
1

Department of Computer
Engineering

OBJECT-ORIENTED PROGRAMMING

Syllabus

Requisites of the Cource

Cycle of Higher Education First cycle of higher education (Bachelor’s degree)

Field of study 12 Information Technologies

Spciality 121 Software Engineering

Education Program Computer Systems Software Engineering

Type of Course Normative

Mode of Studies Full-time

Year of studies, semester Second year, first semester

ECTS workload 5 credits (ECTS), Time allotment - 150 hours, including 72 hours of classroom work,

and 78 hours of self-study.

Testing and assessment Ekzamt

Course Schedule 2 classes per week by the timetable http://roz.kpi.ua/

Language of Instruction English

Course Instructor Lecturer and Lab teacher: Associate Professor, Ph.D, Victor Porev

v_porev@ukr.net

Access to the Course https://drive.google.com/drive/folders/1oX42kspBl2ymt6cPaH5YgsAlGsdBb82x?u

sp=sharing

Outline of the Course

1. Course description, goals, objectives and learning outcomes

The purpose of studying the discipline is to form students' abilities and skills. According to the
requirements of the educational program applicants must demonstrate competencies and
programmatic learning outcomes
- GC1 Ability to abstract Thinking, Analysis and Synthesis;
- PC2 Ability to participate in Software Design, including Modeling (formal description) its Structure,

Behavior, and Operating Processes;
- PC3 Ability to develop Architectures, Modules and Program System Components;
- PLO05 Know and apply relevant mathematical Concepts, Methods of Domain-Based, System and

Object-Oriented Analysis and Mathematic Modeling for Software Development;
- PLO07 Know and apply in practice the Fundamental Concepts, Paradigms and Basic Principles of

functioning of Language, Instrumental and Computational Means of Software Engineering;
- PLO15 Motivated to choose Programming Languages and Development Technologies to solve the

problems of creating and maintaining Software
Successful completion of the tasks of the course "Object-oriented programming" ensures
knowledge of:
- object-oriented programming language;
- patterns of object-oriented design;
- of tools and integrated environments for software development

http://roz.kpi.ua/
mailto:v_porev@ukr.net
https://drive.google.com/drive/folders/1oX42kspBl2ymt6cPaH5YgsAlGsdBb82x?usp=sharing
https://drive.google.com/drive/folders/1oX42kspBl2ymt6cPaH5YgsAlGsdBb82x?usp=sharing

2

skills:
- analyze software requirements;
- design software architecture;
- use patterns of object-oriented design;
- perform refactoring of program code;
- develop and debug software;
- use the necessary tools and integrated environments to solve problems
experience:
- software development;
- with information computer technologies.

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

To successfully master the discipline "Object-Oriented Programming" in accordance with the
educational program, you must first master the knowledge of the disciplines: "Fundamentals of
Programming", "Algorithms and Data Structures", "Discrete Mathematics".

Competences, knowledge and skills acquired in the study of the discipline "Object-Oriented
Programming" can be used to study the disciplines "Methodology and technology of software
development", "Components of software engineering", as well as the tasks of educational components
"Course work on databases ", "Course work on methodologies and technologies of software
development ", " Course work on software engineering components ".

3 Content of the Coarse

The list of the main topics included in the program of studying the discipline "Object-oriented

programming":

Section 1. Introduction to the course of OOP

Topic 1.1. An overview of the basic concepts of software development

Section 2. Introduction to the C ++ language of object-oriented programming

Topic 2.1. Basic elements of the C ++ language

Topic 2.2. C ++ preprocessor. Modularity of programs

Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism

Topic 2.4. C ++ classes. Multiple inheritance

Topic 2.5. Programming features for the Windows operating platform. Object orientation of the system

