exponential growth will deliver the necessary hardware in
only a few decades.

Remember SkyNet from Terminator movie? This fictional artificial intelligence (AI) system features
centrally in the movie and serves as the true main antagonist.

Maybe we are facing the pre-conditions of real Skynet as the possible threat that a
sufficiently advanced AI could pose to humanity. Elon Musk has previously mentioned Skynet
when referring to such a threat.

50

The potential market for such Decision Making systems is HUGE!

Let’s consider shortly their machine learning basics on the next slides…

51

• Machine Learning relies on large quantities of data to train computers (OCR and

detecting objects in images)
• Computers can learn complex tasks that would require immense effort to program
• Machine Learning is limited by the availability of examples and computational

resources
• With sufficient examples and computational power, computers can learn nearly

any task
• Models are the core component Machine Learning
• A model is a method for using known examples to predict or produce inferences

on new data.
• Robots are exposed to noisy and dynamic environments, so programming a robot

to handle all situations is infeasible
• Therefore, engineers often use Machine Learning to teach robots to perform

tasks, much like the way human children learn.

52

• Supervised Learning is the most common type of machine learning.
• An example of supervised learning is classifying emails as SPAM.
• The training data is emails that are labeled as SPAM or HAM.
• A model is then created that captures the relationship between email contents

and the email label.
• The model can then predict the category for new emails.
• Reinforcement learning is commonly used in robotics because there is usually not

labeled data
• An example of reinforcement learning is teaching a robot to climb stairs.
• The robot is “rewarded” for each step that it ascends, so it learns which actions are

beneficial
• Unsupervised learning is used in data mining to discover insights about unlabeled

data
• An example of unsupervised learning is grouping flowers based on their

characteristics without knowing the flower species

53

• In recent years, Machine Learning has yielded impressive results in diverse

disciplines.
• There are many mobile apps available that let users take photos of handwritten

characters and convert them to digital text.
• Most translation software now uses machine learning to understand language

translation since there is often not a one-to-one correspondence between words
in different languages

• Prior to machine learning speech recognition was frustrating and inaccurate, now
machine learning enables robust speech recognition on a variety of devices

• Consumers applications like Google Photos and Apple Photos automatically group
photos by the people or places in them to make searching simple and intuitive

• It would be impractical to program a car to handle every situation that could
occur, but machine learning has enabled cars to self-driving cars to learn from their
experiences

54

In this lecture we covered:

Cloud computing drives many technologies transformation and provides a basis for
new emerging technologies such as Big Data

And Big Data itself drives cloud development to respond to volume and velocity of
data processing

55

The title of this module is “Distributed data Systems in Cloud Computing”.

This is Lecture 2 about Distributed File Systems.

56

Lecture 2. Distributed File Systems
This lecture describes the following main components of Distributed File Systems:
- storage types in Cloud Computing

• block,
• object,
• bucket,
• blob

with examples of their implementation:

• AWS,
• Azure,
• OpenStack

- virtualized file systems in Cloud Computing:
• LVM,
• RAID,
• NFS,
• Lustre,
• Ceph,
• Gluster,
• HDFS

with examples of their implementation.

57

Storage Types

Overview

58

Block storage
Block storage is a type of data storage where data is stored in blocks, also referred to
as volumes. Each block is treated as individual disk drive and can contain multiple
files. In this way, block storage provides a good abstraction for physical storage
devices and well suited for most of file systems. In cloud, VM instance is often
provisioned with the attached block storage of the configured or requested size.

59

Object storage
Storage architecture that manages data as objects. Each object contains data,
metadata and accessed via a globally unique identifier, typically in a form of URI or
URL. Object storage systems use namespace that is consistent across multiple
physical devices. Object storage systems usually include such additional services as
data replication and distribution, and may also support application specific access
protocols and data management. As an example, object storage infrastructure is used
by Dropbox for storing files and Facebook for storing photos.

60

Bucket storage
Bucket storage is a storage organization where data objects are stored in the basic
containers and using single global namespace, where data can be accessed with their
own methods. Bucket storage type is used by Amazon S3 and Google.

61

Blob storage
Blob storage represents a generic key-value data store, often designed for storing
large data objects. A blob (short for binary large object) is a collection of binary data
stored as a single entity in a database management system. Blob storage is used in
Microsoft Azure cloud.

62

Cloud Computing includes several storage models. Some of these come out of necessity, for
running existing software. There are also a large number of storage models which have emerged
on Cloud which are totally new, becoming possible because of the architecture of Cloud, or
becoming needed (where there was not a need before) because of the unprecedently large data
volumes found on Cloud, which simple didn’t exist before.

The first type of storage comes from the need for Root and System Drives for a VM. These are File
systems mounted on Block Storage. These need to be delivered along with a created VM and conversely
don’t really need to exist after a VM disappears. Therefore this type of storage is called Ephemeral Block
Storage (meaning it has the same lifecycle as the VM).

The second type is Additional Block Storage on which to mount File systems, not Ephemeral (Persistent).
This block storage will stick around in the cloud independent of any VMs. Presumably VMs, once created,
will mount these drives and have access to them that way. The structure of block storage must be
maintained by the actual storage implementation. In general block storage is implemented by simply
attaching to existing SAN or NAS storage devices which always provide a block interface. Or it could be
implemented in software by the CloudOS as we will see below.

The next type of storage really emerged on the cloud following the model of a tape archive. In the legacy
use of tapes, one could have multiple “archives”, one after the other, on the tape. The archive had no
structure to it, it was a sequence of bits. One could directly place a disk image onto a tape archive for
example. Or a “tar” file (which compares to a modern day ZIP file in some ways) could be placed onto a
tape archive (in fact, tar stands for Tape ARchive). Tape archives were “buckets of bits” on a sequential
magnetic media. On the cloud, we have

this same notion which we call object, or BLOB, or bucket storage. Object storage is implemented on the
cloud in clever ways to provide for replication of data for high availability. It is often the lowest cost
storage option on a cloud.

Finally, many applications need highly structured storage, like a database, for their applications. While
many applications use RDBMs systems with very complicated SQL queries, many application use very
simple databases, without complex joins or stored procedures, they need some simple way to do column
or table based lookup. As we will see later, implementing databases on a distributed architecture yields
some specific challenges and to answer these challenges using different trade-offs, there are many
different kinds of database and database-like choices.

63

The fist cloud storage model is Ephemeral Block Storage.

When one requests a VM on a Cloud, it comes with one or more drives which the OS can
mount “/” and “/usr” or “C:” and “D:” for example

These are initialized as configured by the Boot Image

They live as long as the VM does

When the VM dies, the storage dies too (hence the word “ephemeral”)

Sometimes this is called “instance store”.

64

Persistent Object or Blob Store is different from block or file storage.

Again, think about it like what we use to call a “file” or “archive” on a tape. This is a stream of
bit between archive markers. You can stream from the tape or to the tape, you can’t seek
around in within an archive.

Access to Object Storage is via API to a container (or “bucket”) at application-level, rather
than via OS at filesystem-level

Byte-level interaction is not possible, entire objects are stored or retrieved with a single
command

Filesystem level utilities (e.g. POSIX utilities) cannot interact directly with Object Storage

Object Storage is one (or potentially few in the case of multi-region deployments) giant
volume, Metadata typically lives with the object

Your application would use something like name-value pairs for the Metadata with the
Object

In object storage, there is no structure, no directory tree. It Uses a flat structure, storing
objects in containers, rather than a nested tree structure

Durability levels at scale are extremely high because usually 3 file replicas are made

The simplicity of the requirements lends for extremely scalable implementations with low
cost drives and pure software implementation, keeping costs low

65

Examples

66

Let's examine the characteristics of the Object Storage implementation in Amazon
AWS.

S3 is the name of Amazon’s Object Store System; a bucket is a container for objects
stored in S3. The object named photos/puppy.jpg is stored in the johnsmith bucket,
then it is addressable via http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

Objects consist of object data and metadata. The data portion is opaque to S3
The metadata is a set of name-value pairs that describe the object. These include
some default metadata, such as the date last modified, and standard HTTP metadata,
such as Content-Type

Keys are the unique identifier for an object within a bucket.
Every object in a bucket has exactly one key.
Think of S3 as a basic data map between "bucket + key + version" and the object itself

With object storage, one has to know what they are doing! Different Regions of AWS
behave differently with Object Storage, as the slide details.

http://johnsmith.s3.amazonaws.com/photos/puppy.jpg

67

Windows Azure also stores binary data - blobs - in containers called Blob Storage

Windows Azure provides two different kinds of blobs
Block blobs, each of which can contain up to 200 gigabytes of data. As its name suggests, a
block blob is subdivided into some number of blocks. If a failure occurs while transferring a
block blob, retransmission can resume with the most recent block rather than sending the
entire blob again. Block blobs are a quite general approach to storage, and they're the most
commonly used blob type today.

Page blobs, which can be as large at one terabyte each. Page blobs are designed for random
access, and so each one is divided into some number of pages. An application is free to read
and write individual pages at random in the blob. In Windows Azure Virtual Machines, for
example, VMs you create use page blobs as persistent storage for both OS disks and data
disks.

Applications can access blob data in several different ways
Directly through a RESTful (i.e., HTTP-based) access protocol. Both Windows Azure
applications and external applications, including apps running on premises, can use this
option.

Using the Windows Azure Storage Client library, which provides a more developer-friendly
interface on top of the raw RESTful blob access protocol. Once again, both Windows Azure
applications and external applications can access blobs using this library.

Using Windows Azure drives, an option that lets a Windows Azure application treat a page
blob as a local drive with an NTFS file system. To the application, the page blob looks like an
ordinary Windows file system accessed using standard file I/O. In fact, reads and writes are
sent to the underlying page blob that implements the Windows Azure Drive

68

The OpenStack Object Store project, known as Swift, offers cloud storage software to store
and retrieve lots of data with a simple API. It's built for scale and optimized for durability,
availability, and concurrency across the entire data set. Swift is ideal for storing unstructured
data that can grow without bound.

Swift provides redundant, scalable object storage using clusters of standardized servers
capable of storing petabytes of data

Objects and files are written to multiple disk drives spread throughout servers in the data
center, with the OpenStack software responsible for ensuring data replication and integrity
across the cluster.

Swift has many features for both end users and sysadmins running the system.

Versioned writes

CORS
ACLs

Arbitrarily large objects
Static website hosting
Signed, expiring URLs
Custom metadata

Bulk operations
Multi-range requests

69

Cinder is a Block Storage service for OpenStack. It's designed to allow the use of either a
reference implementation (LVM) to present storage resources to end users that can be
consumed by the OpenStack Compute Project (Nova).

The short description of Cinder is that it virtualizes pools of block storage devices and
provides end users with a self service API to request and consume those resources wit

Architected as the application storage for performance sensitive workloads, Cinder is the
project name for the block storage service within OpenStack.

Different than the Swift object storage service, Cinder presents persistent block level storage
devices for use with OpenStack compute instances.

The block storage system manages the creation, attaching and detaching of the block devices
to servers.

Block storage volumes are fully integrated into OpenStack Compute and the Dashboard
allowing cloud users to manage their own storage needs.

70

File Systems in Cloud Computing

Overview

71

We will look closer at some popular file systems for cloud.
Each of them has a number of benefits when implemented in specific cloud
environment.

Most applications need filesystems because servers have filesystems. Most
filesystems need block storage upon which to mount. Therefore it is no surprise that
filesystems with underlying block storage are popular cloud storage options.

A simple approach is to use server or NAS based technologies extended directly to
the cloud for the block filesystems. That is tie a number of drives together, and
maybe access across the network. As the slide lists, LVM, RAID, and NFS are all
examples of virtualized filesystems on block storage commonly found in smaller
clouds.

Larger clouds utilize distributed file systems, which have a high degree of redundancy
across the cloud they are serving. As the slide shows, they can be file or object based
and there are many examples of both popular in cloud implementations.

HDFS (Hadoop Distributed File System) is specifically designed for large scale data
processing on massively parallel clusters. Can be used in cloud for high performance
data input/output, in particular for CDN (Content Distribution Network)

72

LVM

73

Logical Volume Manager is very popular because it is commonly found in Linux. It
implements block level host-based virtualization approach

Allows disks to be added or replaced without downtime and service disruption.

Supports file systems extension and dynamic re-sizing, data backup, creation and
dynamic resizing of logical volumes

Suitable for managing large disk farms

74

This slide illustrates the Logical Volume Management Architecture

Tools and utilities are in user space

Device mapper framework implements a Linux kernel driver for different mappings

75

Logical Volume Management Implementation

LVM project is implemented in two components:

In user space Based on FUSE (Filesystem in Userspace)

In kernel space which Implements device mapper framework

76

This slide diagram the Logical Volume Manager using Filesystem in User Space

As can be seen by the diagram, the key is a that the Loadable kernel module FUSE
provides a bridge to actual kernel interfaces

77

For performance reasons, there is an implementation available of LVM in kernel space

This slide speaks to the system calls when implemented this way

78

RAID

79

Another common scheme for virtualizing storage is RAID (Redundant Array of
Independent Disks)

RAID is a software layer which groups together disks and implements various levels of
replication and distribution of data across the drives.

RAID schemes provide different balance between the key goals: Reliability, Availability,
Performance, Capacity

80

The slide describes the differences in common RAID schemes:
RAID0

RAID1

Block-level striping without parity or mirroring
Performance optimization

Mirroring without parity or striping
Improve reliability and availability

RAID1+0
Referred to as RAID 1+0, mirroring and striping

RAID5
Block-level striping with distributed parity
Distributes parity on different disks
Requires at least 4 disks for normal operation, can withstand 1 disk
failure

RAID5+0
Referred to as RAID 5+0, distributed parity and striping

81

NFS

82

The Network File System is an open standard defined in RFCs.

NFS is a common module in Linux kernel.

NFSv3 provides:

Support for 64-bit file sizes and offsets, to handle files larger than 2GB Support TCP protocol
and asynchronous writes on the server

NSFv4 and NFSv4.1 provide:

Performance improvements, mandates strong security, and introduces a stateful protocol

Supports clustered server deployments including scalable parallel access to files distributed
among multiple servers (pNFS extension)

Filesystems have characteristic which application developers have come to depend on. For example,
when the “write” call returns from the kernel to the user application, the user

application assumes that the data is actually written, or at least that a subsequent read of the same
data will return what was just written. These behavioral assumptions are part of the POSIX
specification.

