

Department of Computer
Engineering

Agile Programming Techniques
The program of the academic discipline (Syllabus)

Details of the academic discipline

Cycle of Higher
Education

First cycle of higher education (Bachelor’s degree)

Field of Study 12 Information technologies

Specialty 121 Software Engineering

Education Program Computer Systems Software Engineering

Type of Course Normative

Mode of Studies Full-time education

Year of studies, semester 3 year (6 semester)

ECTS workload 4 credits

Testing and assessment Exam

Course Schedule Lectures 18 (36 hours), Laboratory 9 (18 hours)

Language of Instruction English

Course Instructors Lecturer / Laboratory: Senior lecturer of the Department of IST, PhD, Serhii
Orlenko, orlenko_sergey@ukr.net

Access to the course In the Telegram group of disciplines and in Campus

Program of academic discipline

1 Course description, goals and objectives, and learning outcomes

The educational discipline "Agile Programming Techniques" provides students with thorough
training in theoretical, methodological, and practical foundations in software development
methodologies, teamwork, requirements analysis, design, development, and testing of information
technologies for solving applied and scientific tasks in the field of information systems and technologies

The purpose of studying the discipline "Agile Programming Techniques" is aimed at forming

future engineers with a modern level of information and digital culture, mastering the basic principles of
creating software products; mastery of algorithmic thinking; acquiring of practical skills in the
independent compilation of professional software and use of modern information technologies to solve
various problems of an applied nature taking considering of the requirements for its quality, reliability,
production characteristics. The formation of learning goals and students' understanding of various
aspects of the future profession is a necessary component of training a qualified software engineer
(Software Engineer), system architect (System Architect), and software architect (Software Architect).

The subject of study of the discipline is modern methods, tools, and technologies of software

development used in teamwork, requirements analysis, design, implementation, testing,
implementation, and operation of information systems and technologies, information processing
systems based on modern processing technologies.

According to the requirements of the EP, the discipline "Agile Programming Techniques" should
ensure that applicants acquire competencies and program learning outcomes: PC11, PLO22.

After mastering the module "Agile Programming Techniques" applicants must demonstrate the
following competencies and program learning outcomes:

• Ability to implement Phases and Iterations of the Life Cycle of Software Systems and

information technologies based on appropriate Software Development Models and

Approaches

• Know and be able to apply Project Management Methods and Tools
• Ability to evaluate and ensure the quality of the work performed

• Ability to develop business solutions and evaluate new technology offerings

• Ability to apply standards in the field of information systems and technologies when

developing functional profiles, building and integrating systems, products, services and

elements of the organization's infrastructure

According to the results of studying the educational discipline "Agile Programming Techniques",
the following knowledge should be obtained:

• basic concepts of software engineering;
• approaches to managing the software development process;
• principles of architectural and object-oriented software design;
• main types of tools for software development;
• principles and models of software development, programming methodology;
• software development requirements management tools;
• basic methods of software quality assurance and testing.

Skills that should be acquired as part of studying the academic discipline "Agile Programming

Techniques":
• formulate requirements for the software product;
• solve problems using decomposition;
• create diagrams of various types;
• develop the structure of the software project;
• design and implement a convenient user interface;
• draw up documentation for the software project;
• work with several versions of the software project;
• perform various types of software testing;
• determine the technical and economic indicators of the software product;
• organize and support teamwork.
Such a combination of general and special competences, theoretical and practical knowledge,

skills and abilities helps to increase the professional level of bachelor's degree holders in order to carry
out effective activities in the field of development of software engineering.

2 Pre-requisites and post-requisites of the discipline (place in the structural and logical scheme
of training according to the relevant educational program)

Necessary disciplines: "Programming Fundamentals", "Software Engineering Components",
“Group Dynamics & Communications”

Module "Agile Programming Techniques" is necessary for studying the disciplines "Risk
management and project quality", “Complex Systems Design”

3 Structure of the credit module

A list of the main topics included in the study program of the discipline "Agile Programming

Techniques":

Section 1. Team work

Topic 1.1 Types and technologies of communication

Topic 1.2 Work in a team

Section 2. Software development methodologies (software)

Topic 2.1 Types of software development methodologies

Topic 2.2 Flexible software development methodologies

Topic 2.3 Comparative characteristics of traditional and flexible development

methodologies

Section 3. Life cycle of software.

Topic 3.1. Software engineering. Programming technologies in a historical aspect.

Topic 3.2. Software life cycle. Life cycle models.

Topic 3.3. Software development methodology. Flexible application development.

Principles of Agile development. Scrum, RAD. XP programming.

Topic 1.4. Software requirements management.

Section 4. Software Requirements Engineering

Topic 4.1 Basic requirements engineering processes

Topic 4.2 Definition and characteristics of types of software requirements. Levels of

software requirements

Topic 4.3 Identification and formation of software requirements

Topic 4.4 Documentation of requirements. Methods of writing quality requirements.