Section 3. Relationships of classes and operations with objects

Topic 3.1. UML diagrams

Topic 3.2. Nested and local classes

Topic 3.3. Operations with objects

Section 4. Generalized programming elements and standard C ++ libraries

Topic 4.1. C ++ templates

Topic 4.2. Standard C ++ libraries. Containers

Topic 4.3. Standard C ++ libraries. Algorithms, functional objects

Section 5. Organization of interaction of classes and objects

Topic 5.1. Callback functions

Topic 5.2. Interfaces

Topic 5.3. Static members

3

Section 6. Patterns of object-oriented design

Topic 6.1. The concept of pattern design. Singleton pattern

Topic 6.2. Varieties of Factory Patterns

Topic 6.3. Facade Patterns, Adapter, Dependency Injection, Bridge

Topic 6.4. Patterns Decorator, Observer, Visitor

Section 7. Features of object-oriented design

Topic 7.1. Object-oriented approach vs functional-procedural

Topic 7.2. SOLID principles

Topic 7.3. Refactoring

4 Coursebooks and teaching resources

Main:

1. Lectures
https://drive.google.com/drive/folders/1MhMTYxmPKDckBCrm7xSf0Uypkr-bNkpF?usp=sharing

2. Lab works
https://drive.google.com/drive/folders/11ry56o6D5DFTVaaI4pjgYDkaE8VXkqPW?usp=sharing

Additional:

3. Bjarne Stroustrup. The C++ Programming Language 5th edition. ISBN-13: 978-1691196005
4. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. ISBN-13: 978-0201633610
5. Gerbert Schildt. C++: A Beginner's Guide. ISBN-13: 978-0072232158, 2012, 542 p.
6. Gerbert Schildt. Java: The Complete Reference, Eleventh Edition. ISBN-13: 978-1260440232, 2018,

1248 p.
7. Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts. Refactoring: Improving the

Design of Existing Code. ISBN-13: 978-0201485677
8. Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language 3rd Edition.

ISBN-13: 978-0321193681
9. Microsoft. Overview of Windows Programming in C++. https://docs.microsoft.com/en-

us/cpp/windows
10. Samuel Oloruntoba. SOLID: The First 5 Principles of Object Oriented Design.

https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-
object-oriented-design

11. Working Draft, Standard for Programming. Language C++. ISO/IEC N4582, 1514 pp.
https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2016/n4582.pdf

Educational content

5 Methodology

The educational content of the discipline consists of 18 lectures and 6 lab works

Lectures

Lecture 1

Topic 1.1. An overview of the basic concepts of software development
Varieties of programming paradigms. Program execution environments. Build a message-driven
program

https://drive.google.com/drive/folders/1MhMTYxmPKDckBCrm7xSf0Uypkr-bNkpF?usp=sharing
https://drive.google.com/drive/folders/11ry56o6D5DFTVaaI4pjgYDkaE8VXkqPW?usp=sharing
https://docs.microsoft.com/en-us/cpp/windows
https://docs.microsoft.com/en-us/cpp/windows
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2016/n4582.pdf

4

Tasks on self-study:
1. Varieties and examples of modern interpreters and compilers. Integrated application development
environments
2. Software implementation of message handlers
3. Features of application programming for Windows and Android
4. Examples of APIs
Topic 2.1. Basic elements of the C ++ language
Alphabet, operations, operators. Conditional operators, loop operators. Simple types. Pointers. Arrays,
structures. Functions: announcement, definition, call. The main function of the program and its
arguments
Tasks on self-study:
1. The main function for Windows programs
2. Creating a project of several modules

Lecture 2

Topic 2.2. C ++ preprocessor. Modularity of programs
The role of the preprocessor. Macros. Features of the program code of modules on C ++. Module title.
Hiding data and functions in modules. Connections between modules, hierarchy of modules.
Self-study task: Display of module hierarchy

Lecture 3

Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism
Announcement of a class, definition of its members, creation of copies of objects. Restricting access to
class members. Inheritance. Hierarchies of classes. Virtual functions and abstract classes. The concept
and implementation of polymorphism.
Tasks on self-study:
1. Dynamic objects. Arrays of objects
2. Classes and modularity. Two roles of classes

Lecture 4

Topic 2.4. C ++ classes. Multiple inheritance
The concept of multiple inheritance. Examples of multiple inheritance. Rhombic inheritance. Virtual base
classes. Problems of realization of multiple inheritance
Tasks on self-study:
1. Polymorphism in multiple inheritance
2. The need to use multiple inheritance, the possibility of abandoning it.
2. Multiple inheritance in other programming languages
Topic 2.5. Programming features for the Windows operating platform. Object orientation of the system
The concept of API and software development capabilities. Windows messages and their role in
operational system Windows. Dialog windows are modal and non-modal. Window procedure.
Tasks on self-study:
1. Programming of modal dialogue windows
2. Programming non-modal dialog boxes. Problems of organizing the work of many non-modal windows.