When clusters of disks are used, and when filesystems are exported across the network, it becomes
challenging to live up to all of the POSIX filesystem requirements. Network filesystems which had
correct behavior became very popular. The SUN Network File System (NFS) was one of the first and
most reliable POSIX-compliant distributed file systems.

As the slide lists, NFS is specified by a number of RFCs and the protocols use to implement NFS are
well known and understood. Over the years NFS has become a “go to” network filesystem.

Notably, NFS has been extended to support clustered server deployments including scalable parallel
access to files distributed among multiple servers (pNFS extension). This technology is a key part of
for example the IBM private cloud implementation.

83

Lustre

84

Lustre is a type of parallel distributed file system used for large amount of data and
can work with large computer clusters.
Lustre name is derived from two words "Linux" and "cluster".
Lustre is often used as a file system for supercomputers and multi-site computer
clusters.
Lustre storage cluster may contain thousands of nodes and Petabytes of storage
volume.
Lustre architecture includes three main components: metadata servers that stores
filesystem information (files and directories) as well as access rights, object storage
servers, and clients that access and use data.
Lustre uses unified namespace compatible with POSIX semantics.

85

The MDS server makes metadata stored in one or more MDTs.
The MDT stores metadata (such as filenames, permissions) on an MDS.
The OSS provides file I/O service, and network request handling for one or more local
OSTs
The OST stores file data as data objects on one or more OSSs
A groups of OSS are wrapped into Logical Object Volume (LOV)

The main file system components inside of Lustre are described in this slide.
Note one of the most significant elements of the design is the notion of many Object
Storage Servers. This lends to the scalability of the design.

86

This slide illustrates the scalability design introduced in the previous slide.
In general, highly available and high scalability concepts are both used in large
deployments. Here a Lustre deployment at scale is illustrated showing multiple
networks between clients and the Lustre cluster, and also the number of I/O Servers
(paired as fail over groups).

87

1. 7 of Top 10
Over 40% of Top100
Demonstrated scalability
2. 190 GB/sec IO
26,000 clients
Systems with over 1,000 nodes

The high performance computing community has been working on pushing the limits
of performance and scalability and Lustre has achieved popularity within that
community. Lustre has significant momentum in the HPC community and is actually
the lading distributed filesystem for those systems, as the slide details.
You can see impressive scale-out and high performance numbers achieved.

88

Ceph

89

90

Ceph Object Storage and/or Ceph Block Device services are modules to be integrated
into Cloud Platforms, deploy a Ceph Filesystem or use Ceph for another purpose, all
Ceph Storage Cluster deployments begin with setting up each Ceph Node, your
network and the Ceph Storage Cluster.
A Ceph Storage Cluster requires at least one Ceph Monitor and at least two Ceph OSD
Daemons. The Ceph Metadata Server is essential when running Ceph Filesystem
clients.
Ceph stores a client’s data as objects within storage pools. Using the CRUSH algorithm, Ceph
calculates which placement group should contain the object, and further calculates which
Ceph OSD Daemon should store the placement group. The CRUSH algorithm enables the
Ceph Storage Cluster to scale, rebalance, and recover dynamically.

91

1. Designed to integrate object, block and file storage servers from a single
distributed computer cluster
2. Ceph maps file names and directories across RADOS cluster
Ceph block storage can be directly mounted to a VM and provides automatic
data replication.
3. Ceph utilizes a highly adaptive distributed metadata cluster, to improve
scalability

It was acquired by Red Hat in 2014

Ceph is an example of fully distributed storage architecture (not having central
management) and the file system designed to integrate object, block and file storage
servers from a single distributed computer cluster.
Ceph distributed object storage is built around the Reliable Autonomic Distributed
Object Store (RADOS) that support data replication. Ceph block storage can be
directly mounted to a VM and provides automatic data replication across the storage
cluster.
Ceph file system runs on top of the object or block storage and maps file names and
directories across RADOS cluster.

92

Ceph has three components
Clients: Near-POSIX file system interface
Cluster of OSDs: Store all data and metadata, Uses CRUSH function to assigns

objects to storage devices
Metadata server (MDS) cluster : Manage namespace (file names)

It is designed for high availability and scalability using key design patterns:
Separating data and metadata
Dynamic distributed metadata management
Reliable Autonomic Distributed Object Storage

PGs are assigned to OSDs by CRUSH

93

Ceph separates data and metadata operations
Data/file request includes request to MDS to obtain file
components/nodes location and metadata

94

Client synchronization
• If multiple clients (readers and writers) use the same file, the MDS will revoke

any previously read and write requests until acknowledged by OSD
• Forces clients synchronization

Ceph uses an effective client synchronization model.
The client makes a request to the Metadata Server which translates the file name into
inode (inode number, file owner, mode, size, …)
Then the CRUSH (Controlled Replication Under Scalable Hashing) module goes to
work.
CRUSH is A scalable pseudo-random data distribution function designed for
distributed object-based storage systems
Maps objects to Placement groups (PGs) using a simple hash function
It returns inode number, map file data into objects.
The client then accesses the Object Storage Device, as can be seen by the illustration.

95

Gluster

96

1. Provides simple functionality and leaves all file management functionality to clients
2. Can create a global namespace from a set of clustered storage building blocks that
include direct attached storage, JBOD (Just a Bunch of Disks), and SAN fabrics
3. Written in user space and uses FUSE to hook itself with VFS (Virtual File System)
layer

Gluster uses existing disk file systems like ext3, ext4, xfs, etc. to store the data
Scale up to petabytes of storage which is available under a single mount point

Acquired by Red Hat in Fall 2011

Gluster storage and files system is an Open Source platform for scale-out public and
private cloud storage. Similar to Lustre, the Gluster name is derived from two words
“GNU” and “cluster”. Gluster aggregates heterogeneous storage server connected
over Ethernet or Infiniband network.

The Gluster file system provides simple functionality and leave all file management
functionality to clients.

97

 GlusterFS is the distributed file system for commodity hardware

 Each server plus attached commodity storage (configured as DAS, JBOD, or SAN)
is considered to be a node.

 Capacity is scaled by adding additional nodes or adding additional storage to
each node.

 Performance is increased by deploying storage among more nodes.

 High availability is achieved by replicating data n-way between nodes.

98

Gluster is a scale-out network-attached storage file system. It has found applications
including cloud computing, streaming media services, and content delivery networks.
GlusterFS was developed originally by Gluster, Inc., then by Red Hat, Inc., after their
purchase of Gluster in 2011.

Think of Gluster as an alternative to Swift and Cinder in OpenStack.

GlusterFS aggregates various storage servers over Ethernet or Infiniband interconnect
into one large parallel network file system.

Gluster stores data as files and folders, and uses tokens to identify the location of a
file within the cluster. Tokens, which are stored as extended attributes of a file, are
themselves distributed across directories thereby enhancing load balancing while
avoiding the need for a dedicated metadata server. When a client accesses a file,
Gluster translates the requested file name to a token and access the files directly.

Gluster Filesystem enables you to configure the cluster to replicate files across
storage devices, thereby high availability to files and data in your storage
environment.

99

HDFS

100

The Hadoop Distributed File System (HDFS) is a very different sort of “filesystem”
optimized for a specific class of applications, those are Map Reduce and similar “Big
Data” systems like “no-SQL” databases.
It is a scalable distributed file system for large scale data analysis
A part of the Open Source Apache Hadoop suite

The primary storage used by Hadoop MapReduce applications
Can run on commodity hardware assuring high fault-tolerant

101

File content is split into blocks (default 128MB, 3 replica).
NameNode maintains the namespace tree and the mapping of file blocks to
DataNodes.
Files and directories are represented on the NameNode by inodes (permissions,
modification and access times, namespace and disk space quotas).
Namespace is a hierarchy of files and directories.

HDFS cluster consists of a single master node/server that runs NameNode and
multiple DataNodes, usually one per physical node in the Hadoop cluster. User data
are stored in the files, externally they are exposed through namespace managed by
the NameNode. To access a file, a user client needs to request a file location or
metadata from the NameNode, and after that it can send read or write request to the
DataNode directly. DataNodes create data blocks and do replication based on
instructions from NameNode.

102

This lecture has explored the various ways that Storage is virtualized and
implemented for large scale, distributed systems, including Cloud.
We explored the storage primitive which was virtualized, and saw that some systems
concentrate on virtualizing files, and some systems concentrate on virtualizing blocks.
We saw that the virtualization function can run in a variety of places in the
architecture. It can run in the host, in the network, or all the way back where the
drives are.
We saw that virtualization can be placed “in band” of the storage operations, and for
scale, is usually placed “out of band”.
There are many types of storage primitives which, after all the virtualization has
occurred, end up getting exposed to applications. Objects (buckets, blobs), blocks, or
file systems
There are many ways to layer the file system in leveraging the virtualization and
replication in a cluster. The capability can be close to the operating system such as
LVM or across the network like NFS.
Finally, we took a hard look at several of the New file systems optimized for managing
heterogeneous cloud storage farms

103

This Lecture 3 is about NoSQL Databases in Cloud Computing.

104

Lecture 3. NoSQL Databases in
Cloud Computing

This lecture is dedicated to:

• data structures and data models;
• SQL/Relational databases;
• ACID and BASE semantics;
• CAP theorem for distributed databases;
• NoSQL database types:

• columnar databases (BigTable, Hbase, Cassandra);
• document oriented databases (MongoDB);
• key-value databases (Accumulo);
• graph databases (Neo4j).

105

Overview

Let’s start from overview of data Structures and Models…

106

Big Data systems and applications will use and/or produce different data types that
are defined by their origin or target use. In its own turn, different stages of the data
transformation will also use or produce data of different structures, models and
formats.

107

The following data types can be defined:
• data described via a formal data model, which are the majority of structured data,
data stored in databases, archives, etc.
• data described via a formalized grammar (e.g. machine generated textual data or
forms)
• data described via a standard format (many examples of digital images, audio or
video files, also formatted binary data)
• arbitrary textual or binary data

108

The following slides will explain examples of various data models with
• Structured data (e.g. relational)
• Unstructured data (e.g. text or HTML pages)
• Semi-structured Data (e.g. tables)
• Key-value pairs
• XML: Hierarchical data (e.g. document)
• RDF: Semantic data (e.g. RDF, triple store)

In the following we will look at some examples

Here just to mention about unstructured data which example is textual data

Although textual data are widely used everywhere, first of all, for intelligent reporting
and communication between humans in natural language, they have almost no
explicit structure. It is also possible that machine generated text has some formal
grammar but it is rather common that text created by humans will contain many
grammatical irregularities.

Web pages or HTML documents represent another example of unstructured text-type
data. Currently query operations over textual data are quite simple, an example of
which are Search Engine operations. You can use simple Boolean search control
commands in the search form (e.g. check advanced Google search for this) but at the
end that simply searches in the huge but still flat index database.

109

Now let us look deeply at the way data is structured (or not)

Now to look at Structured Data

Structured data is the most widely used in data management applications.

Essentially structured relational data are tables where rows are records and columns
are properties

Structured data can be stored in SQL/relational databases

Structured data simplify many operations on data analysis and reports generation –
the major uses of SQL databases.

The slide illustrates Structured Data. Not how the data fits perfectly into tables. Note
that there is one table which “joins” the other two tables together, via a key. These
are all very common types of techniques in Structured Data.

110

Next we will look at Semi-structured data.

Think of semi-structured data defined as data having some structure but cannot be
used with the structural databases.

The reasons for this can be many. The slide presents an example where the semi-
structured data source has a structure where there are two parts, that is apparent to
any software. The first part is intended to be a product model, that is followed by
second part which is meant to a description. The “two part” aspect is the “structure”
in this example.

The “semi-structured” part is that the text content – the model and the description –
are text of “regular language” – while they are perfectly human readable, they don’t
have enough structure to be machine readable.

While easily fitted into the table, the data is not as useful as it might be.

111

One often hears about data being structured in “Key Value Pairs”. We will define that.

In the key-value dataset the data are stored as pairs of key and value, where the KEY
is structured and the VALUE is not structured.

This allows flexibility in defining the overall data structure.

Key-value data can be converted into structured form, semi-structured form or text.

The Table in the slide illustrates an example of a key-value data set.

One can see this is improvement over the semi-structured data set, in that the first
part of the data has been put in a rigid format, where it can be used as a “key”, that is
matched up with a corresponding set of data which may have a little or a lot of
structure. The point is the Key makes it easy to organize this data specifically to divide
it up and work on figuring out the data set which the keys are paired with.

Key-value data structures are specifically adopted for using with MapReduce and
Hadoop. The reason for this is that key-value data can be easily split and processed in
parallel.

Please, see the more detailed Lecture on MapReduce and Hadoop. For now it should
be logical and a take-away that the key-value structure leads itself to some kind of
divide and conquer algorithm, of which one of the most popular is called MapReduce.

112

XML (eXtensible Markup Language) defines a set of rules for encoding documents in a
format that is both human-readable and machine-readable. The format of the XML
Structure is defined by another file, called the XML Schema. Once the Schema is
know, then one can read or write an XML document conforming to that Schema. The
XML Schema which defines the data model and is referenced in the document can be
a separate file, or can be a part of the document itself in its own section.

For computers, XML is a very un-compact form for structuring data, XML documents
add a lot of overhead to data encoded using XML. If one puts binary data in an XML
structure – anything from a compressed photo to a Java object – it will be encoded
using text characters and become very large and unwieldy. Modules which encode
and decode XML, and serialize/de-serialize XML for transmission and reception,
respectively, while not complicated can require a large budget of computing and
memory resources.

For humans, while XML is theoretically readable and writeable, it is not very human
friendly, and rarely is XML interacted with directly, using tools as a layer presenting a
much more useable interface are very common.

113

A more sophisticate data structure is called “Semantic Data”. Semantic Data is
represented in a format called Resource Description Framework (RDF).

RDF is a format for expressing a relation between subject and object.

It was initially designed as a metadata data model and currently used as the main
format for describing relations in the Semantic web and for knowledge description.