Documentation standards

Topic 4.5 Analysis and coordination of requirements. Inspection, certification,

completeness, identification of conflicts and inconsistencies in requirements. Basics of risk

management when creating software

Topic 4.6 Requirements management. Requirements tracing and instrumental support of

the requirements management process

Topic 4.7 Integration of requirements analysis and software development processes

Section 5. Software architecture development.

Topic 5.1. Software architecture design.

Topic 5.2. Models of system structuring.

Topic 5.3. Management simulation and decomposition on the module.

Topic 5.4. User interface design.

Section 6. Fundamentals of software design methodology

Topic 6.1 Software design methodologies and technologies

Topic 6.2 Structural approach to software design

Topic 6.3 Object-oriented approach to software design

Section 7. Software modeling.

Topic 7.1. A structural approach to modeling. SADT methodology.

Topic 7.2. Modeling data flows.

Topic 7.3. Modeling of data structures. Diagram of state transitions.

Topic 7.4. Basics of the UML language. Class diagrams.

Section 8. Management of software projects.

Topic 8.1. Tasks of project management.

Topic 8.2. Project concepts. Software product risk management.

Topic 8.3. Planning of software projects. SMART. WBS. PERT. CMP. Gant Chart.

Topic 8.4. Formation of a team of developers. Distribution of roles and responsibilities.

Section 9. Software quality assurance and control.

Topic 9.1 Definition of basic concepts. Concept of testing

Topic 9.2. Metrics and software quality.

Topic 9.3 PP development technology through testing. TDD technology

Topic 9.4. Software verification and testing.

4 Educational resources and materials

Basic:

1. P. Laplante, "Remember the human element in IT project management," in IT Professional,

vol. 5, no. 1, pp. 46-50, Jan. 2003, doi: 10.1109/MITP.2003.1176490.

2. Pressman, Roger (2010) Software Engineering: A Practitioner's Approach, McGraw Hill, New

York, NY.

3. Carmichael A., Haywood D. (2002) Better Software Faster, Prentice Hall.

4. Sommerville, Ian (2011) Software Engineering, Addison-Wesley, Boston, MA.

5. Stephens, Rod (2015) Beginning Software Engineering, Wrox.

6. Tsui, Frank , Orlando Karam and Barbara Bernal (2013) Essentials of Software Engineering,

Jones & Bartlett Learning , Sudbury, MA.

7. Pfleeger, Shari (2001) Sofwtare Engineering: Theory and Practice, Prentice Hall, Upper Saddle

River, NJ.

 Supplementary:

1 Cohn Mike.(2005) Agile Estimating and Planning.: Pearson; 1st edition.. – 360 p.
2 Larman, C. (2005) Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and iterative Development, Pearson
3 Ambler, S. (2002) AgileModeling: Effective Practices for Extreme Programming and the Unified

Process, NewYork, John Wiley&Sons.
4 Bass, D.L., Clements, D.P. andKazman, D.R. (2012) Software Architecture in Practice, 3rd edn,

Upper Saddle River, NJ, Addison Wesley
5 Beck, K. (2004) Extreme Programming Explained: Embrace Change, Upper Saddle River, NJ,

Addison Wesley
6 Clemens Szyperski (2002) Component Software: Beyond object-oriented programming, Addison-

Wesley
7 John Cheesman & John Daniels (2000) UML Components: A simple process for specifying

component-based software (The component software series) Addison-Wesley
8 Rob Pooley, Perdita Stevens (2006) Using UML Software Engineering with Objects and

Components, second edition. Addison-Wesley
9 Christopher Fox (2006) Introduction to Software Engineering Design. Addison Wesley

Educational content

5 Methodology

Sections and topics

Hours

Total

including

Lectures
Practical

work
Self-
study

Section 1. Team work

Topic 1.1 Types and technologies of communication

Topic 1.2 Work in a team

4 2 10

Section 2. Software development methodologies (software)

Topic 2.1 Types of software development methodologies

Topic 2.2 Flexible software development methodologies

Topic 2.3 Comparative characteristics of traditional and flexible

development methodologies

10 2 2 6

Section 3. Life cycle of software.

Topic 3.1. Software engineering. Programming technologies in a

historical aspect.

Topic 3.2. Software life cycle. Life cycle models.

Topic 3.3. Software development methodology. Flexible

application development. Principles of Agile development.

Scrum, RAD. XP programming.

Topic 1.4. Software requirements management.