Lecture 5

Topic 2.5. Programming features for the Windows operating platform. Window classes. Child windows.
Object orientation of Windows.
Tasks on self-study:
1. Possibilities of conveniences of programming of functions of windows. MessageCrackers and others

5

2. Windows programs and OOP windows
3. Possibilities of using C ++ classes for window programming

Lecture 6

Topic 3.1. UML diagrams
Possibilities of describing systems with UML diagrams. The main types, varieties of diagrams. Use-case
Diagrams and Class Diagrams. Types of relations of classes and objects. Dependence, association,
aggregation, composition, generalization (inheritance).
Tasks on self-study:
1. Tools for creating and drawing UML diagrams
2. Making of class diagrams in an integrated software development environment
3. Using UML diagrams to document software systems

Lecture 7

Topic 3.2. Nested and local classes
The concept of nested classes. Restrict access to members of the nested class and the span class. Local
classes. Features of such classes in C ++ and in other object-oriented programming languages.
Self-study task: Differences in programming nested and local C ++ and Java classes

Lecture 8

Topic 3.3. Operations with objects
Types of operations on objects as a whole. Copying, assigning objects, adding objects. Copy constructor.
Operator overload
Tasks on self-study:
1. Friendly functions
2. Global overload operators
3. Features of the implementation of overload operators C ++ and other languages

Lecture 9

Topic 3.3. Operations with objects
Transfer an object as a function parameter. Object as a result of a function call.
Overview of the possibilities of execution on objects in C ++
Tasks on self-study:
1. Features of the use of local and dynamic objects in operations on objects
2. Differences between objects references from pointers to objects

Lecture 10

Topic 4.1. C ++ templates
Template functions and template classes. Specialization templates. Expediency of templates.
Tasks on self-study:
1. The concept of generalized programming in C ++
2. Generalized programming in Java, C # and other programming languages
Topic 4.2. Standard C ++ libraries. Containers
Evolution of standard C and C ++ libraries. The composition of the standard C ++ library. Standard
Template Library (STL). Types of library classes. Class complex. Class string.
Tasks on self-study:
1. Using the string class for different types of character encoding
2. Convert string data to char, wchar and vice versa

6

Lecture 11

Topic 4.2. Standard C ++ libraries. Containers
The concept of container class. Requirements for custom classes as container elements. Classes vector,
list, map
Tasks on self-study:
1. Use of standard containers for storage of graphic objects of Shape classes from laboratory works
2. Classes array, multimap and their possible use
Topic 4.3. Standard C ++ libraries. Algorithms, functional objects
The concept of a library of algorithm templates. Template classes of algorithms and their members.
Iterators. List of standard algorithms. Algorithms count_if, find_if, for_each, remove.
Functional objects. Classes of standard functional objects. Examples of the use of functional objects.
Tasks on self-study:
1. Evolution of algorithm templates in different standards C ++ (C ++ 11, C ++ 14 and others)
2. Evolution of functional objects in different standards C ++ (C ++ 11, C ++ 14 and others)

Lecture 12

Topic 5.1. Callback functions
The need to organize a callback function. Examples of callback functions. Possibilities of callback
programming in C ++. Callback functions and use of the Windows API. Organization of connections
between modules using callback. Possibilities of realization of callback technik by C ++ classes.
Tasks on self-study:
1. Features of the CALLBACK window procedures in Windows.
2. Affinity of callback and functional objects.
Topic 5.2. Interfaces
Interface class declaration. Features of interface class members. Using interface classes. Features of
implementation of classes-interfaces in C ++. Using the interface keyword in various C ++
implementations. Expediency of interface classes in program architecture.
Tasks on self-study:
1. The correlation of interfaces and abstract classes
2. Features of interfaces in Java, C# and other programming languages