The core of RDF is a statement in a form of triple “subject-predicate-object” which
allows describing complex and conceptual relations between elements.

The collection of RDF statements represents a directed graph.

A Social graph can also be described with the RDF triples like this “person1-
isFriendOf-person2”.

These subject-predicate-object and graph-based collections of subject-predicate-
object entities add considerable information into the data description. Many studies
have been done in the Semantic Web project, that the information added into the
data description using these relationships enables one to utilize the information as a
knowledge-base, not just a data-base. Questions such as “which of these belongs
together” and “ which thing is most similar to this other thing”. One can understand
more of what the data means.

114

Databases

SQL/Relational

115

SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to
communicate with a database.

According to ANSI (American National Standards Institute), it is the standard language
for relational database management systems.

In the end it is a special-purpose programming language

SQL inherently relies on being able to interact with the data in a relational way. There
are many commands such as JOIN, SELECT, UPDATE, DELETE, INSERT, WHERE which
assume there are relations in the data (or database).

SQL is widely used for enterprise and business data management and reporting.

SQL has a long history and is specified by a number of standards

The slide show many of the milestones of SQL.

116

An SQL Database is quite complex.

Data Manipulation Language (DML)
In SQL, the data manipulation language comprises the SQL-data change statements,
which modify stored data but not the schema or database objects.

Data manipulated with Select, Insert, Update, & Delete statements
Data Aggregation
Compound statements
Functions and Procedures
Explicit transaction control

Data Definition Language (DFL)
Manipulation of persistent database objects, e.g., tables or stored procedures, via the
SQL schema statements, rather than the data stored within them.

Schema defined at the start like: Create Table (Column1 Datatype1, Column2
Datatype 2, …)
Constraints to define and enforce relationships

Primary Key
Foreign Key
Etc.

Triggers to respond to Insert, Update , & Delete
Stored Modules

117

Traditionally the database has been a system which one programs with SQL and
which supports transactions.

The underlying architecture which makes this possible is a Relational data structure.
Relational supports the what the constructs (like SELECT and JOIN and WHERE) need
to be implemented.

Relational is a very structured group of tables.

Tables (also called entities) are made up of columns and rows (tuples)

Tables have constraints

Relationships are defined between tables

This is illustrated in the Slide.

Multiple tables being accessed in a single query are "joined" together

Normalization is a data-structuring model used with relational databases

Ensures data consistency - Removes data duplication

118

The Relational Database has many Advantages:

• Simplicity, easy, well defined programming
• Robustness
• Flexibility
• Performance
• Easy scalable up on one server, but problems with scalability down and horizontally
• Compatibility in managing generic data

However! To offer all of these, relational databases have to be incredibly complex
internally

119

It is not hard to find SQL Database Examples

Commercial

• IBM DB2
• Oracle RDMS
• Microsoft SQL Server
• Sybase SQL Anywhere

Open Source (with commercial options)

• MySQL,
• Postgres,
Ingres

Majority of enterprise and businesses in the world run SQL databases!

120

-> Best way to provide ACID and a rich query model is to have the dataset on a single
machine.

-> However, there are limits to scaling up (Vertical Scaling).

-> Past a certain point, an organization will find it is cheaper and more feasible to
scale out (horizontal scaling) by adding smaller, more inexpensive (relatively) servers
rather than investing in a single larger server.

-> A number of different approaches to scaling out (Horizontal Scaling).

-> DBAs began to look at master-slave and sharding as a strategy to overcome some
of these issues.

121

A SQL Database is hard to scale and does not fit architecturally well on the Cloud

This diagram investigates two different scenarios. One of Database Instance(s) on
Cloud VM’s (IaaS Paradigm), and one of Database as a Service (PaaS Paradigm).

As one goes from requirements of lower scalability to higher scalability, classic DBMS
systems run into challenging problems.

This chart indicates exactly what people do when their scalability needs increases,
and still try to use the DBMS profile

Essentially, the field of Big Data was coined for when Transaction Systems, and Data
Warehouses, ran into troubles with large data and a processing environment set up
across a distributed system, like the cloud.

122

This slide illustrates the Evolution of Databases, and introduces a simple way to think
about OLTP and OLAP and what is happening with Databases on the Cloud

Where the meanings are:

OLTP – Online Transactional Processing
OLAP – Online Analytic Processing

-> Databases could be made to grow by slicing up (or “sharding”) datasets.

-> However, the people with the largest datasets (terrabyte/petabyte) began to
realize that sharding was putting a bandage on their issues. The more aggressive
thought leaders (Google, Facebook, Twitter) began to explore alternative ways to
store data. This became especially true in 2008/2009.

-> These datasets have high read/write rates.

-> With the advent of Amazon S3, a large respected vendor made the statement that
maybe it was okay to look at alternative storage solutions other that relational.

-> All of the NoSQL options with the exception of Amazon S3 (Amazon Dynamo) are
open-source solutions. This provides a low-cost entry point to ‘kick the tires’.

123

BASE and ACID Paradigms

124

Most Databases support the notion of a transaction. Saying that, many of the “NoSQL
Databases” don’t support transactions, across the NoSQL cluster they may have an
“eventual consistency” model.

So what does it mean to support a Transaction?

Transactions exhibit ACID Properties where ACID is an acronym as follows:

Atomic – All of the work in a transaction completes (commit) or none of it completes

Consistent – A transaction transforms the database from one consistent state to
another consistent state. Consistency is defined in terms of constraints.

Isolated – The results of any changes made during a transaction are not visible until
the transaction has committed.

Durable – The results of a committed transaction survive failures

Relaxing ACID properties is a way some systems compromise transactions to achieve
higher performance and scalability.

125

Now to look more closely at the BASE and ACID Paradigm Shift
We studied ACID properties for implementing transactions. Not accidentally named
as an opposite to ACID, the acronym BASE is defined as:
• Basically Available: Nodes in the a distributed environment can go down, but the
whole system shouldn’t be affected
• Soft State: The state of the system and data changes over time
• Eventual Consistency: Given enough time, data will be consistent across the
distributed system
It is meant to be an “different behavior” of a database to allow for more
performance, scale, geographic distribution of data, and so on

Let’s compare BASE and ACID
ACID is characterized by the following properties:

• Strong consistency.
• Less availability.
• Pessimistic concurrency.
• Complex

BASE is characterized by the other properties:
• Availability is the most important thing
• Weaker consistency (Eventual)
• Best effort
• Simple and fast
• Optimistic

126

CAP Theorem

127

Why is it hard to implement things like Transactions on Databases in the Cloud?
Because a Cloud is a distributed system,.

A Professor named Brewer was studying that area of implementing distributed
databases and published the CAP Theorem

He asserted that

“There are three core systemic requirements that exist in a special relationship when
it comes to designing and deploying applications in a distributed environment.”

He then asserted that

A distributed system can support only two of the following characteristics (in any one
design):

Consistency

All nodes see the same data at the same time
Availability

Node failures do not prevent survivors from continuing to operate
Partition tolerance

The system continues to operate despite arbitrary message loss

The acronym for this is CAP

128

Let us step through some examples as illustrated in the slide.

First we look at an app connected to data that resides in two storage services. All data
is in both places.

Because the data is online and connected to the app in both places, the app sees data
consistent and available no matter which storage service fulfils the read or write
actions

I do not need to partition the data, since it is all online to my app.

129

In this example, a partition is made, some of the data is old now. If one accesses and
is served by the service which accidentally has old data, that’s what one will get – old
data

We tried to be available and partitioned, but we get not consistent out of that.

130

In this case, as illustrated in the slide, if one insists on consistency one has to wait for
all the storage services to synchronize. This means during the synchronization
process, the data is not available (e.g., one is waiting).

It is now easy to see why consistency, partitioning, and availability are related.

131

This is the essence of the challenge that databases have on cloud platforms with large
datasets. It is called the Distributed (Cloud) Databases Theorem, or more precisely
the CAP Theorem.

It states that In Cloud Computing, everything has to work at planet sized, large scale.
Areas which seem to be at odds with each other in a large database deployment are:
• Consistency: all clients should see the current data regardless of updates or deletes
• Availability: the system continues to operate as expected even with node failures
• Partition Tolerance: the system continues to operate as expected despite network or
message system failures

Many developers were wondering how to fix this problem.
• Partitionability: divide nodes into small groups that can see other groups, but they
can't see everyone.
• Consistency: write a value and then you read the value you get the same value back.
In a partitioned system there are windows where that's not true.
• Availability: may not always be able to write or read. The system will say you can't
write because it wants to keep the system consistent. To scale you have to partition,
so you are left with choosing either high consistency or high availability for a
particular system. You must find the right overlap of availability and consistency.

Choose a specific approach based on the needs of the service.

132

The diagram on this slide illustrates the CAP Theorem visibly. It also categorizes
commercial and open source implementations into one of the three CAP Theorem
categories.

133

NoSQL

Overview

134

NoSQL Definition

Next Generation Databases mostly addressing some of the points:

being non-relational, distributed, open-source and horizontal scalable.

The original intention has been modern web-scale databases.

The movement began early 2009 and is growing rapidly.

Often more characteristics apply as: schema-free, easy replication support, simple
API, eventually consistent / BASE (not ACID), a huge data amount, and more.

135

Another way to look at NoSQL is by Distinguishing Characteristics

Large data volumes

Google’s web scale “Big Data”

Scalable replication and distribution

Potentially thousands of machines
Potentially distributed around the world

Queries need to return answers quickly

Not necessary precisely
Employing probabilistic search/decision

Mostly query, few updates
Asynchronous Inserts and Updates
Schemaless
Paradigm shift from ACID transaction properties to BASE
CAP Theorem
Open source development

We will cover several of these subject in more detail next

136

You will note many of the databases in the CAP Theorem quantification are called
“NoSQL Databases”.

This curious term refers to A form of database management system that is non-
relational. These Systems are often schema-less, avoid joins, and therefore are easier
to scale.

As a bit of history, Carlo Strozzi used the term NoSQL in 1998 to name his lightweight,
open-source relational database that did not expose the standard SQL interface.

Strozzi suggests that, as the current NoSQL movement “departs from the relational
model altogether; it should therefore have been called more appropriately NoREL”.

There are Four Major Flavors

Key Value Store
Graph
BigTable
Document Store

137

NoSQL Types

138

Next we will dive into NoSQL Databases – first we look at major types

Discussing NoSQL databases is complicated because there are a variety of types:

Column Store – Each storage block contains data from only one column
Document Store – Stores documents made up of tagged elements
Key-Value Store – Hash table of keys
Graph Databases – Graph

139

This slide shows the four major types of noRel databases along with how the data
structures inside them turn out looking.

In Key Value Store Data is stored in key/value pairs
Designed to handled large data quantities and heavy load
Based on Amazon’s Dynamo Paper
Example: Voldermort, developed by LinkedIn

In Graph the Focus is on modeling data and associated connections
Based on mathematical principles of Graph Theory
Example: FlockDB developed by Twitter

In BigTable / Column Data is grouped in Columns, not Rows
Based on the BigTable paper from Google
Example: Cassandra, originally developed by Facebook, now an Apache project.

Finally in Document Data is stored as whole documents
JSON and XML are popular formats
Maps well to Object Oriented programming model
Example: CouchDB Apache project

140

One way to classify these different approaches is illustrated on the slide.

The different system each have a slightly different data size and complexity tradeoff.

Which means, the more complex of an analysis one wants to do on a data set, the
smaller the data set will be that that data base can understand.

Each technique fits a certain tradeoff point – this is illustrated.

141

BigTable / Column

142

First we will focus on one of the first NoSQL solutions, based n early work done by Google. It
is called BigTable.

There is an Open Source version of this called Apache HBase

Data are replicated to multiple nodes (therefore identical and fault-tolerant) and can be
partitioned

Down nodes easily replaced
No single point of failure

BigTable is Easy to distribute
Doesn’t require a schema
And Can scale up and down

BigTable Relies on Relaxation of the data consistency requirement in CAP

-> As the data is written, the latest version is on at least one node. The data is then
versioned/replicated to other nodes within the system.

-> Eventually, the same version is on all nodes.

143

Here is an example of how BigTable is implemented in a Cluster. Please see the
illustration in the slide.

Note that there are one or more control nodes (or machines, or VMs) running
Scheduling, Locking, and the File System

The other N number of nodes (or machines, or VM’s) are set up to work with the
scheduler and the Filesystem, each working on a part (“chunk”) of the data

Tablets are explained a little later.

144

A table in Bigtable is a sparse, distributed, persistent multidimensional sorted map

This Map indexed by a row key, column key, and a timestamp

Timestamps are Used to store different versions of data in a cell

New writes default to current time, but timestamps for writes can also be set
explicitly by clients

There are several Lookup options. Examples are:

“Return most recent K values”
“Return all values in timestamp range (or all values)”

145

In BigTable, Rows, Columns, Column Family have special structure

Rows are maintained in a sorted lexicographic order

Everything is a String
Every row has a single key
Row ranges dynamically partitioned into tablets
Rows close together lexicographically usually on one or a small number of
machines

Columns are grouped into column families

Column key = family:qualifier
Column names are arbitrary strings
Data in the same locality group are stored together
Unbounded number of columns

Column Families Must be created before any column in the family can be written

They are the Basic unit of access control and usage accounting

146

BigTable requires a collection of modules to form a complete solution

The building blocks are

A filesystem – Google GFS (Apache Hadoop DFS = HDFS)
A Work Queue - Google WorkQueue (scheduler) - Proprietary
A Lock service (Chubby or Apache ZooKeeper): lock/file/name service

Chubby uses Paxos
Uses 5 replicas: need a majority vote to be active

Zookeeper uses ZAB (ZooKeeper's Atomic Broadcast)
An SSTable - String to String Table
Tablets - Dynamically partitioned range of rows, built from multiple SSTables
A Scheduler (Google proprietary)

147

The Functional Roles in a BigTable Cluster are as follows:

The BigTable Master

Assigns tablets to tablet servers
Detects addition and expiration of tablet servers
Balances tablet server load. Tablets are distributed randomly on nodes of the
cluster for load balancing.
Handles garbage collection
Handles schema changes

The Tablet Servers

Each tablet server manages a set of tablets
Typically between ten to a thousand tablets
Each 100-200 MB by default

Handles read and write requests to the tablets
Splits tablets that have grown too large
Compaction (or table merge operation)

148

A Closer Look at the SSTable and the Tablet

SSTable – String to String Table Basic building block of BigTable

On-disk file format representing a map from string to string Persistent, ordered immutable map from
keys to values

Stored in GFS

Sequence of blocks on disk plus an index for block lookup Can be completely mapped into memory

Supported operations:

• Look up value associated with key
• Iterate key/value pairs within a key range

Tablet

Dynamically partitioned range of rows Built from multiple SSTables

Distributed over tablet servers Unit of load balancing

Tablets split and merge automatically based on size and load or manually

Clients can choose row keys to achieve locality

The slide has a detailed illustration which shows ore details on these components as well as how they
fit together.