16 4 4 8

Section 4. Software Requirements Engineering

Topic 4.1 Basic requirements engineering processes

Topic 4.2 Definition and characteristics of types of software

requirements. Levels of software requirements

Topic 4.3 Identification and formation of software requirements

Topic 4.4 Documentation of requirements. Methods of writing

quality requirements. Documentation standards

Topic 4.5 Analysis and coordination of requirements. Inspection,

certification, completeness, identification of conflicts and

inconsistencies in requirements. Basics of risk management

when creating software

Topic 4.6 Requirements management. Requirements tracing and

instrumental support of the requirements management process

Topic 4.7 Integration of requirements analysis and software

development processes

22 6 4 12

Section 5. Software architecture development.

Topic 5.1. Software architecture design.

Topic 5.2. Models of system structuring.

Topic 5.3. Management simulation and decomposition on the

module.

Topic 5.4. User interface design.

18 4 4 10

Section 6 Fundamentals of software design methodology

Topic 6.1 Software design methodologies and technologies

Topic 6.2 Structural approach to software design

10 4 6

Section 7. Software modeling.

Topic 7.1. A structural approach to modeling. SADT

methodology.

Topic 7.2. Modeling data flows.

Topic 7.3. Modeling of data structures. Diagram of state

transitions.

Topic 7.4. Basics of the UML language. Class diagrams.

12 4 8

Section 8. Management of software projects.

Topic 8.1. Tasks of project management.

Topic 8.2. Project concepts. Software product risk management.

Topic 8.3. Planning of software projects. SMART. WBS. PERT.

CMP. Gant Chart.

Topic 8.4. Formation of a team of developers. Distribution of

roles and responsibilities.

14 6 8

Section 9. Software quality assurance and control.

Topic 9.1 Definition of basic concepts. Concept of testing

Topic 9.2. Metrics and software quality.

Topic 9.3 PP development technology through testing. TDD

technology

Topic 9.4. Software verification and testing.

14 4 4 6

Total hours in semester 120 36 18 66

Laboratory works:

The purpose of conducting laboratory classes is for students to consolidate theoretical
knowledge and acquire the necessary practical skills for working with modern technologies for
software engineering.

 • Laboratory work #1: Software development methodologies;

 • Laboratory work #2: Life cycle of software;

 • Laboratory work #3: Software Requirements Engineering;

 • Laboratory work #4: Software architecture development;

• Laboratory work # 5: Software quality assurance and control.

6 Self-study

• preparation for lectures by studying the previous lecture material;
• preparation for laboratory work with the study of the theory of laboratory work with an oral
answer to the given questions of the section;
• preparation of results of laboratory work in the form of a protocol.

Attendance Policy and Assessment
7 Attendance Policy

During classes in an academic discipline, students must adhere to certain disciplinary rules:
• extraneous conversations or other noise that interferes with classes are not allowed;
• the use of mobile phones and other technical means is not allowed without the teacher's
permission.

Laboratory works are submitted personally with a preliminary check of theoretical knowledge,
which is necessary for the performance of laboratory work. Validation of practical results
includes code review and execution of test tasks.

8 Monitoring and grading policy

Current control: survey on the subject of the lesson
Calendar control: conducted twice a semester as a monitoring of the current status of meeting
the syllabus requirements.
Semester control: test
Conditions for admission to semester control: enrollment of all laboratory work

System of rating points and evaluation criteria
The student's rating in the discipline consists of the points he receives for:
1. performance and defense of 5 laboratory works;
2. execution of 2 modular control works (MCW).

Laboratory works:
"excellent", a complete answer to the questions during the defense (at least 90% of the required
information) and a properly prepared protocol for laboratory work - 10 points;
"good", a sufficiently complete answer to the questions during the defense (at least 75% of the
required information) and a properly prepared protocol for laboratory work - 8 points;
"satisfactory", incomplete answer to the questions during the defense (at least 60% of the
required information), minor errors and a properly prepared protocol for laboratory work - 6
points;
"unsatisfactory", an unsatisfactory answer and/or an improperly prepared protocol for
laboratory work - 0 points.

Modular Control Works:
"Excellent", full answer (not less than 90% of the information you need) - 25 points;
"Good", a full answer (not less than 75% of the information you need), or a complete answer
with minor mistakes - 20 points;
"Satisfactory", incomplete answer (but not less than 60% of the information you need) and minor
mistakes - 16 points;
"Unsatisfactory", unsatisfactory response (incorrect problem solution), requires mandatory re -
writing at the end of the semester - 0 points.

The maximum sum of weighted points of control measures during the semester is:

R=5*Rlab+2*Rmcw=5*10+2*25=100.

 Table1 — Correspondence of rating points to grades on the university scale
Score Grade

100-95 Exellent

94-85 Very good

84-75 Good

74-65 Satisfactory

64-60 Sufficient

below 60 Fail

Course requirements are not met Not graded

Syllabus of the course:

designed by Senior Lecturer of the Department of IST, PhD, Serhii Petrovych Orlenko

adopted by Department of Computer Engineering (protocol № 10, 25.05.2022)

approved by the methodical commission of FICT (protocol № 10, 09.06.2022)