Lecture 13

Topic 5.3. Static members
Features of static local variables. Static members of class. Expediency of using static class members.
Static class member functions.
Tasks on self-study:
1. Several contexts of using the word static
Topic 6.1. The concept of pattern design. Singleton pattern
The concept of pattern design and programming. Expediency of patterns. Book Design Patterns.
Classification of patterns. The Singleton pattern and its implementations are the classic Meersa
Singleton.
Tasks on self-study:
1. Possibilities of programming the Singleton pattern for the editor of objects in laboratory work
2. Problems of implementation of Singleton pattern in C ++ for multithreaded applications

Lecture 14

Topic 6.2. Varieties of Factory Patterns
Pattern Simple Factory. The expediency of such a pattern. Pattern Factory Method. Pattern Abstract
Factory.

7

Task on self-study: The feasibility of using patterns Factory Method and Abstract Factory.

Lecture 15

Topic 6.3. Facade Patterns, Adapter, Dependency Injection, Bridge
The expediency of creating the facade of the software system. Assignment and implementation of the
Adapter pattern. Patern Bridge.
Tasks on self-study:
1. Why separate the user of the software system from the internal classes?
2. What is the Injection technique based on?
3. Differences of the Bridge pattern from the Strategy pattern

Lecture 16

Topic 6.4. Patterns Decorator, Observer, Visitor
The main purpose of the pattern is Decorator. Observer pattern and its components. Implementation of
monitoring the state of several objects. Visitor pattern and possibilities to expand the functionality of
the class system.
Tasks on self-study:
1. Features of programming classes according to the pattern Decorator.
2. The role of the Visitor pattern in overcoming the Expression Problem
Topic 7.1. Object-oriented approach vs functional-procedural
An example to illustrate the relationship between object-oriented and functional-procedural
approaches. Duality. Expression Problem
Task on self-study: Analyze the capabilities and means of object-oriented programming of messages in
applications for Windows and other operating platforms.

Lecture 17

Topic 7.2. SOLID principles
Features of bad projects. Overview of the principles that are part of SOLID: Single responsibility, Open /
Closed, Liskov, Interface segregation, Dependency inversion. Examples of program code.
Tasks on self-study:
1. Antipatern God object
2. Dependensy inversion technique for managing dependencies of software system modules

Lecture 18

Topic 7.3. Refactoring
The concept of refactoring. Iterative development and improvement of code. Classification of methods
and techniques of refactoring. Examples of refactoring.
Tasks on self-study:
1. Replacement switch by polymorphism
2. Analyze the possibilities of refactoring the code of laboratory work of the object editor
Module control work

Laboratory works
Laboratory work 1
Get acquainted with the Microsoft Visual Studio software development environment and compile

modular program projects in C ++
Objective: to get the first skills of creating programs for Windows based on Win32 API projects for

Visual C ++ and learn modular programming in C ++.
To perform the work requires the study of individual information on the following topics:

8

- Topic 1.1. An overview of the basic concepts of software development. In particular, issues
related to the construction of programs managed by graphical user interface messages

- Topic 2.2. C ++ preprocessor. Modularity of programs. In particular, you need to learn how to
compose multi-module projects from several files in a C ++ software development environment.

- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the
system

You also need to learn how to develop software loosely coupled component modules with
minimal outsourcing of the details of the implementation of each module. It is necessary to develop the
simplest interface of interaction between modules

Laboratory work 2
Development of a graphical object editor in C ++
The aim of the work is to gain the ability and skills to use encapsulation, type abstraction,

inheritance and polymorphism based on C ++ classes, programming a simple graphic editor in an object-
oriented style.

To perform the work requires the study of individual information on the following topics:
- Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism
- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the

system
It is necessary to master the question of creating a hierarchy of classes for the description of

graphic objects and to provide message processing for writing an array of objects and polymorphic
mapping

Laboratory work 3
Development of the user interface on C ++
The purpose of the work is to gain the ability and skills to use encapsulation, type abstraction,

inheritance and polymorphism based on C ++ classes, programming a graphical user interface. In
addition to learning the features of programming applications with a graphical interface, message-
driven, students learn to document programs with UML diagrams, in particular, master class diagrams.