149

As Mentioned, Apache Hbase is Open-source clone of BigTable
Initially, it’s Implementation was hampered by lack of file append in HDFS
Workarounds have been posted to this issue.

150

ZooKeeper is a tool for clustering of Hbase

The slide has an illustration of a ZooKeeper Cluster showing Region Servers and HDFS.

HBase uses ZooKeeper to manage the authority on cluster state

The Region Servers and Master discovery are managed by ZooKeeper

HBase clients connect to ZooKeeper to find configuration data

151

Cassandra gained very large popularity as an implementation of BigTable

It utilizes a DHT based system much like the Dynamo system Amazon describes that
controls many of the modules of AWS

Cassandra was Originally developed at Facebook

Now it is an Apache Open Source project

It Follows the BigTable data model: column-oriented

It Uses the Dynamo Eventual Consistency model

It is very portable, Written in Java

It is Open-sourced and exists within the Apache family

Cassandra Uses Apache Thrift as it’s API

Additionally, it has Good integration with Hadoop stack: Pig Latin and Hive work there
and here

152

Cassandra Properties in more detail

Cassandra is very capable. It is based on the Big Table data model

It implements:

High availability (eventual consistency)
Eventually consistent, tunable consistency
Partition tolerant
Linearly scalable
Uses consistent hashing (logical partitioning) when clustered
Writes directly to the FS
No single point of failure
Flexible partitioning, replica placement
Multi data center support

153

The Cassandra architecture can be described as follows:

The top layer is designed to allow efficient, consistent reads and writes using a simple API.
The Cassandra API is made up of simple getter and setter methods and has no reference to
the database distributed nature.

Another element in the top layer is Hinted hand-off. This occurs when a node goes down -
the successor node becomes a coordinator (temporarily) with some information (`hint')
about the failed node.

The middle layer contains functions for handling the data being written into the database.
Compaction tries to combine keys and columns to increase the performance of the system.
The different ways of storing data such as Memtable and SSTable are also handled here.

The core layer deals with the distributed nature of the database, and contains functions for
communication between nodes, the state of the cluster as a whole (including failure
detection) and replication between nodes.

Deeper look at HintedHandoff

Cassandra Hinted hand off is an optimization technique for data write on replicas
When a write is made and a replica node for the key is down

Cassandra write a hint to a live replica node

That replica node will remind the downed node of changes once it is back on line
HintedHandoff reduce write latency when a replica is temporarily down
HintedHandoff provides high write availability at the cost of consistency

A hinted write does NOT count towards ConsistencyLevel requirements for ONE,
QUORUM, or ALL

If no replica nodes are alive for this key and ConsistencyLevel.ANY was specified, the
coordinating node will write the hint locally

154

Now to look at the Cassandra Data Model

The Column is a basic unit of storage
There’s a single structure used to group both the Columns and SuperColumns. Called a
ColumnFamily (think table), it has two types, Standard & Super

The Key: is the permanent name of the record

The Keyspace: is the outer-most level of organization.
This is usually the name of the application. For example, ‘Acme' (think database name)

Things to know about Cassandra:

-> Keys have different numbers of columns, so the database can scale in an irregular way.
-> Simple and Super: super columns are columns within columns.
-> Refer to date by keyspace, a column family, a key, an optional super column, and a
column.

155

Cassandra and Consistency

A previous covered eventual consistency which is the mode Cassandra operates in.

Cassandra has programmable read/writable consistency

“One”: Return from the first node that responds

“Quorom”: Query from all nodes and respond with the one that has latest timestamp
once a majority of nodes responded

“All”: Query from all nodes and respond with the one that has latest timestamp once
all nodes responded. An unresponsive node will fail the node

-> http://www.slideshare.net/julesbravo/cassandra-3125809
-> Have a good simple benchmark to show to demonstrate difference between
Cassandra and MySQL

http://www.slideshare.net/julesbravo/cassandra-3125809

156

Cassandra Scales because of its Consistent Hashing architecture (Dynamo DHT Style)

Partition uses consistent hashing

Keys hash to a point on a fixed circular space

The Ring is partitioned into a set of ordered slots and servers and keys hashed over
these slots

Nodes take positions on the circle.

The slide has an illustration and an example of the circular space ranges.

157

The Gossip Protocol is a method to resolve this communication chaos

Cassandra uses this Most preferred communication protocol in a distributed
environment

In Gossip:

All the nodes talk to each other peer wise
There is no global state
No single point of coordinator.
If one node goes down and there is a Quorum load for that node is shared among

others
It is a Self managing system
If a new node joins, load is also distributed

The slide has an illustration which shows the Protocol, and also provides an example

of how it works.

158

Document

159

Document oriented databases are another architecture of database.

They are an example of the schema free database
which means that the records don’t have uniform structure
and each record can have different column value types,
and records may have a nested structure.

Each record or document can have its own schema or structure
that can be defined by the XML schema or JSON script

Query Model: JavaScript or custom.

Integrates with Map/Reduce

Indexes are done via B-Trees

Products/Implementations
MongoDB
CouchDB

160

To look at detail about MongoDB

It supports many Data types: bool, int, double, string, object(bson), oid, array, null,
date.

It Integrates with multiple languages

Written in C++
Native Python bindings
Supports aggregation with MapReduce with JavaScript

It implements Connection pooling

It Supports indexes, B-Trees. IDs are always indexed.

MongoDB Updates are atomic. There are Low contention locks.

Querying mongo done with a document:

It is a Lazy query meaning that the results are not returned, a cursor at the
result location is.
Somewhat Reduceable to SQL subset, select, insert, update limit, sort etc.
Joins are not there as is typical of NoSQL systems.

161

MongoDB implements sharding.

A MongoDB sharded cluster consists of the following components:
• shard: Each shard contains a subset of the sharded data. Each shard can be deployed
as a replica set.
• mongos: The mongos acts as a query router, providing an interface between client
applications and the sharded cluster.
• config servers: Config servers store metadata and configuration settings for the
cluster. As of MongoDB 3.4, config servers must be deployed as a replica set (CSRS).

The slide contains an illustration which shows how this work.

162

Key-Value

163

Next we look at Key-Value Stores

Key-value databases represent a wide range of databases that are simply described as
item-based. All necessary information is stored in the item. This simplifies data
processing as there is no need for JOIN operations always present in SQL databases.

Examples are:

Memcached – Key value stores
Membase – Memcached with persistence and improved consistent hashing
AppFabric Cache – Multi region Cache
Redis – Data structure server
Riak – Based on Amazon’s Dynamo
Project Voldemort – eventual consistent key value stores, auto scaling
Apache Accumulo

164

Another Example: Microsoft AppFabric

As similar to memcached:

Add a node to the cluster easily. Elastic scalability

Namespaces to organize different caches

LRU Eviction policy

Timeout/Time to live is default to 10 min

No persistence

165

Apache Accumulo is another key value store example,

Apache Accumulo is a Sorted, distributed key/value store with cell-based access
control and customizable server-side processing

Developed by NSA (National Security Agency), also open source

Based on BigTable, Hbase

Iterator framework: embeds user-programmed functionality into different LSM-tree
stages

For example, iterators can operate during minor compactions by using the memstore
data as input to generate on-disk store files comprised of some transformation of the
input such as statistics or additional indices

Enables interactive access to Trillions of records petabytes of indexed data across
100s-1000s of servers

The slide contains an illustration which shows the way key, columns, and rows are
organized in Accumulo.

166

The slide contains an illustration which shows the architecture in Accumulo

Accumulo’s architecture consists of the following components:

Tablets: Partitions of tables consisting of sorted key/value pairs.

Tablet servers: Manage the tablets, including receiving writes from clients, persisting writes
to a write- ahead log, sorting new key-value pairs in memory, periodically fl using sorted key-
value pairs to new files in HDFS and responding to reads from clients. During a read the
tablet servers provide a merge-sorted view of all keys and values from the files it has created
and the sorted in-memory store.

Master: Responsible for detecting and responding to tablet server failure. The Master tries to
balance the load across Tablet Servers by assigning the tablets carefully and instructing Tablet
Servers to migrate the tablets when necessary. The Master ensures each tablet is assigned to
exactly one Tablet Server, and handles many miscellaneous database administration
requests. The master also coordinates startup, graceful shutdown and recovery of write-
ahead logs when the tablet servers fail.

ZooKeeper: Distributed locking mechanism with no single point of failure. Zookeeper is
responsible for maintaining configuration information, naming, and providing distributed
synchronization. (http://www.sqrrl.com/whitepaper/)

At the heart of Accumulo is the Tablet mechanism, which simultaneously optimizes for low
latency between random writes and sorted reads (real-time query support) and efficient use
of disk-based storage.

http://www.sqrrl.com/whitepaper/)
http://www.sqrrl.com/whitepaper/)

167

Accumulo supports more advanced data processing than simply keeping keys sorted
and performing efficient lookups.

Analytics can be developed by using MapReduce and Iterators in conjunction with
Accumulo tables.

Iterator is an effective method to access and filter data from Accumulo

The slide contains an illustration which shows the Iterator Framework in Accumulo

168

Graph

169

Graph Databases

Graph databases are used to represent relational graphs and are optimized for finding
relations between graph nodes, e.g. shortest paths, or chain of trust.

Based on Graph Theory

Store data in Triplestores or Quad stores

Scale vertically, no clustering

Typically achieve high consistency (due to feature critical to graph presentation and
analysis)

Graph algorithms can be used naturally

For example, great for Social Networks

170

An example of a graph database is Neo4J

Neo4j is a highly scalable, robust (fully ACID) native graph database

High Performance for highly connected data

Traverses 1,000,000+ relationships / second on commodity hardware

High Availability clustering

Schema free, bottom-up data model design

Cypher, a declarative graph query language that allows for expressive and efficient
querying and updating of the graph store

Graph traversal function to visit all nodes on a specified path, updating and/or
checking their values

171

Caches

172

Another important storage tool in Cloud, which is actually very close architecturally to
the Database, is the Cache.

The Cache is a web service that makes it easy to deploy, operate, and scale an in-
memory cache in the cloud.

The service improves the performance of web applications by allowing one to
retrieve information from fast, managed, in-memory caches, instead of relying
entirely on slower disk-based databases.

Popular examples include:

Memcached - a widely adopted memory object caching system.
Redis – a popular open-source in-memory key-value store that supports data
structures such as sorted sets and lists.

Caches support multi-node replication which can be used to achieve redundancy
across datacenters

173

Memcahced is very popular and comes as a preconfigured service on many clouds.

Memcached is:

Very easy to setup and use.

Uses Consistent hashing.

Scales very well.

Implements In memory caching, no persistence.

LRU eviction policy

174

In this lecture we covered the following aspects:

Multiple data types require different types of data stores or databases

SQL or Relational databases serve majority of current business and enterprise
purposes

Abrupt data growth and advent of Big Data technologies motivates new type of
databases NoSQL (Not only SQL) to serve different types of data: key-value, columnar,
document, graph

CAP Theorem provides a basis for defining properties of the distributed system i.e.
storage and databases such as Consistency, Availability and Partitioning tolerance

Columnar databases BigTable, HBase, Cassandra are designed to handle web scale
data volume. They are specifically adopted to work with such scalable parallel
processing systems as Hadoop

MongoDB is a highly scalable schema free document oriented databases where the
each record can have own schema or structure that can be defined by the XML
schema or JSON script

Neo4j is an example of the Graph databases that have growing use for social network
and business relations analysis

Cloud Computing
Lecture Manual

Volume 7

Module 7

Cloud Computing security

Content
Lecture 1. Threats and risks of using cloud computing 3

Basic information about cyber security 5

Threats to information security 9

Cloud Computing Attacks 12

Lecture 2. Cloud Computing Security Considerations 52

Cloud security control layers 54

Responsibility of cloud consumer and provider 57

Best practices for securing cloud 62

NIST recommendations for cloud security 67

Cryptography basics 69

Cloud storage encryption 86

Lecture 3. Security Audit in Cloud Computing 91

Cloud security landscape 93

Cloud security tools 94

Cloud access security broker (CASB) 96

Web application firewall 108

Module – Cloud Computing security

Lecture 1. Threats and risks of using cloud computing

Lecture 1.Threats and

risks of using cloud

computing

This Lecture Overview

• This lecture is dedicated to overview of:

– basic information about cyber security;

– principles of safety;

– threats to information security;

– types of attacks on information systems;

– mechanisms to protect against attacks.

Information security

Confidentiality Integrity Availability

The property that
information is not
made available or
disclosed to
unauthorized
individuals,
entities, or
processes

The property that
data or
information have
not been altered
or destroyed in an
unauthorized
manner

The property that
data or
information is
accessible and
useable upon
demand by an
authorized user

Basic information about cyber security

• The process of discovering the true identity
of a person or item from the entire
collection of similar persons or items

Identification

• The act of verifying the claimed identity of
an individual, station or originatorAuthentication

• The granting to a user, program, or process
the right of accessAuthorization

• Potential cause of an unwanted incident, which may
result in harm to an information systemThreat

• Weakness in an information system, system security
procedures, internal controls, or implementation that
could be exploited or triggered by a threat source

Vulnerability

• The realization of some specific threat that impacts the
confidentiality, integrity, availability of a computational
resource

Attack

• Preservation of confidentiality, integrity and
availability of information

Information
security

• The ability to prevent senders from denying that
they have sent messages and receivers from
denying that they have received messages

Nonrepudiation

• The probability that a particular security threat
will exploit a system vulnerabilityRisk

Information
security
threats

Human
Threats

Natural
Threats

Host
Threats

Software

Threats

Network
Threats

Physical
Threats

Threats to information security

Natural Threats

• Natural
disasters

• Floods

• Earthquakes

• Hurricanes

• Fire

• Hardware
destruction

Physical
Security Threats

• Loss or
damage of
system
resources

• Physical
intrusion

• Sabotage,
espionage and
errors

Human Threats

• Weak
passwords

• Social
engineering

• Lack of
knowledge and
awareness

• Attack by
hackers

Network Threats

• Spoofing

• Sniffing or
Eavesdropping

• Connection
hijacking

• Man in the
middle attack

• Denial of service
attack

• SQL injection

• ARP poisoning

Host Threats

• Passwords attack

• Malware like
Viruses, Worms,
Trojans, Back
doors

• Hardware failure
due to
malfunctioning

• Privilege
escalation

• Unauthorized
access

Software Threats

• Data/Input
validation

• Authentication
and authorization
attacks

• Buffer overflow

• Cryptography
attacks

• Parameter
manipulation

• Auditing and
logging issues

1. Service Hijacking using Social
Engineering Attacks

2. Session Hijacking using XSS
Attack

3. Domain Name System (DNS)
Attacks

4. SQL Injection Attacks

5. Wrapping Attack

6. Service Hijacking using
Network Sniffing

7. Session Hijacking using
Session Riding

8. Side Channel Attacks or
Cross-guest VM Breaches

9. Cryptanalysis Attacks

10. DoS and DDoS Attacks

Cloud Computing Attacks

Service Hijacking using Social Engineering Attacks
Using Social Engineering techniques, the attack may attempt to guess the
password. Social Engineering attacks result in
unauthorized access exposing sensitive information according to the privilege
level of the
compromised user.

Service Hijacking using Network Sniffing
Using Packet Sniffing tools by placing himself in the network, an attacker can
capture
sensitive information such as passwords, session ID, cookies, and another web
servicerelated information such as UDDI, SOAP, and WSDL

Session Hijacking using XSS Attack
By launching Cross-Site Scripting (XSS), the attacker can steal cookies by
injecting
malicious code into the website.

Session Hijacking using Session Riding
Session Riding is intended for session hijacking. An attacker may exploit it by
attempting
cross-site request forgery. The attacker uses currently active session and rides
on it by
executing the requests such as modification of data, erasing data, online
transactions and

password change by tracking the user to click on a malicious link.

Domain Name System (DNS) Attacks
Domain Name System (DNS) attacks include DNS Poisoning, Cybersquatting,
Domain
hijacking and Domain Snipping. An attacker may attempt to spoof by poisoning
the DNS
server or cache to obtain credentials of internal users. Domain Hijacking
involves stealing
cloud service domain name. Similarly, through Phishing scams, users can be
redirected to
a fake website.

Side Channel Attacks or Cross-guest VM Breaches
Side Channel Attacks or Cross-Guest VM Breach is an attack which requires the
deployment of a malicious virtual machine on the same host. For example, a
physical host
is hosting a virtual machine that is offering the cloud services hence the target
of an
attacker. The attacker will install a malicious virtual machine on the same host
to take
advantage of sharing resources of the same host such as processor cache,
cryptographic
keys, etc. Installation can be done by a malicious insider, or an attacker by
impersonating
a legitimate user.

Similarly, there are other attackers that are discussed earlier are also vulnerable
to Cloud
Computing such as SQL Injection attack (injecting malicious SQL statements to
extract
information), Cryptanalysis Attacks (weak or obsolete encryption) Wrapping
Attack
(duplicating the body of message), Denial-of-Service (DoS) and Distributed
Denial-ofService (DDoS) Attacks.

Cloud computing is becoming popular among IT
businesses due to its agile, flexible and cost effective
services. Virtualization is a key aspect of cloud
computing and a base of providing infrastructure layer
services to tenants.
We describe the different virtualization types and the
security issues in cloud virtualization components such
as hypervisor, virtual machines and guest disk images.
The virtualization security analysis covers attacks on
virtualization components in cloud, security solutions
for virtualization components provided in literature and
security recommendations for virtualization
environment that can be useful for the cloud
administrators.

11

• Hypervisor Attacks

• Virtual Machine Attacks

• Disk Image Attacks

12

A cloud customer can obtain a VM from service provider on
lease that he can use to install a malicious guest OS. This
guest OS can compromise the hypervisor by altering its source
code and give attacker the access to guest VM data and code.
To control the complete virtualization environment, malicious
hypervisors such as BLUEPILL rootkit, Vitriol and SubVir are
installed which give attacker the admin privileges to control
and alter VM data. VM escape is another type of attack in
which attacker can run an arbitrary script on the guest
operating system to get access to the host operating system.
This provides the attacker root access to the host machine.

13

Attack Solution

VM Escape attack Properly configure the interaction
between guest machines and host VM

Customers can lease a guest VM to
install a malicious guest OS

VMs can be protected from
compromised hypervisor by encrypting
the VMsR

HyperJacking, BLUEPILL, Vitriol,
SubVirt and DKSM attacks

VMs can be protected from
compromised hypervisor by encrypting
the VMsR

Increased code size has resulted
design and implementation
vulnerabilities

Hypersafe is a system that maintains the
integrity of Hypervisor

14

Malicious programs in different virtual machines can
achieve required access permissions to log keystrokes
and screen updates across virtual terminals that can be
exploited by attackers to gain sensitive information.
General attacks on OS of physical systems can also be
targeted on guest OS of VMs to compromise them.
Attackers can use Trojans and malwares

for traffic monitoring, stealing critical data and
tampering the functionality of VMs. Other security
attacks from OS are possible through buggy software,
viruses and worms that attacker can exploit to take
control of VMs.

15

Attack Solution

Security attacks through worms etc.
can be exploited to control the VM

Use anti-viruses, anti-spyware programs
in guest OS to detect any suspicious
activity

Saved state of guest virtual machine
as a disk file appears as plaintext to
Dom0. Attacker can compromise the
integrity and confidentiality

Use encryption and hashing of VMs
state before saving

16

To create new VM image files, existing VM images can be
easily copied which results in VM image sprawl problem, in
which a large number of VMs created by customers may be
left unnoticed. VM image sprawl results in large management
issues of VMs including the security patches. Investigation of
VM images on cloud (EC2, VCL) has shown that if patches are
not applied, VM images are more vulnerable to attacks, and
they may also not fulfill organization security policy. Secondly,
some VM images are mostly online, and to patch these
images, they will have to be started. This will add to the
computation cost of cloud provider. Attacker can access VM
checkpoint present in the disk that contain VM physical
memory contents and can expose sensitive information of VM
state.

17

Attack Solution

VM checkpoint attacks Checkpoint attacks can be prevented by
encrypting the checkpoints or using
SPARCR

Unnecessary images can result in a
security compromise

Organizations using virtualization must
have a policy that manages issues of
unnecessary images

18

• Social engineering is a non-technical kind of intrusion
that relies heavily on human interaction and often
involves tricking other people to break normal security
procedures

• Attacker might target the cloud service provider to reset
the password or IT staff accessing the cloud services to
reveal passwords

• Other ways to obtain passwords include: password
guessing, using keylogging malware, implementing
password cracking techniques, sending phishing mails,
etc.

• Social engineering attack results in exposing customer
data, credit card data, personal information, business
plans, staff data, identity theft, etc.

Cloud Services

Original Cloud Service
Login Page

Attacker logs in
to Cloud Services

Attacker use the user
credentials to login to the

cloud service

User redirected to the original
cloud service login page

Fake Cloud Service
Login Page

Login credentials are
pass to the attacker

Creates a fake cloud
service login page

Attacker

User clicks on the link and
enters login credentials

User

Sends malicious link

Malicious Link

3

2

1 4

6

5

• Network sniffing involves interception and
monitoring of network traffic which is being sent
between the two cloud nodes

• Attacker uses packet sniffers to capture sensitive
data such as passwords, session cookies, and
other web service related security configuration
such as the UDDI (Universal Description
Discovery and Integrity), SOAP (Simple Object
Access Protocol) and WSDL (Web Service
Description Language) files

User

User

NIC Card in
Promiscuous ModeSwitch

Sniffer

Attacker

Cloud
Server

Attacker logs into
Cloud Services

Attacker sniffs the login
credentials/cookies

• Attacker implements Cross-Site Scripting (XSS)
to steel cookies that are used to authenticate
users, this involves injecting a malicious code
into the website that is subsequently executed
by the browser

User’s Browser Malicious Script
Cloud
Server

Attacker’s
ServerHost a page with malicious script

View the page hosted by the attacker

HTML containing malicious script

Run

Collect user’s cookies
Redirect to attacker’s server

Send the request with the user’s cookies

1

2

3

4

5

6

7

• Attacker exploits website by implementing cross site
request forgery to transmit unauthorized commands

• In session riding, attacker rides an active computer
session by sending an email or tricking the user to visit a
malicious webpage while they are logged into the
targeted site

• When the user clicks the malicious link, the website
executes the request as the user is already authenticated

• Commands used include: Modify or delete user data,
execute online transactions, reset passwords, etc.

User Trusted Cloud Malicious Website

1

2

3

4

Logs into the trusted site and
creates a new session

Stores the session identifier for the
session in a cookie in the web browser

Visits a malicious site

Sends a request from the user’s browser
using his session cookie

• Attacker performs DNS attacks to obtain
authentication credentials from internet users

• Types of DNS Attacks
– DNS Poisoning. Involves diverting users to a spoofed

website by poisoning the DNS server or the DNS cache
on the user's system

– Cybersquatting. Involves conducting phishing scams by
registering a domain name that is similar to a cloud
service provider

– Domain Hijacking. Involves stealing a cloud service
provider’s domain name

– Domain Snipping. Involves registering an elapsed
domain name

User

Fake Website

Cloud
Server

What is the IP
address of

www.xCloud.com
Internal

DNS

6

Redirected to
a fake website

DNS cache at user is
updated with IP of
fake website

5

1

Query for DNS
info

2

Query for DNS
info

3

Attacker

Internal DNS

4

Send DNS response
with IP of a fake
website

• Attacker compromises the cloud by placing a
malicious virtual machine in close proximity to a
target cloud server and then launch side channel
attack

• In side channel attack, attacker runs a virtual
machine on the same physical host of the victim's
virtual machine and takes advantage of shared
physical resources (processor cache) to steal data
(cryptographic key) from the victim

• Side-channel attacks can be implemented by any
co-resident user and are mainly due to the
vulnerabilities in shared technology resources

User

Attacker

CPU
Cache

Multi-tenant Cloud

Victim’s VM

Attacker’s
VM

Cryptographic Keys/
Plain Text Secrets

Attacker impersonates
victim using the stolen

credentials

Steals victim’s credentials

1
2

3

4

5

1 Timing Attack

2 Data Remanence

3
Acoustic
Cryptanalysis

4
Power Monitoring
Attack

5
Differential Fault
Analysis

• Implement virtual firewall in the cloud server back end of the cloud
computing, this prevents attacker from placing malicious VM

• Implement random encryption and decryption (encrypts data using
DES, 3DES, AES algorithms)

• Lock down OS images and application instances in order to prevent
compromising vectors that might provide access

• Check for repeated access attempts to local memory and access from
the system to any hypervisor processes or shared hardware cache by
tuning and collecting local process monitoring data and logs for cloud
systems

• Code the applications and OS components in way that they access
shared resources like memory cache in a consistent, predictable way.
This prevents attackers from collecting sensitive information such as
timing statistics and other behavioral attributes

• Attackers target SQL servers running vulnerable
database applications

• It occurs generally when application uses input to
construct dynamic SQL statements

• In this attack, attackers insert a malicious code
(generated using special characters) into a standard
SQL code to gain unauthorized access to a database

• Further attackers can manipulate the database
contents, retrieve sensitive data, remotely execute
system commands, or even take control of the web
server for further criminal activities

User

Attacker

Cloud
Services

Gains access
to sensitive
information

Performs SQL
Injection

• Insecure or obsolete encryption makes cloud
services susceptible to cryptanalysis

• Data present in the cloud may be encrypted to
prevent it from being read if accessed by malicious
users. However critical flaws in cryptographic
algorithm implementations (ex: weak random
number generation) might turn strong encryption
to weak or broken, also there exists novel methods
to break the cryptography

• Partial information can also be obtained from
encrypted data by monitoring clients' query access
patterns and analyzing accessed positions

User

Attacker

Cloud
Server

Plain text information
extracted by the attacker

Encrypted Credentials

Access to Encrypted
Information

Attacker sniffs
the traffic

Performs Cryptanalysis
on Encrypted Data

• Use Random Number Generators that generate
cryptographically strong random numbers to
provide robustness to cryptographic material
like Secure shell (SSH) keys and Domain Name
System Security extensions (DNSSEC)

• Do not use faulty cryptographic algorithms

• Wrapping attack is performed during the
translation of SOAP message in the TLS layer
where attackers duplicate the body of the
message and send it to the server as a
legitimate user

User Attacker

1

2

User sends request to the webserver

Sends a SOAP message
with a header

Cloud
Server

Header Body

Intercepts the
SOAP message

Header
+ Body

Malicious
Body

Sends the modified
SOAP message

3
Duplicates the original document,

add the copy to the header and
modify the original document

• Performing DoS attack on cloud service providers may
leave tenants without access to their accounts

• Denial of Service (DoS) can be performed by:

• Flooding the server with multiple requests to consume all
the system resources available

• Passing malicious input to the server that crashes an
application process

• Entering wrong passwords continuously so that user
account is locked

• If a DoS attack is performed by using a botnet (a network
of compromised machines) then it is referred to as
Distributed Denial-of-Service (DDoS) attack

Zombie
Net

Cloud
Services

Attacker sets a
handler system

Internet

Attacker

Handler

Handler infects a large
number of computers

over Internet

Attack Traffic

Cloud User

Legitimate
Traffic

Attack Traffic
flooding the server

Legitimate
Request Failed

• Lock-in

• Loss of governance

• Compliance challenges

• Loss of business reputation due to co-tenant
activities

• Cloud service termination or failure

• Cloud provider acquisition

• Supply chain failure

41

Lock-In
The potential dependency on a particular cloud provider,
depending on the provider’ s commitments, may lead to a
catastrophic business failure should the cloud provider go
bankrupt or the content and application migration path to
another provider is too costly. There is little or no incentive
for cloud providers to make migrating to another provider
easy if not contractually bound to do so.