To perform the work requires the study of individual information on the following topics:
- Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism
- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the

system
- Topic 3.1. UML diagrams

Laboratory work 4
Improving the code structure of the graphical object editor in C ++
The purpose of the work is to gain the ability to design classes by upgrading the code of the

graphic editor in an object-oriented style to ensure the convenient addition of new types of objects. In
fact, refactoring is performed to perform the work. Students gain certain skills in developing complex
projects through iterative improvement.

To perform the work requires the study of individual information on the following topics:
- Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism
- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the

system
- Topic 3.1. UML diagrams
- Topic 7.3. Refactoring

9

Laboratory work 5
Development of a multi-window user interface for a graphical object editor
The purpose of the work is to gain the ability and skills to program the multi-window program

interface in C ++ in an object-oriented style.
To perform the work requires the study of individual information on the following topics:
- Topic 2.3. C ++ classes. Encapsulation. Inheritance. Polymorphism
- Topic 2.4. C ++ classes. Multiple inheritance
- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the

system
- Topic 6.4. Patterns Decorator, Observer, Visitor

Laboratory work 6
Build a software system from a variety of message-driven objects
Purpose: to gain the ability and skills to use the means of information exchange and to program

the interaction of independently operating software components.
The main task will be to build an interface of messages between the objects-components of

software systems. To do this, you must select a specific means of messaging, determine the format of
the message, the means of its transmission and reception.

To perform the work requires the study of individual information on the following topics:
- Topic 2.5. Programming features for the Windows operating platform. Object orientation of the

system
- Topic 3.1. UML diagrams
- Topic 6.4. Pattern Decorator. Observer, Visitor
- Topic 7.1. Object-oriented approach vs functional-procedural

Questions for Modular Control Work and Exam

1. Software development. Interpreters and compilers
2. Programming paradigms
3. Modularity of C ++ programs. The structure of the source code of the module C ++
4. C ++ classes: members, advertisement, definition
5. C ++ classes: constructor, default constructor, destructor
6. C ++ classes: ways to create instances of objects
7. C ++ classes: dynamic objects, array of objects
8. Classes and modularity. Two roles of classes
9. Inheritance of classes. Concept. Examples
10. Possibilities of restricting access to members of the base class in derived classes
11. Virtual functions. Abstract classes
12. Polymorphism: definition, implementation for C++ classes. Example
13. The concept of multiple inheritance of C ++ classes
14. Rhombic inheritance
15. Virtual base classes
16. Polymorphism in multiple inheritance
17. Static class members and how they are used
18. Nested and local classes
19. Overloading operators: basic concepts, limitations, examples
20. Operator overload “=“
21. Overload of the "+" operator
22. Operator overload []

10

23. Assigning objects: B = A
24. Initialization of one object by another object: classname B = A
25. Transfer of object through parameters of function: Func(obj)
26. Object as a result of the function: obj = Func()
27. Copy constructor. Example
28. Overview of operations on objects: B = A, classname B = A, Func(obj), obj = Func(),

classname * p = Func () and ways to solve problems
29. The concept of C ++ templates. Example
30. Template functions C ++. Specialization function templates. Example
31. Template classes C ++. Example of a template class
32. Standard C++ library: review
33. Standard C++ library: class complex. Example of use
34. Standard C++ library: class string. Example of use
35. Standard C++ library: class vector. Example of use
36. Standard C++ library: class list. Example of use
37. Standard C++ library: class map. Example of use
38. Standard algorithms of the C ++ template library
39. Standard C++ library: count_if algorithm. Example of use
40. Standard C++ library: find_if algorithm. Example of use
41. Standard C++ library: for_each algorithm. Example of use
42. Standard C++ library: remove algorithm. Example of use
43. Interface classes and why they are needed
44. Features of C ++ interface classes
45. The concept of Callback - functions. Examples of Callback - functions
46. Implementation of CallBack-functions with virtual functions
47. UML diagrams: review
48. UML diagram of precedents. Example
49. UML diagram of classes. Example
50. The main types of relationships between classes, objects in class diagrams
51. Relationship Dependence, Association on UML diagrams
52. Relationships of Generalization, Aggregation, Composition on class diagrams
53. Composition vs Inheritance
54. Replacement of multiple inheritance - what and how?
55. The concept of design patterns. Review of patterns
56. Pattern Singleton. Known implementations of this pattern
57. Pattern Factory Method
58. Pattern Abstract Factory
59. Pattern Builder
60. Pattern Dependency Injection
61. Pattern Façade
62. Pattern Adapter
63. Pattern Bridge
64. Pattern Decorator
65. Pattern Observer
66. Pattern Visitor
67. Procedural approach vs Object-oriented. Expression Problem
68. Principles of object-oriented design and programming. SOLID principles
69. Demeter's law
70. Refactoring in OOP