Loss of Governance
By using cloud infrastructures, the client necessarily cedes
control to the cloud provider on a number of issues which
may affect security. This could have a potentially severe
impact on the organization’ s strategy and therefore on the
capacity to meet its mission and goals. The loss of control
and governance could lead to the impossibility of complying
with the security requirements, a lack of confidentiality,
integrity and availability of data, and a deterioration of
performance and quality of service, not to mention the
introduction of compliance challenges.

Compliance Challenges
Certain companies migrating to the cloud might have the
need to meet certain industry standards or regulatory
requirements, such as the Payment Card Industry Data

Security Standard (PCI DSS). Migrating to the cloud could
compromise these business needs if the cloud provider
cannot provide evidence of their own compliance to the
relevant requirements or if the provider does not permit
audits by the customer.

Loss of Business Reputation Due To Co-Tenant
Activities
Resource sharing can give rise to problems when the shared
resources’ reputation becomes tainted by a bad neighbor’ s
activities. This would also include that certain measures are
taken to mitigate, such as internet protocol (IP) address
blocking and equipment confiscation.

Cloud Service Termination or Failure
If the cloud provider faces the risk of going out of
business due to financial, legal, or other reasons, the
customer could suffer from loss or deterioration of service
delivery performance, and quality of service, as well as a
loss of investment .

Cloud Provider Acquisition
The acquisition of the cloud provider could increase the
possibility of a strategic change and may put previous
agreements at risk. This could make it impossible to
comply with existing security requirements. The final
impact could be damaging for crucial assets, such as the
organization’ s reputation, customer or patient trust, and
employee loyalty and experience.

Supply Chain Failure
A cloud computing provider can outsource certain
specialized tasks of its infrastructure to third parties. In such
a situation the level of security of the cloud provider may
depend on the level of security of each one of the links and
the level of dependency of the cloud provider on the third
party. In general, a lack of transparency in the contract can
be a problem for the whole system.

• Resource exhaustion

• Resource segregation failure

• Abuse of high privilege roles

• Management interface compromise

• Intercepting data in transit, data leakage

• Insecure deletion of data

• Distributed denial of service (DDoS)

• Economic denial of service (EDoS)

• Encryption and key management (Loss of encryption keys)

• Undertaking malicious probes or scans

• Compromise of the service engine

• Customer requirements and cloud environment conflicts
42

Resource Exhaustion
Inaccurate modeling of customer demands by the cloud
provider can lead to service unavailability, access control
compromise, and economic and reputation losses due to
resource exhaustion. The customer takes a level of calculated risk in allocating
all the resources of a cloud service,
because resources are allocated according to statistical
projections.

Resource Segre gat ion Failure
This class of risks includes the failure of mechanisms
separating storage, memory, routing, and even reputation
between different tenants of the shared infrastructure
(guest-hopping attacks, SQL injection attacks exposing
multiple customers’ data, and side-channel attacks). The
likelihood of this incident scenario depends on the
cloud model adopted by the customer. It is less likely to
occur for private cloud customers compared to public cloud
customers.

Abuse of High Privilege Roles
The malicious activities of an insider could potentially
have an impact on the confidentiality, integrity, and availability of all kinds of
data, IP, services, and therefore
indirectly on the organization’s reputation, customer trust,

and the experiences of employees. This can be considered
especially important in the case of cloud computing due to
the fact that cloud architectures necessitate certain roles ,
which are extremely high- risk. Examples of such roles
include the cloud provider’ s system administrators and
auditors and managed security service providers dealing
with intrusion detection report s and incident response.

Management Interface Compromise
The customer management interfaces of public cloud
providers are Inter net accessible and mediate access to
larger sets of resources (than traditional hosting providers) .
They also pose an increased risk especially when combined
with remote access and web browser vulnerabilities.

Intercepting Data in Transit, Data Leakage
Cloud computing, being a distributed architecture, implies
more data in trans it than traditional infrastructures. Sniffing, spoofing, man-in-
the-middle, side channel , and replay
attacks should be considered as possible threat sources.

Insecure Deletion of Data
Whenever a provider is changed, resources are scaled
down , physical hardware is reallocated, and data may be
available beyond the life time specified in the security
policy. Where true data wiping is required, special procedures must be followed
and this may not be supported by
the cloud provider.

Distributed Denial of Service
A common method of attack involves saturating the target
environment with external communications requests, such
that it cannot respond to legitimate traffic, or responds so
slowly as to be rendered effectively unavailable. This can
result in financial and economic losses.

Economic Denial of Service
EDoS destroys economic resources; the worst-case scenario
would be the bankruptcy of the customer or a serious
economic imp act. The following scenarios are possible: An
attacker can use an account and uses the customer’ s
resources for his own gain or in order to damage the
customer economically. The customer has not set effective
limits on the use of paid resources and experiences unexpected loads on these

resources. An attacker can use a
public channel to deplete the customer’ s metered resources.
For example, where the customer pays per HTTP request, a
DDoS attack can have this effect .

Encrypt ion and Key Management (Loss of
Encrypt ion Keys)
This risk includes the disclosure of secret keys (SSL, fi le
encryption, customer private keys) or passwords to
malicious parties. It also includes the loss or corruption of
those keys, or their unauthorized use for authentication and
nonrepudiation (digital signature).

Undertaking Malicious Probes or Scans
Malicious probes or scanning, as well as network mapping,
are indirect threats to the assets being considered. They can
be used to collect information in the context o f a hacking
attempt . A possible impact could be a loss of confidentiality, integrity, and
availability of service and data.

Compromise of the Service Engine
Each cloud architecture relies on a highly specialize d
platform and the service engine . The service engine sit s
above the physical hardware resources and manages
customer resources at different levels o f abstraction. For
example, in IaaS clouds this software component can be the
hypervisor. Like any other software layer , the service
engine code can have vulnerabilities and is prone to attacks
or unexpected failure. Cloud providers must set out a clear
segregation of responsibilities that articulates the minim um
actions customers must undertake.

Customer Requirements and Cloud Environment
Conflicts
Cloud providers must set out a clear segregation of
responsibilities that articulates the minimum actions
customers must undertake. The failure of the customers to
properly secure their environments may pose a vulnerability
to the cloud platform if the cloud provider has not taken the
necessary steps to provide isolation. Cloud providers should
further articulate their isolation mechanisms and provide
best practice guidelines to assist customers to secure their
resources.

• Network failures

• Privilege escalation

• Social engineering

• Loss or compromise of operational and security
logs or audit trails

• Backup loss

• Unauthorized physical access and theft of
equipment

• Natural disasters

43

Network Failures
This risk is one of the highest risks since it directly affects
service delivery. It exists due to network misconfiguration,
system vulnerabilities, lack of resource isolation, and poor
or untested business continuity (BC) and disaster recovery
(DR) plans. Network traffic modification can also be a risk
for a customer and cloud provider if provisioning isn’t done
properly or there are no traffic encryption or vulnerability
assessments.

Privilege Escalation
Although there is a low probability of exploitation, privilege
escalation can cause loss of customer data, and access
control. A malicious entity can therefore take control of
large portions of the cloud platform. The risk manifests
itself due to authentication, authorization, and other access
control vulnerabilities, hypervisor vulnerabilities (cloudbursting), and
misconfiguration.

Social Engineering
This risk is one of the most disregarded since most technical
staff focus on the nonhuman aspects of their platforms. The
exploitation of this risk has caused loss of
reputation for cloud service providers, such as Amazon and
Apple, due to the publicity of the events. This risk can be

easily be minimized by security awareness training, proper
user provisioning, resource isolation, data encryption, and
proper physical security procedures.

Loss or Compromise of Operational and Security
Logs or Audit Trails
Operational logs can be vulnerable due to lack of policy or
poor procedures for logs collection. This would also
include retention, access management vulnerabilities, user
deprovisioning vulnerabilities, lack of forensic readiness,
and OS vulnerabilities.

Back up Loss
This high impact risk affects company reputation, all backed
up data, and service delivery. It also occurs due to inadequate physical security
procedures, access management
vulnerabilities, and user deprovisioning vulnerabilities.

Unauthorized Physical Access and Theft of
Equipment
The probability of malicious actors gaining access to a
physical location is very low, but in the event of such
occurrence, the impact to the cloud provider and its customers is very high. It
can affect company reputation, and
data hosted on premises and the security risk it brings is due
to inadequate physical security procedures.

Natural Disasters
This risk is often ignored but can have a high impact on the
businesses involved in the event of its occurrence. If a
business has a poor or untested continuity and DR plan or
lacks one, their reputation, data, and service delivery can be
severely compromised.

• Denial of Service Attacks

• Attacks on Hypervisor

• Resource Freeing Attacks

• Side-Channel Attacks

• Attacks on Confidentiality

44

Module – Cloud Computing security

Lecture 2. Cloud Computing Security Considerations

Lecture 2.Cloud

Computing Security

Considerations

This Lecture Overview

• This lecture is dedicated to overview of:

– cloud security control layers;

– responsibility of cloud consumer and provider;

– best practices for securing cloud;

– NIST recommendations for cloud security;

– cryptography basics

– cloud storage encryption.

• SDLC. Binary Analysis, Scanners, Web App Firewalls, Transactional
SecApplications

• DLP, CMF, Database Activity, Monitoring, EncryptionInformation

• GRC, IAM, VA/VM, Patch Management, Configuration Management,
MonitoringManagement

• NIDS/NIPS, Firewalls, DPI, Anti-DDoS, QoS, DNSSEC, OAuthNetwork

• Hardware & Software RoT & API’sTrusted Computing

• Host-based Firewalls, HIDS/HIPS, Integrity & File/Log Management,
Encryption, MaskingComputer and Storage

• Physical Plant Security, CCTV, GuardsPhysical

Cloud security control layers

Cloud Security Control Layers

Application Layer
There are several security mechanisms, devices, and policies that provide
support at
different cloud security controls layers. At the Application layer, Web
application firewalls
are deployed to filter the traffic and observe the behavior of traffic. Similarly,
Systems
Development Life Cycle (SDLC), Binary Code Analysis, Transactional Security
provide
security for online transactions, and script analysis, etc.

Information
In Cloud Computing, to provide confidentiality and integrity of information that
is being
communicated between client and server, different policies are configured to
monitor any
data loss. These policies include Data Loss Prevention (DLP) and Content
Management
Framework (CMF). Data Loss Prevention (DLP) is the feature which offers to
prevent the
leakage of information to outside the network. Traditionally this information
may include

company or organizations confidential information, proprietary, financial and
other secret
information. Data Loss Prevention feature also ensures the enforcement of
compliance
with the rules and regulations using Data Loss Prevention policies to prevent
the user from
intentionally or unintentionally sending this confidential information.

Management
Security of Cloud Computing regarding management is performed by different
approaches
such as Governance, Risk Management, and Compliance (GRC), Identity and
Access
Management (IAM), Patch and Configuration management. These approaches
help to
control the secure access to the resources and manage them.

Network layer
There are some solutions available to secure the network layer in cloud
computing such as
the deployment of Next-Generation IDS/IPS devices, Next-Generation Firewalls,
DNSSec,
Anti-DDoS, OAuth and Deep Packet Inspection (DPI), etc. Next-Generation
Intrusion
Prevention System, known as NGIPS, is one of the efficiently-proactive
components in the
Integrated Threat Security Solution. NGIPS provide stronger security layer with
deep
visibility, enhanced security intelligence and advanced protection against
emerging threat
to secure complex infrastructures of networks.

Trusted Computing
The root of Trust (RoT) is established by validating each component of hardware
and
software from the end entity up to the root certificate. It is intended to ensure
that only
trusted software and hardware can be used while still retaining flexibility.

Computer and Storage
Computing and Storage in cloud computing can be secured by implementing
Host-based
Intrusion Detection or Prevention Systems HIDS/HIPS. Configuring Integrity
check, File

system monitoring and Log File Analysis, Connection Analysis, Kernel Level
detection,
Encrypting the storage, etc. Host-based IPS/IDS is normally deployed for the
protection of
specific host machine, and it works closely with the Operating System Kernel of
the host
machine. It creates a filtering layer and filters out any malicious application call
to the OS.

Physical Security
Physical Security is always required on priority to secure anything. As it is also
the first
layer OSI model, if the device is not physically secured, any sort of security
configuration
will not be effective. Physical security includes protection against man-made
attacks such
as theft, damage, unauthorized physical access as well as environmental impact
such as
rain, dust, power failure, fire, etc.

Security Controls

• PKI: Public Key Infrastructure
• SDL: Security Development Lifecycle
• WAF: Web Application Firewall
• FW: Firewall
• RTG: Real Traffic Grabber
• IAM: Identity and Access Management
• ENC: Encryption
• DLP: Data loss prevention
• IPS: Intrusion Prevention System
• SWG: Secure Web Gateway
• VA/VM: Virtual Application/Virtual

Machine
• App Sec: Application security
• AV: Anti-virus
• VPN: Virtual Private Network
• LB: Load Balancer
• GRC: Governance, Risk and Compliance
• Config Control: Configuration Control

PKI IAM VA/VM

SDL ENC APP Sec

WAF DLP AV GRC

FW IPS VPN Conf
Control

RTG SWG LB …

Applications &
Information
within VM
Boundaries

Workload
Instances/VMs

C
lo

u
d

 C
o

n
su

m
e

r

Responsibility of cloud consumer and provider

Responsibilities of a cloud service consumer include to meet the following
security
controls:

 Public Key Infrastructure (PKI).
 Security Development Life Cycle (SDLC).
 Web Application Firewall (WAF).
 Firewall
 Encryption.
 Intrusion Prevention Systems
 Secure Web Gateway
 Application Security
 Virtual Private Network (VPN) and others.

Security Controls

• PKI: Public Key Infrastructure
• SDL: Security Development Lifecycle
• WAF: Web Application Firewall
• FW: Firewall
• RTG: Real Traffic Grabber
• IAM: Identity and Access Management
• ENC: Encryption
• DLP: Data loss prevention
• IPS: Intrusion Prevention System
• SWG: Secure Web Gateway
• VA/VM: Virtual Application/Virtual

Machine
• App Sec: Application security
• AV: Anti-virus
• VPN: Virtual Private Network
• LB: Load Balancer
• GRC: Governance, Risk and Compliance
• Config Control: Configuration Control
• CoS/QoS: Class of Service / Quality of

Service
• DDoS: Distributed denial of service
• TPM: Trusted Platform Module
• Netflow: Network protocol by Cisco

Cloud Stacks
(Open Source,
Open Core or
Proprietary

Cloud Software
Infrastructure

WAF DLP AV CoS/QoS

FW IPS VPN SDL

RTG SWG LB APP Sec

Compute
Network Storage
(Commodity or

Engineered)

Cloud Hardware
Infrastructure

WAF DLP AV

FW IPS VPN …

RTG SWG LB CoS/
QoS

VA/
VM

DDoS Netflow TPM

C
lo

u
d

 P
ro

vi
d

e
r

Cloud Service Provider
Responsibilities of a cloud service provider include to meet the following
security controls:

 Web Application Firewall (WAF).
 Real Traffic Grabber (RTG)
 Firewall
 Data Loss Prevention (DLP)
 Intrusion Prevention Systems
 Secure Web Gateway (SWG)
 Application Security (App Sec)
 Virtual Private Network (VPN)
 Load Balancer
 CoS/QoS
 Trusted Platform Module
 Netflow and others.

• Cloud computing services should be tailor made by the
vendor as per the given security requirements of the
clients

• Cloud service providers should provide higher multi
tenancy which enables optimum utilization of the
cloud resources and to secure data and applications

• Cloud services should implement disaster recovery
plan for the stored data which enables information
retrieval in unexpected situations

• Continuous monitoring on the Quality of Service (QoS)
is required to maintain the service level agreements
between consumers and the service providers

• Data stored in the cloud services should be implemented
securely to ensure data integrity

• Cloud computing service should be fast, reliable, and need
to provide quick response times to the new requests

• Symmetric and asymmetric cryptographic algorithms must
be implemented for optimum data security in cloud
computing

• Operational process of the cloud based services should be
engineered, operated, and integrated securely to the
organizational security management

• Load balancing should be incorporated in the cloud services
to facilitate networks and resources to improve the
response time of the job with maximum throughput

V
ir

tu
al

 S
er

ve
r

V
ir

tu
al

 S
er

ve
r

Load Balancer

Wi-Fi
Protected

Access

Firewall

Unified
Threat

Management
System

Router

Organization

Network Equipment

Virtual Infrastructure
Cluster Farm

SAN

Operating System

Applications

CPU Memory NIC Disk

• Enforce data protection, backup, and retention
mechanisms

• Enforce SLAs for patching and vulnerability
remediation

• Vendors should regularly undergo AICPA SAS 70 Type
II audits

• Verify one's own cloud in public domain blacklists

• Enforce legal contracts in employee behavior policy

• Prohibit user credentials sharing among users,
applications, and services

Best practices for securing cloud

• Implement strong authentication, authorization and
auditing mechanisms

• Check for data protection at both design and
runtime

• Implement strong key generation, storage and
management, and destruction practices

• Monitor the client's traffic for any malicious
activities

• Prevent unauthorized server access using security
checkpoints

• Disclose applicable logs and data to customers

• Enforce stringent cloud security compliance, SCM
(Software Configuration Management), and management
practice transparency

• Employ security devices such as IDS, IPS, firewall, etc. to
guard and stop unauthorized access to the data stored in
the cloud

• Enforce strict supply chain management and conduct a
comprehensive supplier assessment

• Enforce stringent security policies and procedures like
access control policy, information security management
policy and contract policy

• Ensure infrastructure security through proper
management and monitoring, availability, secure VM
separation and service assurance

• Use VPNs to secure the clients data and ensure that data is
completely deleted from the main servers along with its
replicas when requested for data disposal

• Ensure Secure Sockets Layer (SSL) is used for sensitive and
confidential data transmission

• Analyze the security model of cloud provider Interfaces

• Understand terms and conditions in SLA like minimum
level of uptime and penalties in case of failure to adhere
to the agreed level

• Enforce basic Information security practices namely strong
password policy, physical security, device security,
encryption, data security, network security, etc.

Analyze cloud provider security
policies and SLAs

Assess security of cloud APIs and also
log customer network traffic

Ensure that cloud undergoes regular
security checks and updates

Ensure that physical security is a 24 x
7 x 365 affair

Enforce security standards in
installation/ configuration

Ensure that the memory, storage, and
network access is isolated

Leverage strong two-factor
authentication techniques where
possible

Baseline security breach notification
process

Analyze API dependency chain
software modules

Enforce stringent registration and
validation process

Perform vulnerability and
configuration risk assessment

Disclose infrastructure information,
security patching, and firewall details

• Assess risk posed to client's data, software and
infrastructure

• Select appropriate deployment model according to needs
• Ensure audit procedures are in place for data protection

and software isolation
• Renew SLAs in case security gaps found between

organization's security requirements and cloud provider's
standards

• Establish appropriate incident detection and reporting
mechanisms

• Analyze what are the security objectives of organization
• Enquire about who is responsible of data privacy and

security issues in cloud

NIST recommendations for cloud security

Management Organization Provider

Is everyone aware of his or her cloud security responsibilities?

Is there a mechanism for assessing the security of a cloud service?

Does the business governance mitigate the security risks that can result from cloud-
based "shadow IT"?

Does the organization know within which jurisdictions its data can reside?

Is there a mechanism for managing cloud-related risks?

Does the organization understand the data architecture needed to operate with
appropriate security at all levels?

Can the organization be confident of end-to-end service continuity across several
cloud service providers?

Does the provider comply with all relevant industry standards (e.g. the UK% Data
Protection Act)?

Does the compliance function understand the specific regulatory issues pertaining
to the organization's adoption of cloud services?

• Cryptography provides techniques that can be
used to implement core security services such as
confidentiality and data integrity.

• But this cryptographic mechanisms have some
limitations with respect to cloud computing
environments. So, we should to talk about
another cryptographic tools that have the
potential to provide the extended security
functionality required by some cloud computing
applications.

16

Cryptography basics

• Symmetric-key algorithms are algorithms for cryptography
that use the same cryptographic keys for both encryption of
plaintext and decryption of ciphertext. The keys, in practice,
represent a shared secret between two or more parties.
This requirement that both parties have access to the
secret key is one of the main drawbacks of symmetric key
encryption.

17

Plain Text Encryption
Algorithm

Key A Key A

Cipher Text Plain TextDecryption
Algorithm

• Symmetric-key encryption can use either stream
ciphers or block ciphers
– Stream ciphers encrypt the digits (typically bytes), or

letters (in substitution ciphers) of a message one at a
time.

– Block ciphers take a number of bits and encrypt them
as a single unit, padding the plaintext so that it is a
multiple of the block size. Blocks of 64 bits were
commonly used.

• Examples of popular symmetric-key algorithms
include Twofish, Serpent, AES (Rijndael), Blowfish,
CAST5, Kuznyechik, RC4, 3DES, Skipjack, IDEA.

18

• Strength of algorithm is determined by the size of the key
– The longer the key the more difficult it is to crack

• Key length is expressed in bits
– Typical key sizes vary between 48 bits and 448 bits

• Set of possible keys for a cipher is called key space
– For 40-bit key there are 240 possible keys

– For 128-bit key there are 2128 possible keys

– Each additional bit added to the key length doubles the security

• To crack the key the hacker has to use brute-force (i.e. try
all the possible keys till a key that works is found)
– Super Computer can crack a 56-bit key in 24 hours

– It will take 272 times longer to crack a 128-bit key (Longer than
the age of the universe)

19

• Public-key cryptography, or asymmetric cryptography, is any
cryptographic system that uses pairs of keys: public keys
which may be disseminated widely, and private keys which
are known only to the owner. This accomplishes two
functions: authentication, where the public key verifies that
a holder of the paired private key sent the message, and
encryption, where only the paired private key holder can
decrypt the message encrypted with the public key.

20

Plain Text Encryption
Algorithm

Public Key Private Key

Cipher Text Plain TextDecryption
Algorithm

• Two of the best-known uses of public key
cryptography are:
– Public key encryption, in which a message is encrypted

with a recipient's public key. The message cannot be
decrypted by anyone who does not possess the
matching private key.

– Digital signatures, in which a message is signed with
the sender's private key and can be verified by anyone
who has access to the sender's public key.

• Examples of public-key algorithms include RSA,
ElGamal, Paillier cryptosystem, Elliptic-curve
cryptography.

21

• Efficiency is lower than Symmetric Algorithms

– A 1024-bit asymmetric key is equivalent to 128-bit
symmetric key

• Potential for man-in-the middle attack

• It is problematic to get the key pair generated for
the encryption

22

• A cryptographic hash function is a mathematical
algorithm that maps data of arbitrary size to a bit
string of a fixed size (a hash) and is designed to be a
one-way function, that is, a function which is
infeasible to invert. The only way to recreate the
input data from an ideal cryptographic hash
function's output is to attempt a brute-force search
of possible inputs to see if they produce a match, or
use a rainbow table of matched hashes.

• The input data is often called the message, and the
output (the hash value or hash) is often called the
message digest or simply the digest.

23

• The ideal cryptographic hash function has five main
properties:
– it is deterministic so the same message always results in the

same hash

– it is quick to compute the hash value for any given message

– it is infeasible to generate a message from its hash value except
by trying all possible messages

– a small change to a message should change the hash value so
extensively that the new hash value appears uncorrelated with
the old hash value

– it is infeasible to find two different messages with the same
hash value

• Examples of hash algorithms: MD5, SHA-1, RIPEMD-160,
Whirlpool, SHA-2, SHA-3, BLAKE2.

24

• Authentication is the process of validating the
identity of a user or the integrity of a piece of data.

• There are three technologies that provide
authentication

– Message Digests / Message Authentication Codes

– Digital Signatures

– Public Key Infrastructure

• There are two types of user authentication:

– Identity presented by a remote or application participating
in a session

– Sender’s identity is presented along with a message.

25

• A message digest is a fingerprint for a document

• Purpose of the message digest is to provide proof
that data has not altered

• Process of generating a message digest from data
is called hashing

26

Message Message
Digest

Algorithm

Digest

• A message digest created with a key

• Creates security by requiring a secret key to be
possesses by both parties in order to retrieve the
message

27

Message
Message

Digest
Algorithm

Digest

Secret Key

• Password is secret character string only known to user and
server

• Message Digests commonly used for password
authentication

• Stored hash of the password is a lesser risk
– Hacker can not reverse the hash except by brute force attack

• Problems with password based authentication
– Attacker learns password by social engineering

– Attacker cracks password by brute-force and/or guesswork

– Eavesdrops password if it is communicated unprotected over
the network

– Replays an encrypted password back to the authentication
server

28

• A digital signature is a data item which accompanies
or is logically associated with a digitally encoded
message.

• It has two goals
– A guarantee of the source of the data
– Proof that the data has not been tampered with

29

Message
Sent to

Receiver

Digest
Algorithm

Digital
Signature

Sent to
Receiver

Message
Digest

Sender’s

Private Key

Sender’s

Public Key

Message
Digest

Signature
Algorithm

Signature
Algorithm

Digest
Algorithm

Message
Digest

Sender Receiver

Same?

• A digital certificate is a signed statement by a trusted
party that another party’s public key belongs to
them.
– This allows one certificate authority to be authorized by a

different authority (root CA)

• Top level certificate must be self signed

30

Identity
Information

Certificate
Authority’s
Private Key

Sender’s

Public Key

Signature
Algorithm

Certificate

• Cloud environments provide several challenges
that are not addressed by conventional
cryptographic mechanisms. Three of the main
limitations of conventional cryptography when
applied to cloud settings are as follows:

– Inability To Conduct Processing on Encrypted Data

– Incorporation of Data Access Policies

– Reliability of the Encrypted Data Holder

31

• Processing Encrypted Data
– Searching Over Encrypted Data
– Homomorphic Encryption
– Computing Aggregates Over Encrypted Data
– Order-Preserving Encryption

• Functional Encryption
– Identity-Based Encryption
– Attribute-Based Encryption
– Predicate Encryption

• Verifiable Computing
– Verifiable Outsource d Computation
– Verifiable Storage

32

• To provide data confidentiality in public cloud storage
(Dropbox, Google Drive, OneDrive, pCloud, etc)
cryptographic filesystem is recommended.

• Filesystem-level encryption, often called file/folder
encryption, is a form of disk encryption where individual
files or directories are encrypted by the file system itself.

• This is in contrast to full disk encryption where the entire
partition or disk, in which the file system resides, is
encrypted.

• Types of filesystem-level encryption include:
– the use of a 'stackable' cryptographic filesystem layered on top

of the main file system

– a single general-purpose file system with encryption

33

Cloud storage encryption

• The advantages of filesystem-level encryption
include:

– flexible file-based key management, so that each file can
be and usually is encrypted with a separate encryption key

– individual management of encrypted files e.g. incremental
backups of the individual changed files even in encrypted
form, rather than backup of the entire encrypted volume

– access control can be enforced through the use of public-
key cryptography

– the fact that cryptographic keys are only held in memory
while the file that is decrypted by them is held open.

34

• EncFS is a Free (LGPL) FUSE-based cryptographic
filesystem. It transparently encrypts files, using an
arbitrary directory as storage for the encrypted files.

• Two directories are involved in mounting an EncFS
filesystem: the source directory, and the mountpoint.
Each file in the mountpoint has a specific file in the
source directory that corresponds to it. The file in the
mountpoint provides the unencrypted view of the
one in the source directory. Filenames are encrypted
in the source directory.

• Files are encrypted using a volume key, which is
stored either within or outside the encrypted source
directory. A password is used to decrypt this key.

35

• Common uses
– Allows encryption of files and folders saved to cloud storage

(Dropbox, Google Drive, OneDrive, etc.).