11

6. Self-study

Students should consolidate the knowledge gained during lectures and deepen their knowledge

for further study. In addition, independent work is required when performing laboratory work and

calculation and graphic work.

The list of tasks on the self-study is presented in the information on Lectures

Policy and Assessment

7 Cource Policy

All students must attend lectures and laboratory classes - both in regular classroom learning
(physical attendance) and distance learning (virtual attendance).

The results of laboratory work and individual tasks are drawn up in electronic format in the form
of report files, executable files and other files. Such files should contain the results in accordance with
the tasks, requirements and guidelines for each work. The work of the programs is checked by the
teacher during the acceptance of works.

Works that are submitted in violation of deadlines without good reason are evaluated at a lower
grade. The greater the delay, the lower the score.

All written works are checked for plagiarism. Plagiarism significantly reduces the evaluation, and
significant borrowing of someone else's text can lead to unsatisfactory evaluation of the work. Write-
offs during control works are forbidden (including with use of mobile devices).

8 Monitoring and Grading Policy

The final score (RD) of a student in the discipline "Object-Oriented Programming" consists of points
that he gets for:

- 6 laboratory works (RLAB);
- modular control work (RMCW);
- exam (RE).

According to the "Regulations on the system of evaluation of learning outcomes in Igor Sikorsky

KPI" (https://osvita.kpi.ua/sites/default/files/downloads/Pol_systema_ociniuvannia.pdf), approved by
Order №1 / 273 of 14.09.2020, used a rating system type RSO-2, for which the rating consists of:

- starting assessment (RC) - assessment of activities during the semester: RC = RLAB + RMCW,
- examination grade RE

Thus, RD = RC + RE

Calculation of evaluation scales
Evaluation scale (maximum possible evaluation) of one laboratory work: 8 points.
Evaluation scale of 6 laboratory works: RLAB = 6 × 8 = 48 points
Scale of assessment of modular control work: RMCW = 12 points
Scale of initial estimation: RC = RLAB + RMCW = 60 points
Examination grade scale: RE = 40 points
Complete overall rating scale: R = RC + RE = 60 + 40 = 100 points
The minimum possible overall positive score is: RМІN = 0.6 × 100 = 60 points

https://osvita.kpi.ua/sites/default/files/downloads/Pol_systema_ociniuvannia.pdf

12

Determining the conditions of admission to the exam
The condition for admission to the exam is the completion of tasks with a certain success during

the semester, ie, the student must earn some non-zero starting rating during the semester (RC > 0).
The minimum starting rating for admission to the exam (RMINADM) is determined from the

assumption that having received the maximum possible grade on the exam (RE) the student will
eventually have a minimum positive grade (RMIN). Then RMINADM = RMIN - RE = 60 - 40 = 20 points.
Thus, the condition for admission to the exam will be RC >= RMINADM, ie, the value of the starting
rating RC must be at least 20 points.

Thus, subject to admission to the exam, the student as a result of the exam will have a final rating
(RD), which will be the sum of all grades obtained in points. The final rating is also translated into a grade
on a university scale.

Table of translation of the final score in the university grading scale

Final score RD University grade

95...100 Excellent

85...94 Very Good

75...84 Good

65...74 Satisfactory

60...64 Sufficient

Below 60 Fail

Starting assessment (Rc) less than 20 Not admitted

Syllabus of the Course

Is designed by teacher Associate Professor, Ph.D, Victor Porev

Adopted by Department of Computing Engineering (protocol № 13 , 10 May 2023)

Approved by the Faculty Board of Methodology (protocol № 11 ,30 June 2023)