– Allows portable encryption of file folders on removable disks.

– Available as a cross-platform folder encryption mechanism.

– Increases storage security by adding two-factor authentication
(2FA). When the EncFS volume key is stored outside the
encrypted source directory and into a physically separated
location from the actual encrypted data, it significantly
increases security by adding a two-factor authentication (2FA).
For example, EncFS is able to store each unique volume key
anywhere else than the actual encrypted data, such as on a USB
flash drive, network mount, optical disc or cloud. In addition to
that a password could be required to decrypt this volume key.

36

37

EncFS provides transparent encryption of each file when data is transferred to
the cloud and decryption when data is returned. This function can be used to
ensure confidentiality in the public cloud storage.

Module – Cloud Computing security

Lecture 3. Security Audit in Cloud Computing

Lecture 3.Security Audit in

Cloud Computing

This Lecture Overview

• This lecture is dedicated to overview of:

– cloud security landscape;

– cloud security tools;

– cloud access security broker (CASB);

– web application firewall.

Aggregation
and

workflow
tools

SaaS Environment

Public/Private Cloud

App and
Data

App and
Data

Workload

Network

Infrastructure

WAF

Cloud Security Infrastructure Posture
Assessment

Data
encryption

SIEM

GRC
Threat

Detection

Cloud Access Security Broker (CASB)

HIPS AV

Firewall/
Segmentation

IPS

Identity
management

Cloud security landscape

Effective cloud security has enough layers that even experienced security
professionals at times have trouble keeping up with the multiple components
of a robust cloud security strategy – and it does require a strategy.

Unfortunately, we repeatedly see organizations with approaches that are strong
in the areas they cover themselves, but miss one (or multiple) layers that
expose organizations to serious threats. Owing to this, we’ve laid out a diagram
that highlights the primary layers and vendors in the cloud security landscape.
These range from well-known components like antivirus and firewalls – to
critical new solutions such as cloud infrastructure security posture assessment
(CISPA) tools – effective cloud security strategies:
- Adopt the shared security model detailed by the major IaaS providers
- Ensure every layer is accounted for

• AppRiver – looks at messaging security for SaaS-based e-mail and web tools
• Awareness Technologies – brings its SaaS-based DLP model to analyze mobile and the

cloud
• Barracuda Web Security Service – offers malware protection, URL filtering and

application control
• Bitglass – acts as a cloud-access security broker to secure applications and mobile

devices
• Bitium – handles identity and access management for BYOD and BYOA
• BitSight Technologies – analyzes data on security behaviors and rates companies on

security effectiveness
• Centrify – centers on identity management across devices and applications
• CipherCloud – handles encrypting or tokenizing data directly at a business gateway
• Dome9 – examines firewall rules, IP address tables and ports to look for unusual web

traffic
• Evident.io – provides cloud security in partnership with AWS
• ForgeRock – protects enterprise, cloud, social and mobile applications by identity

access management
• HyTrust – delivers access control, policy enforcement, hypervisor hardening and

logging
• IntraLinks – protects critical content and enables client control over data

Cloud security tools

• Logz.io – users can create proactive alerts on selected events and relevant dashboards
to aggregate and view data trends and monitor security threats including password
brute force detection, access control and network access

• Metasploit – takes a cloud IP address and tests penetration to assure that security is in
place

• MyPermissions – sends out alerts whenever apps or services try to access personal
data

• Nessus – operates as an open source vulnerability assessment tool
• Netskope – discovers any cloud apps and shadow IT used on your network
• Okta – manages logins across all cloud applications including Google Apps, Salesforce,

Workday, Box, SAP, Oracle and Office 365
• Proofpoint – focuses specifically on email to protect inbound and outbound data
• Qualys – scans any and all used web apps for vulnerabilities in SaaS, IaaS and PaaS

tools
• SilverSky – offers email monitoring and network protection for HIPAA and PCI

compliance
• Skyhigh Networks – discovers, analyzes and secures cloud apps with logs from existing

firewalls, proxies and gateways
• Vaultive – encrypts any data going from a network to an application
• Zscaler – monitors all the traffic that comes in and out of your network along with

protecting iOS and Android devices

• Cloud access security broker (CASB) are on-
premises, or cloud-based security policy
enforcement points, placed between cloud service
consumers and cloud service providers to combine
and interject enterprise security policies as the
cloud-based resources are accessed. CASBs
consolidate multiple types of security policy
enforcement. Example security policies include
authentication, single sign-on, authorization,
credential mapping, device profiling, encryption,
tokenization, logging, alerting, malware
detection/prevention and so on.

Cloud access security broker (CASB)

Cloud Access Security Broker (CASB) software has emerged to help IT get its
arms around the full cloud security situation. CASBs are security policy
enforcement points between cloud service users and one or more cloud service
providers. They can reside on the enterprise’s premises, or a cloud provider can
host them. Either way, CASBs provide information security professionals with a
critical control point for the secure and compliant use of cloud services across
multiple cloud providers. They enforce the many layers of an enterprise’s
security policies as users, devices, and other cloud entities attempt to access
cloud resources.

Cloud Services
SaaS IaaS PaaS

CASB
Control and monitoring

Data Security
Compliance

Threat protection

OFF-Premises
Mobile

Regional offices
Home Offices

On-Premises
Corporate Offices

Proxy mode API mode

A CASB provides enterprises with a critical control point for the secure use of
cloud services across multiple cloud providers. Software as a service (SaaS)
apps are becoming pervasive in enterprises, which exacerbates the frustration
of security teams looking for visibility and control of those apps.

CASB sales have soared as cloud security concerns have grown, especially the
use of "Shadow IT" cloud services that IT security teams don't know about.

CASB solutions fill many of the security gaps in individual cloud services and
allow information security professionals to do it across cloud services, including
infrastructure as a service (IaaS) and platform as a service (PaaS) providers. As
such, CASBs address a critical enterprise requirement to set policy, monitor
behavior, and manage risk across the entire set of enterprise cloud services
being consumed.

What is CASB

A CASB can consolidate multiple types of security policy enforcement. Examples
of security policies enforced by a CASB include authentication, single sign on,
authorization, credential mapping, device profiling, encryption, tokenization,
logging, alerting, and malware detection and prevention.

A CASB vendor also gives enterprises visibility into authorized and non-
authorized cloud usage. It can intercept and monitor data traffic between the
corporate network and cloud platform, assist with compliance issues, offer data

security policy enforcement, and prevent unauthorized devices, users, and apps
from accessing cloud services.

In the all-important area of data security, a CASB provider enforces corporate
data security policies to prevent unwanted activity based on data classification,
data discovery, and user activity monitoring. Policies are applied through
controls, such as audits, alerts, blocking, quarantine, deletion, and encryption,
at the field and file level in cloud hosting services.

CASB solutions include control and monitoring, risk and compliance
management, threat protection, and cloud data security.

CASB can be divided into two deployment mode
• API mode (non-intrusive mode) •

– This is out-of-band mode
– Agent-less and known as cloud application integration

• Proxy mode (inline)
– Two modes of proxy

• Reverse proxy
• Forward proxy

– CASB (software) is installed in the public cloud or some
vendors own data center

– Traffic is redirected to the Proxy before it goes to SaaS Server
– While passing through, traffic is being scanned and all

attributes such as application, IP, user name, action (and
more) are being collected and analyzed for session data

– Decision can be made and Polices can be applied.

Cloud Services
SaaS IaaS PaaS

CASB
in Proxy
Mode

Mobile users
and devices

Corporate
network

Direct Cloud Service Access

Direct Cloud Service Access

API

An API-based CASB is an Out-of-Band solution that does not follow the same
network path as data. Since the solution integrates directly with cloud services,
API-based solutions have no performance degradation, and they secure both
managed and unmanaged traffic across Saas, IaaS, and PaaS cloud services.

• Out of the band deployment
• Best used for scrubbing the cloud
• The API integration for the known SaaS applications
• API crawl the cloud for historic data for an SaaS app and

apply the policy for DLP, invalid sharing or malware
detection

• Control can be applied for any future action
• Polling based

– When a worker is watching the cloud and any change will
alert the system

– Change will be scanned and polices will be applied •

• Callback mode
– Some cloud app support the API, in that case SaaS informs

any significant changes

• Advantage
– Zero latency introduced by API

– Can scrub the cloud

– Agentless and cover both managed and unmanaged
device

– Covers SaaS, PaaS and IaaS traffic

– Fast deploy, no need for DNS redirection, proxy chaining,
reverse proxy or agent

• Disadvantage
– Works only for known SaaS

– Most of the time it is reporting, in advanced cases
decision can be made after the fact

Cloud Services
SaaS

CASB
in Proxy
Mode

Mobile users
and devices

Corporate
network

An in-line proxy solution checks and filters known users and devices through a
single gateway. Because all traffic flows through a single checkpoint, the proxy
can take security action in real-time. Unfortunately, the single checkpoint also
means that it slows network performance, and only secures known users.
Further, proxy-based solutions only secure SaaS cloud services, leaving IaaS and
PaaS clouds vulnerable.

Forward Proxy

• Traffic from End-user is redirected to the
forward proxy

• Traffic can be forwarded
– By agent that is installed on the end devices like

laptop, mobile

– By DNS redirection, that is change the DNS server
address in the end point to a particular DNS server

– PAC file or explicit proxy in browser

• Once Proxy receives the traffic, decision is made
according to policies

• Advantage
– Real time, that is an advantage over API mode

– Knows user, devices with enterprise integration(LDAP)

– Deep packet inspection

– Can work with applications’ client, that is if box or outlook is
been installed on the laptop, that traffic can be scanned too

• That is an advantage over reverse proxy

• Disadvantage
– Latency, because of proxy in comparison to API

– Single point of failure

– Forward proxy can’t support unmanaged devices (no agent
no DNS redirection)

– Mostly focus on SaaS traffic

Reverse Proxy

• This is inline mode

• Traffic, both the end-user and administration, is
been redirected to the CASB Proxy

• The redirection is been used achieved by URL
rewriting

• The decision is made when traffic is been
analysis

• Advantage
– Real time (advantage over API mode)

– Agentless

– Knows user, devices with enterprise integration(LDAP)

– Best for unmanaged devices, can work with managed devices

• Disadvantage
– Latency because of proxy in comparison to API

– Single point of failure

– Reverse proxy only works with browser
• If SaaS’s native client (like outlook for Office 365) is used to send the

traffic, reverse proxy will not redirect the traffic.

– Works with known apps

– Mostly focus on SaaS traffic

• Firewalls -> IDS -> IPS

• Firewalls - work at network level - scanning each
and every packet makes the network slow

• WAF : Web Application Firewall

• Deals with web applications only - logical level

Web application firewall

A web application firewall (or WAF) filters, monitors, and blocks HTTP traffic to
and from a web application. A WAF is differentiated from a regular firewall in
that a WAF is able to filter the content of specific web applications while regular
firewalls serve as a safety gate between servers. By inspecting HTTP traffic, it
can prevent attacks stemming from web application security flaws, such as SQL
injection, cross-site scripting (XSS), file inclusion, and security misconfigurations.

• Appliance-based Web application firewalls : Mostly
hardware
– Examples: Netscaler MPX WAF by Citrix

• Cloud and hybrid Web application firewalls : Entire
infrastructure shared with WAF providers, DDoS
protection. Hybrid solutions are great for
distributed environments (such as multiple
business locations) or when virtual deployments
make sense for an organization.
– Examples: Cloud WAF: Incapsula's industry-leading WAF

service, WAF product from Qualys exemplifies a hybrid
virtual appliance/cloud approach.

• Positive Model: Focuses on what content should
be allowed i.e. whitelisting technique

• Negative Model: Focuses on what should not be
allowed i.e. blacklisting technique

• Mixed Model: Combination of both positive and
negative models

• A positive security model enforces positive
behavior by learning the application logic and
then building a security policy of valid known
requests as a user interacts with the application.

• Example: Page news.jsp, the field id could only
accept characters [0-9] and starting at number 0
until 65535.

• Pros:

– Better performance (less rules).

– Less false positives.

• Cons:

– Much more time to implement.

– Some vendors provide “automatic learning mode”,
they help, but are far from perfect, in the end, you
always need a skilled human to review the policies.

• A negative security model recognize attacks by
relying on a database of expected attack
signatures.

• Example: Do not allow in any page, any
argument value (user input) which match
potential XSS strings like <script>, </script>,
String.fromCharCode, etc.

• Pros:

– Less time to implement

• Cons:

– More false positives.

– More processing time.

– Less protection.

Based on the mode of action taken by firewalls:

• Passive mode: If any suspicious activity
detected, it gets logged and a message is sent to
the admin for manual action

• Reactive mode: If any suspicious activity
detected, it automatically blocks / resets the
connection

In computer networks, a reverse proxy is a type of proxy server that retrieves
resources on behalf of a client from one or more servers. These resources are
then returned to the client, appearing as if they originated from the proxy
server itself. Unlike a forward proxy, which is an intermediary for its associated
clients to contact any server, a reverse proxy is an intermediary for its
associated servers to be contacted by any client.

Quite often, popular web servers use reverse-proxying functionality, shielding
application frameworks of weaker HTTP capabilities.

WAF in this deployment mode provide only monitor functions, it uses SPAN
port on network switch for get all traffic.
Port Mirroring, also known as SPAN (Switched Port Analyzer), is a method of
monitoring network traffic. With port mirroring enabled, the switch sends a
copy of all network packets seen on one port (or an entire VLAN) to another
port, where the packet can be analyzed.
Port Mirroring function is supported by almost all enterprise-class switches
(managed switches).

• Protects millions of websites

• Community Support

• Open source license (Apache Software License
v2) for OWASP Core Rule Set

• Commercial Rule Set by Trustwave Spiderlabs

• OWASP Core Rule Set providing general
protection

• One configuration to rule them all (Apache, IIS,
nginx)

Processing Phases:

• Request Headers

• Request Body

• Response Headers

• Response Body

• Logging / Action

• Pros:

– Auditing/logging support.

– Real-time traffic monitoring.

– Just-in-time patching.

– Prevention.

– Very configurable/programmable.

• Cons:

– No automation of the positive security model
approach yet.

